最新中考专题相似三角形
- 格式:doc
- 大小:1.44 MB
- 文档页数:79
2023年中考数学高频考点突破——相似三角形1.如图,在△ABC中,BC=3,D为AC延长线上一点,AC=3CD,∠CBD=∠A,过D 作DH∥AB,交BC的延长线于点H.(1)求证:△HCD∽△HDB.(2)求DH长度.2.如图,在△ABC中,CD⊥AB于D,BE⊥AC于E,试说明:(1)△ABE∽△ACD;(2)AD•BC=DE•AC.3.如图1,在Rt△ACB中,∠ACB=90°,AB=10,BC=6,点D、F分别是边AC、BC 上的动点,过点D作AB的垂线,垂足为E,连接FD,FE.设C、D两点之间的距离为x,C、F两点之间的距离为y.(1)当DE=4时,求x的值;(2)如图2,以FD,FE为邻边作▱FDGE,当x=3时,是否存在y,使得▱FDGE的顶点G恰好落在△ABC的边上?若存在,请求出y的值,若不存在,请说明理由.4.如图,在四边形ABCD中,AB⊥AD,AB=2,BC=,CD=,DA=1.(1)求证:∠BCD=45°;(2)求AC的长.5.如图,在▱ABCD中,∠BAD的平分线交边BC于点E,交DC的延长线于点F,点G 在AE上,联结GD,∠GDF=∠F.(1)求证:AD2=DG•AF;(2)联结BG,如果BG⊥AE,且AB=6,AD=9,求AF的长.6.如图,已知,在平行四边形ABCD中,E为射线CB上一点,联结DE交对角线AC于点F,∠ADE=∠BAC.(1)求证:CF•CA=CB•CE;(2)如果AC=DE,求证:四边形ABCD是菱形.7.探究:某学校数学社团遇到这样一个题目:如图①,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=3,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,连接BD,如图②所示,通过构造△ABD就可以解决问题.请你写出求AB长的过程.应用:如图③,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,∠ABC=∠ACB=75°,BO:OD=1:3.若AO=3,请你求出AB的长.8.如图,在平行四边形ABCD中,∠ABC的平分线交AC于点E,交AD于点F,交CD 的延长线于点G.(1)求证:△ABE∽△CGE;(2)若AF=2FD,求的值.9.如图,在正方形ABCD中,在BC边上取中点E,连接DE,过点E作EF⊥ED交AB于点G、交AD延长线于点F.(1)求证:△ECD∽△DEF;(2)若CD=4,求AF的长.10.如图,平行四边形ABCD,DE交BC于F,交AB的延长线于E,且∠EDB=∠C.(1)求证:△ADE∽△DBE;(2)若DC=7cm,BE=9cm,求DE的长.11.如图,已知四边形ABCD是菱形,对角线AC、BD相交于点O,BD=2AC.过点A作AE⊥CD,垂足为点E,AE与BD相交于点F.过点C作CG⊥AC,与AE的延长线相交于点G.求证:(1)△ACG≌△DOA;(2)DF•BD=2DE•AG.12.已知,如图,CD是Rt△ABC斜边上的中线,DE⊥AB交BC于F,交AC的延长线于E,求证:(1)△ADE∽△FDB;(2)CD2=DE•DF.13.如图,在正方形ABCD中,点E、F、G分别在AB、BC、CD上,且EF⊥FG于F.(1)求证:△BEF∽△CFG;(2)若AB=12,AE=3,CF=4,求CG的长.14.如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE∥AC,EF∥AB.(1)求证:△BDE∽△EFC.(2)设,①若BC=12,求线段BE的长;②若△EFC的面积是20,求△ABC的面积.15.如图,已知AB∥DC,点E、F在线段BD上,AB=2DC,BE=2DF.(1)求证:△ABE∽△CDF;(2)若BD=8,DF=2,求EF的长.16.如图,已知在△ABC中,AD是内角平分线,点E在AC边上,且∠AED=∠ADB.求证:(1)△ABD∽△ADE;(2)AD2=AB•AE.17.如图,△ABC中,D为BC上一点,∠BAD=∠C.(1)试说明△BCA∽△BAD;(2)若AB=6,BD=4,求CD的长.18.如图,在梯形ABCD中,已知AD∥BC,∠B=90°,AB=7,AD=9,BC=12,在线段BC上任取一点E,连接DE,作EF⊥DE,交直线AB于点F.(1)若点F与B重合,求CE的长;(2)若点F在线段AB上,且AF=CE,求CE的长.19.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.(1)证明:△ACD∽△CBD;(2)已知AD=2,BD=4,求CD的长.20.如图,△ABC是⊙O的内接三角形,且AB是⊙O的直径,AC=2BC,过点C作AB的垂线l交于AB于点E,交⊙O于点D,设点P是上异于A,C的一个动点,AP的连线交l于点F,连接PC与PD;(1)若∠FPC=∠B,求证:△PAC∽△CAF;(2)若AB=5,点P为的中点,求PD的长.参考答案与试题解析1.【解答】解:(1)证明:∵DH∥AB,∴∠A=∠HDC,∵∠CBD=∠A,∴∠HDC=∠CBD,又∠H=∠H,∴△HCD∽△HDB;(2)∵DH∥AB,∴=,∵AC=3CD,∴=,∴CH=1,∴BH=BC+CH=3+1=4,由(1)知△HCD∽△HDB,∴=,∴DH2=4×1=4,∴DH=2(负值舍去).答:DH的长度为2.2.【解答】解:(1)∵CD⊥AB于D,BE⊥AC于E,∴∠AEB=∠ADC=90°,在△ABE和△ACD中,,∴△ABE∽△ACD;(2)∵△ABE∽△ACD,∴,在△ADE和△ACB中,,∴△ADE∽△ACB,∴,∴AD•BC=DE•AC.3.【解答】解:(1)∵DE⊥AB,⊥BC,∴∠AED=∠C=90°.∵∠A=∠A,∴△ADE∽△ABC.∴.∴,∴AD=.在Rt△ABC中,∵∠ACB=90°,AB=10,BC=6,∴AC==8.∴CD=AC﹣AD=8﹣=.∴.(2)存在,理由:①如下图,G落在AC上,∵EF∥AC,∴△EBF∽△ABC,∴.设BF=3k,EB=5k,∴AE=10﹣5k,∵DC=3,∴AD=8﹣3=5.由(1)知:△ADE∽△ABC,∴.∴AE=4,∴10﹣5k=4,∴,∴,∴.②如下图,G落在AB上,∵DF∥AB,∴△DFC∽△ABC,∴.∴∴y=.综上,当x=3时,存在y=或,使得▱FDGE的顶点G恰好落在△ABC的边上.4.【解答】(1)证明:连接BD,在△BAD中,AB⊥AD,AB=2,DA=1,则BD==,在△CBD中,BC2+BD2=()2+()2=10=()2=CD2,∴∠CBD=90°,∵BD=BC=,∴△CBD是等腰直角三角形,∴∠BCD=45°;(2)解:作CM⊥AB,交AB的延长线于M,∵∠ABD+∠ADB=90°,∠ABD+∠CBM=90°,∴∠ADB=∠CBM,∵∠DAB=∠BMC=90°,∴△ABD∽△MCB(AA),∴=,即=,解得BM=1,在△CMB中,CM==2,∴AM=2+1=3,在△CMA中,AC===.5.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥DF,AD∥BC,∵AE平分∠BAD,∴∠BAF=∠DAF=∠F,∴AD=DF,∵∠GDF=∠F,∴△GDF∽△DAF,∴=,∴AD2=DG•AF;(2)解:∵AF平分∠BAD,∴∠BAE=∠DAF,∵AD∥BC,∴∠BEA=∠DAF,∴∠BEA=∠BAE,∵BG⊥AE,AB=6,AD=9,∴BA=BE=6,∵∠BEA=∠CEF,∴∠CEF=∠F,∴EC=CF=3,DF=AD=9,∴==,即AG=GE=EF,∵AD2=DG•AF,∵∠GDF=∠F.∴GD=GF,∴AF2=81,∴AF=.6.【解答】证明:(1)∵四边形ABCD是平行四边形.∴AD∥BC.∴∠ADE=∠E.∵∠ADE=∠BAC.∴∠BAC=∠E.∵∠ACB=∠ECF.∴△ACB∽△ECF.∴.∴CF•CA=CB•CE(2)由(1)知∠ADE=∠E.∵∠DFA=∠EFC.∴△ADF∽△CEF.∴.∴.∵AC=DE.∴EF=CF.∵△ACB∽△ECF.∴AB=BC∵四边形ABCD是平行四边形.∴四边形ABCD是菱形.7.【解答】解:探究:∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴==.又∵AO=3,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°﹣∠BAD﹣∠ADB=75°=∠ADB,∴AB=AD=4.应用:过点B作BE∥AD交AC于点E,如图所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴==.∵BO:OD=1:3,∴==.∵AO=3,∴EO=,∴AE=4.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即()2+BE2=(2BE)2,解得:BE=4,∴AB=2BE=8.8.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠ECG,∠EBA=∠EGC,∴△ABE∽△CGE;(2)∵AF=2FD,∴AD=3DF,∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,DF∥CB,∴BC=3FD,△GFD∽△GBC,∴,∴,∴,∴=,∵△ABE∽△CGE,∴=,即的值是.9.【解答】(1)证明:∵四边形ABCD是正方形,EF⊥ED,∴∠FED=∠C=90°,BC∥AD,∴∠CED=∠FDE,∴△ECD∽△DEF;(2)解:∵四边形ABCD是正方形,∴∠C=90°,AD=BC=CD=4,∵E为BC的中点,∴CE=BC=2,在Rt△DCE中,由勾股定理得:DE===2,∵△ECD∽△DEF,∴=,∴=,解得:DF=10,∵AD=4,∴AF=DF﹣AD=10﹣4=6.10.【解答】(1)证明:平行四边形ABCD中,∠A=∠C,∵∠EDB=∠C,∴∠A=∠EDB,又∠E=∠E,∴△ADE∽△DBE;(2)平行四边形ABCD中,DC=AB,由(1)得△ADE∽△DBE,∴,∵DC=7cm,BE=9cm,∴AB=7cm,AE=16cm,∴DE=12cm.11.【解答】证明:(1)∵在菱形ABCD中,AD=CD,AC⊥BD,OB=OD,∴∠DAC=∠DCA,∠AOD=90°,∵AE⊥CD,CG⊥AC,∴∠DCA+∠GCE=90°,∠G+∠GCE=90°,∴∠G=∠DCA,∴∠G=∠DAC,∵BD=2AC,BD=2OD,∴AC=OD,在△ACG和△DOA中,∴△ACG≌△DOA(AAS);(2)∵AE⊥CD,BD⊥AC,∴∠DOC=∠DEF=90°,∴△CDO∽△FDE,∴=,即得OD•DF=DE•CD,∵△ACG≌△DOA,∴AG=AD=CD,又∵OD=BD,∴DF•BD=2DE•AG.12.【解答】解:(1)∵DE⊥AB,△ABC是RT△,∴∠ACB=∠EDB=90°,∵∠DFB=∠CFE,∴∠DBF=∠CEF,∴△ADE∽△FDB;(2)∵△ADE∽△FDB,∴=∵CD是Rt△ABC斜边上的中线,∴DA=DB=CD,∴=,∴CD2=DE•DF.13.【解答】解:(1)∵ABCD是正方形,EF⊥FG于F,∴∠B=∠C=∠EFG=90°,∴∠BEF+∠BFE=∠BFE+∠CFG=90°,∴△BEF∽△CFG;(2)解:∵△BEF∽△CFG,∴,∴.14.【解答】(1)证明:∵DE∥AC,∴∠DEB=∠FCE,∵EF∥AB,∴∠DBE=∠FEC,∴△BDE∽△EFC;(2)解:①∵EF∥AB,∴==,∵EC=BC﹣BE=12﹣BE,∴=,解得:BE=4;②∵=,∴=,∵EF∥AB,∴△EFC∽△BAC,∴=()2=()2=,=S△EFC=×20=5.∴S△ABC15.【解答】(1)证明:∵AB∥DC,∴∠B=∠D,∵AB=2DC,BE=2DF,∴AB:DC=BE:DF=2,∴△ABE∽△CDF;(2)解:∵BE=2DF,DF=2,∴BE=4,∵BD=8,∴EF=BD﹣DF﹣BE=2.16.【解答】证明:(1)∵AD是内角平分线,∴∠BAD=∠DAE,∵∠AED=∠ADB,∴△ABD∽△ADE.(2)∵△ABD∽△ADE,∴AD:AE=AB:AD,∴AD2=AB•AE.17.【解答】(1)证明:∵∠B=∠B,∠BAD=∠C,∴△BAD∽△BCA.(2)解:设CD=x.∵△BAD∽△BCA,∴=,∴=,∴x=5,∴CD=5.18.【解答】解:(1)当F和B重合时,∵EF⊥DE,∵DE⊥BC,∵∠B=90°,∴AB⊥BC,∴AB∥DE,∵AD∥BC,∴四边形ABED是平行四边形,∴AD=EF=9,∴CE=BC﹣EF=12﹣9=3;(2)过D作DM⊥BC于M,∵∠B=90°,∴AB⊥BC,∴DM∥AB,∵AD∥BC,∴四边形ABMD是矩形,∴AD =BM =9,AB =DM =7,CM =12﹣9=3,设AF =CE =a ,则BF =7﹣a ,EM =a ﹣3,BE =12﹣a ,∵∠FEC =∠B =∠DMB =90°,∴∠FEB +∠DEM =90°,∠BFE +∠FEB =90°,∴∠BFE =∠DEM ,∵∠B =∠DME ,∴△FBE ∽△EMD ,∴=,∴=,a =5,a =17,∵点F 在线段AB 上,AB =7,∴AF =CE =17(舍去),即CE =5.19.【解答】证明:(1)∵∠ACB =90°,CD ⊥AB ,∴∠CDA =∠CDB =90°,∵∠A +∠ACD =∠ACD +∠BCD =90°,∴∠A=∠BCD,∴△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,∴,∴CD2=AD•BD=2×4=8,∴CD=2.20.【解答】(1)证明:连接AD,∵AB⊥CD,AB是⊙O的直径,∴,∴∠ACD=∠B=∠ADC,∵∠FPC=∠B,∴∠ACD=∠FPC,∴∠APC=∠ACF,∵∠FAC=∠CAF,∴△PAC∽△CAF;(2)连接OP,则OA=OB=OP=AB=,∵点P为的中点,∴OP⊥AB,∠OPG=∠PDC,∵AB是⊙O的直径,∴∠ACB=90°,∵AC=2BC,∴tan∠CAB=tan∠DCB=,∴,∴AE=4BE,∵AE+BE=AB=5,∴AE=4,BE=1,CE=2,∴OE=OB﹣BE=2.5﹣1=1.5,∵∠OPG=∠PDC,∠OGP=∠DGE,∴△OPG∽△EDG,∴,∴,∴GE=,OG=,∴PG===,GD===,∴PD=PG+GD=.。
知识必备08相似三角形(公式、定理、结论图表)考点一、比例线段1.比例线段的相关概念如果选用同一长度单位量得两条线段a,b的长度分别为m,n,那么就说这两条线段的比是,或写成a:b=m:n.在两条线段的比a:b中,a叫做比的前项,b叫做比的后项.在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.若四条a,b,c,d满足或a:b=c:d,那么a,b,c,d叫做组成比例的项,线段a,d叫做比例外项,线段b,c叫做比例内项.如果作为比例内项的是两条相同的线段,即或a:b=b:c,那么线段b叫做线段a,c的比例中项.2、比例的性质(1)基本性质:①a:b=c:d ad=bc②a:b=b:c.(2)更比性质(交换比例的内项或外项)(交换内项)(交换外项)(同时交换内项和外项)(3)反比性质(交换比的前项、后项):(4)合比性质:(5)等比性质:3、黄金分割把线段AB分成两条线段AC,BC(AC>BC),并且使AC是AB和BC的比例中项,叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点,其中AC=AB0.618AB.典例1:(2022•镇江)《九章算术》中记载,战国时期的铜衡杆,其形式既不同于天平衡杆,也异于称杆.衡杆正中有拱肩提纽和穿线孔,一面刻有贯通上、下的十等分线.用该衡杆称物,可以把被称物与砝码放在提纽两边不同位置的刻线上,这样,用同一个砝码就可以称出大于它一倍或几倍重量的物体.图为铜衡杆的使用示意图,此时被称物重量是砝码重量的 1.2 倍.【分析】根据比例的性质解决此题.【解答】解:由题意得,5m被称物=6m砝码.∴m被称物:m砝码=6:5=1.2.故答案为:1.2.【点评】本题主要考查比例,熟练掌握比例的性质是解决本题的关键.典例2:(2022•衡阳)在设计人体雕像时,使雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,可以增加视觉美感.如图,按此比例设计一座高度为2m的雷锋雕像,那么该雕像的下部设计高度约是(结果精确到0.01m.参考数据:≈1.414,≈1.732,≈2.236)( )A.0.73m B.1.24m C.1.37m D.1.42m【分析】设下部高为x m,根据雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比列方程可解得答案.【解答】解:设下部的高度为xm,则上部高度是(2﹣x)m,∵雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,∴=,解得x=﹣1或x=﹣﹣1(舍去),经检验,x=﹣1是原方程的解,∴x=﹣1≈1.24,故选:B.【点评】本题考查黄金分割及分式方程的应用,解题的关键是读懂题意,列出分式方程解决问题.考点二、相似图形1.相似图形:我们把形状相同的图形叫做相似图形. 也就是说:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到的.(全等是特殊的相似图形).2.相似多边形:对应角相等,对应边的比相等的两个多边形叫做相似多边形.3.相似多边形的性质: 相似多边形的对应角相等,对应边成的比相等. 相似多边形的周长的比等于相似比,相似多边形的面积的比等于相似比的平方.4.相似三角形的定义:形状相同的三角形是相似三角形.5.相似三角形的性质: (1)相似三角形的对应角相等,对应边的比相等. (2)相似三角形对应边上的高的比相等,对应边上的中线的比相等,对应角的角平分线的比相等,都等于相似比. (3)相似三角形的周长的比等于相似比,面积的比等于相似比的平方.【要点诠释】结合两个图形相似,得出对应角相等,对应边的比相等,这样可以由题中已知条件求得其它角的度数和线段的长.对于复杂的图形,采用将部分需要的图形(或基本图形)“抽”出来的办法处理.6.相似三角形的判定: (1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似; (2)如果两个三角形的三组对应边的比相等,那么这两个三角形相似; (3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似; (4)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似. (5)如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和一条直角边的比对应相等,那么这两个三角形相似.典例3:(2022•襄阳)如图,在△ABC中,D是AC的中点,△ABC的角平分线AE交BD于点F,若BF:FD=3:1,AB+BE=3,则△ABC的周长为 5 .【分析】如图,过点F作FM⊥AB于点M,FN⊥AC于点N,过点D作DT∥AE交BC于点T.证明AB =3AD,设AD=CD=a,证明ET=CT,设ET=CT=b,则BE=3b,求出a+b,可得结论.【解答】解:如图,过点F作FM⊥AB于点M,FN⊥AC于点N,过点D作DT∥AE交BC于点T.∵AE平分∠BAC,FM⊥AB,FN⊥AC,∴FM=FN,∴===3,∴AB=3AD,设AD=DC=a,则AB=3a,∵AD=DC,DT∥AE,∴ET=CT,∴==3,设ET=CT=b,则BE=3b,∵AB+BE=3,∴3a+3b=3,∴a+b=,∴△ABC的周长=AB+AC+BC=5a+5b=5,故答案为:5.【点评】本题考查平行线分线段成比例定理,角平分线的性质定理等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.典例4:(2022•贺州)如图,在△ABC中,DE∥BC,DE=2,BC=5,则S△ADE:S△ABC的值是( )A.B.C.D.【分析】根据相似三角形的面积比等于相似比的平方计算即可.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵DE=2,BC=5,∴S△ADE:S△ABC的值为,故选:B.【点评】本题主要考查相似三角形的性质,熟练掌握相似三角形的面积比等于相似比的平方是解题的关键.典例5:(2022•菏泽)如图,在Rt△ABC中,∠ABC=90°,E是边AC上一点,且BE=BC,过点A作BE 的垂线,交BE的延长线于点D,求证:△ADE∽△ABC.【分析】根据等腰三角形的性质可得∠C=∠CEB=∠AED,由AD⊥BE可得∠D=∠ABC=90°,即可得△ADE∽△ABC.【解答】证明:∵BE=BC,∴∠C=∠CEB,∵∠CEB=∠AED,∴∠C=∠AED,∵AD⊥BE,∴∠D=∠ABC=90°,∴△ADE∽△ABC.【点评】本题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解决问题的关键.典例6:(2022•湘潭)如图,在⊙O中,直径AB与弦CD相交于点E,连接AC、BD.(1)求证:△AEC∽△DEB;(2)连接AD,若AD=3,∠C=30°,求⊙O的半径.【分析】(1)根据圆周角定理和相似三角形的判定可以证明结论成立;(2)根据直角三角形的性质和圆周角定理,可以得到AB的长,从而可以得到⊙O的半径.【解答】(1)证明:∵∠C=∠B,∠AEC=∠DEB,∴△AEC∽△DEB;(2)解:∵∠C=∠B,∠C=30°,∴∠B=30°,∵AB是⊙O的直径,AD=3,∴∠ADB=90°,∴AB=6,∴⊙O的半径为3.【点评】本题考查相似三角形的判定、圆周角定理,解答本题的关键是明确题意,利用数形结合的思想解答.典例7:(2022•陕西)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB的影长OC为16米,OA的影长OD为20米,小明的影长FG为2.4米,其中O、C、D、F、G五点在同一直线上,A、B、O三点在同一直线上,且AO⊥OD,EF⊥FG.已知小明的身高EF为1.8米,求旗杆的高AB.【分析】解法一:先证明△AOD∽△EFG,列比例式可得AO的长,再证明△BOC∽△AOD,可得OB 的长,最后由线段的差可得结论.解法二:过点C作CM⊥OD于C,证明△EGF∽△MDC可得结论.【解答】解:解法一:∵AD∥EG,∴∠ADO=∠EGF,∵∠AOD=∠EFG=90°,∴△AOD∽△EFG,∴=,即=,∴AO=15,同理得△BOC∽△AOD,∴=,即=,∴BO=12,∴AB=AO﹣BO=15﹣12=3(米);解法二:如图,过点C作CM⊥OD于C,交AD于M,∵△EGF∽△MDC,∴=,即=,∴CM=3,即AB=CM=3(米),答:旗杆的高AB是3米.【点评】本题考查相似三角形的判定与性质等知识,解题的关键掌握相似三角形的判定,属于中考常考题型.典例8:(2022•资阳)如图,平行四边形ABCD中,AB=5,BC=10,BC边上的高AM=4,点E为BC边上的动点(不与B、C重合,过点E作直线AB的垂线,垂足为F,连接DE、DF.(1)求证:△ABM∽△EBF;(2)当点E为BC的中点时,求DE的长;(3)设BE=x,△DEF的面积为y,求y与x之间的函数关系式,并求当x为何值时,y有最大值,最大值是多少?【分析】(1)利用两个角对应相等的三角形全等即可证明△ABM∽△EBF;(2)过点E作EN⊥AD于点N,可得四边形AMEN为矩形,从而得到NE=AM=4,AN=ME,再由勾股定理求出BM=3,从而得到ME=AN=2,进而得到DN=8,再由勾股定理,即可求解;(3)延长FE交DC的延长线于点G.根据,可得,再证得△ABM∽△ECG,可得,从而得到,再根据三角形的面积公式,得到函数关系式,再根据二次函数的性质,即可求解.【解答】(1)证明:∵EF⊥AB,AM是BC边上的高,∴∠AMB=∠EFB=90°,又∵∠B=∠B,∴△ABM∽△EBF;(2)解:过点E作EN⊥AD于点N,如图:在平行四边形ABCD中,AD∥BC,又∵AM是BC边上的高,∴AM⊥AD,∴∠AME=∠MAN=∠ANE=90°,∴四边形AMEN为矩形,∴NE=AM=4,AN=ME,在Rt△ABM中,,又∵E为BC的中点,∴,∴ME=AN=2,∴DN=8,在Rt△DNE中,;(3)解:延长FE交DC的延长线于点G,如图:∵sin B==,∴,∴EF=x,∵AB∥CD,∴∠B=∠ECG,∠EGC=∠BFE=90°,又∵∠AMB=∠EGC=90°,∴△ABM∽△ECG,∴,∴,∴GC=(10﹣x),∴DG=DC+GC=5+(10﹣x),∴y=EF•DG=×x•[5+(10﹣x)]=﹣x2+x=﹣(x﹣)2+,∴当x=时,y有最大值为,答:y=﹣x2+x,当x=时,y有最大值为.【点评】本题主要考查了平行四边形的性质,相似三角形的判定和性质,二次函数的性质,矩形的性质,解直角三角形,熟练掌握平行四边形的性质,相似三角形的判定和性质,二次函数的性质,矩形的性质是解题的关键.考点三、位似图形1.位似图形的定义: 两个多边形不仅相似,而且对应顶点的连线相交于一点,不经过交点的对应边互相平行,像这样的两个图形叫做位似图形,这个点叫位似中心.2.位似图形的分类: (1)外位似:位似中心在连接两个对应点的线段之外. (2)内位似:位似中心在连接两个对应点的线段上.3.位似图形的性质 位似图形的对应点和位似中心在同一条直线上; 位似图形的对应点到位似中心的距离之比等于相似比; 位似图形中不经过位似中心的对应线段平行.【要点诠释】位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.4.作位似图形的步骤 第一步:在原图上找若干个关键点,并任取一点作为位似中心; 第二步:作位似中心与各关键点连线; 第三步:在连线上取关键点的对应点,使之满足放缩比例; 第四步:顺次连接截取点.【要点诠释】 在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.典例9:(2022•河池)如图、在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(4,1),B(2,3),C(1,2).(1)画出与△ABC关于y轴对称的△A1B1C1;(2)以原点O为位似中心,在第三象限内画一个△A2B2C2,使它与△ABC的相似比为2:1,并写出点B2的坐标.【分析】(1)根据关于y轴对称的点的坐标得到A1、B1、C1的坐标,然后描点即可;(2)把A、B、C的坐标都乘以﹣2得到A2、B2、C2的坐标,然后描点即可.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,点B2的坐标为(﹣4,﹣6);【点评】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.也考查了轴对称变换.。
考向5.7 相似三角形压轴训练专题例题:(2021·安徽·中考真题)如图1,在四边形ABCD 中,ABC BCD ∠=∠,点E 在边BC 上,且//AE CD ,//DE AB ,作CF //AD 交线段AE 于点F ,连接BF .(1)求证:ABF EAD △≌△;(2)如图2,若9AB =,5CD =,ECF AED ∠=∠,求BE 的长;(3)如图3,若BF 的延长线经过AD 的中点M ,求BE EC的值.(1)证明://AE CD ,AEB DCE ∴∠=∠;//DE AB ,ABE DEC ∴∠=∠,12∠=∠,ABC BCD ∠=∠ ,ABE AEB ∴∠=∠,DCE DEC ∠=∠,AB AE =∴,DE DC =,//AF CD ,//AD CF ,∴四边形AFCD 是平行四边形AF CD∴=AF DE∴=在ABF 与EAD 中.12AB EA AF ED =⎧⎪∠=∠⎨⎪=⎩,()ABF EAD SAS ∴△≌△(2)ABF EAD △≌△,BF AD ∴=,在AFCD □中,AD CF =,BF CF ∴=,FBC FCB ∴∠=∠,又2FCB ∠=∠ ,21∠=∠,1FBC ∴∠=∠,在EBF △与EAB 中.1EBF BEF AEB ∠=∠⎧⎨∠=∠⎩,EBF EAB ∴△∽△;EBEFEA EB ∴=;9AB = ,9AE ∴=;5CD = ,5AF ∴=;4EF ∴=,49EBEB ∴=,6BE ∴=或6-(舍);(3)延长BM 、ED 交于点G .ABE 与DCE 均为等腰三角形,ABC DCE ∠=∠,ABE DCE ∴△∽△,AB AE BE DC DE CE∴==,设1CE =,BE x =,DC DE a ==,则AB AE ax ==,AF CD a ==,(1)EF a x ∴=-,//AB DG ,3G ∴∠=∠;在MAB △与MDG 中,345G MA MD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()MAB MDG AAS ∴△≌△;DG AB ax ∴==.(1)EG a x ∴=+;//AB EG ,FAB FEG ∴△∽△,FA AB FE EG∴=,(1)(1)a ax a x a x ∴=-+,(1)1x x x -∴=+,2210x x ∴--=,2(1)2x ∴-=,1x ∴=11x ∴=,21x =+,1BE EC∴=一、单选题1.(2018·山东聊城·中考真题)如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且OA=5,OC=3.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的A 1处,则点C 的对应点C 1的坐标为( )A .(﹣91255,)B .(﹣12955,)C .(﹣161255,)D .(﹣121655,)2.(2020·四川遂宁·中考真题)如图,在正方形ABCD 中,点E 是边BC 的中点,连接AE 、DE ,分别交BD 、AC 于点P 、Q ,过点P 作PF ⊥AE 交CB 的延长线于F ,下列结论:①∠AED +∠EAC +∠EDB =90°,②AP =FP ,③AE ,④若四边形OPEQ 的面积为4,则该正方形ABCD 的面积为36,⑤CE •EF =EQ •DE .其中正确的结论有( )A .5个B .4个C .3个D .2个3.(2018·广西桂林·中考真题)如图,在平面直角坐标系中,M 、N 、C 三点的坐标分别为(12,1),(3,1),(3,0),点A 为线段MN 上的一个动点,连接AC ,过点A 作AB AC ⊥交y 轴于点B ,当点A 从M 运动到N 时,点B 随之运动,设点B 的坐标为(0,b ),则b 的取值范围是( )A .114b -≤≤B .514b -≤≤C .9142b -≤≤D .914b -≤≤二、填空题4.(2017·贵州黔南·中考真题)如图,在ABC 中,AB =2,AC =4,ABC 绕点C 按逆时针方向旋转得到A B C ''△,使CB '∥AB ,分别延长AB ,CA '相交于点D ,则线段BD 的长为__.5.(2016·四川资阳·中考真题)如图,在等腰直角△ABC 中,∠ACB=90°,CO ⊥AB 于点O ,点D 、E 分别在边AC 、BC 上,且AD=CE ,连结DE 交CO 于点P ,给出以下结论:①△DOE 是等腰直角三角形;②∠CDE=∠COE ;③若AC=1,则四边形CEOD 的面积为14;④22222AD BE OP DP PE +-=⋅,其中所有正确结论的序号是___________.三、解答题6.(2019·广西梧州·中考真题)如图,在矩形ABCD 中,4,3AB BC ==,AF 平分DAC ∠,分别交,DC BC 的延长线于点,E F ;连接DF ,过点A 作AH DF ∕∕,分别交,BD BF 于点,G H .(1)求DE 的长;(2)求证:1DFC ∠=∠.7.(2012·浙江金华·中考真题)在锐角△ABC 中,AB=4,BC=5,∠ACB=45°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1.(1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数;(2)如图2,连接AA 1,CC 1.若△ABA 1的面积为4,求△CBC 1的面积;(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转过程中,点P 的对应点是点P 1,求线段EP 1长度的最大值与最小值.8.(2013·江苏盐城·中考真题)阅读材料:如图①,△ABC 与△DEF 都是等腰直角三角形,∠ACB=∠EDF=90°,且点D 在AB 边上,AB 、EF 的中点均为O,连结BF 、CD 、CO ,显然点C 、F 、O 在同一条直线上,可以证明△BOF ≌△COD ,则BF=CD解决问题:(1)将图①中的Rt △DEF 绕点O 旋转得到图②,猜想此时线段BF 与CD 的数量关系,并证明你的结论;(2)如图③,若△ABC 与△DEF 都是等边三角形,AB 、EF 的中点均为O,上述(1)中结论仍然成立吗?如果成立,请说明理由;如果不成立,请求出BF 与CD 之间的数量关系;(3)如图④,若△ABC 与△DEF 都是等腰三角形,AB 、EF 的中点均为O,且顶角∠ACB=∠EDF=α,请直接写出BF CD的值(用含α的式子表示出来).9.(2018·浙江舟山·中考真题)已知,ABC ∆中,B C ∠=∠,P 是BC 边上一点,作CPE BPF ∠=∠,分别交边AC ,AB 于点E ,F .(1)若CPE C ∠=∠(如图1),求证:PE PF AB +=.(2)若CPE C ∠≠∠,过点B 作CBD CPE ∠=∠,交CA (或CA 的延长线)于点D .试猜想:线段PE ,PF 和BD 之间的数量关系,并就CPE C ∠>∠情形(如图2)说明理由.(3)若点F 与A 重合(如图3),27C ∠= ,且PA AE =.①求CPE ∠的度数;②设PB a =,PA b =,AB c =,试证明:22a cb c-=.10.(2015·四川成都·中考真题)如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB 的延长线相交于点D,E,F,且BF=BC,⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交于点H,连接BD、FH.(1)求证:△ABC≌△EBF;(2)试判断BD与⊙O的位置关系,并说明理由;(3)若AB=1,求HG•HB的值.一、单选题BC=2,M为1.(2021·广西百色·中考真题)如图,矩形ABCD各边中点分别是E、F、G、H,AB=AB上一动点,过点M作直线l⊥AB,若点M从点A开始沿着AB方向移动到点B即停(直线l随点M移动),直线l扫过矩形内部和四边形EFGH外部的面积之和记为S.设AM=x,则S关于x的函数图象大致是()A .B .C .D .2.(2019·辽宁鞍山·中考真题)如图,正方形ABCD 和正方形CGFE 的顶点C ,D ,E 在同一条直线上,顶点B ,C ,G 在同一条直线上.O 是EG 的中点,∠EGC 的平分线GH 过点D ,交BE 于点H ,连接FH 交EG于点M ,连接OH .以下四个结论:①GH ⊥BE ;②△EHM ∽△GHF ;③BC CG1;④HOM HOG S S △△=2,其中正确的结论是( )A .①②③B .①②④C .①③④D .②③④3.(2015·广西贵港·中考真题)如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC 于点F ,连接DF ,分析下列五个结论:①△AEF ∽△CAB ;②CF=2AF ;③DF=DC ;④tan ∠⑤S 四边形CDEF =52S △ABF ,其中正确的结论有( )A .5个B .4个C .3个D .2个二、填空题4.(2017·湖北十堰·中考真题)如图,正方形ABCD 中,BE=EF=FC ,CG=2GD ,BG 分别交AE ,AF 于M ,N .下列结论:①AF ⊥BG ;②BN=NF ;③38MB MG =;④S 四边形CGNF =S 四边形ANGD .其中正确的结论的序号是_______.5.(2015·四川南充·中考真题)如图,正方形ABCD 边长为1,以AB 为直径作半圆,点P 是CD 中点,BP 与半圆交于点Q ,连结DQ .给出如下结论:①DQ =1;②;③S △PDQ =;④cos ∠ADQ=.其中正确结论是_________.(填写序号)三、解答题6.(2021·内蒙古赤峰·中考真题)数学课上,有这样一道探究题.如图,已知ABC 中,AB =AC =m ,BC =n ,()0180BAC αα∠=︒<<︒,点P 为平面内不与点A 、C 重合的任意一点,将线段CP 绕点P 顺时针旋转a ,得线段PD ,E 、F 分别是CB 、CD 的中点,设直线AP 与直线EF 相交所成的较小角为β,探究EF AP 的值和β的度数与m 、n 、α的关系,请你参与学习小组的探究过程,并完成以下任务:(1)填空:【问题发现】小明研究了60α=︒时,如图1,求出了EF PA =___________,β=___________;小红研究了90α=︒时,如图2,求出了EF PA =___________,β=___________;【类比探究】他们又共同研究了α=120°时,如图3,也求出了EF PA ;【归纳总结】最后他们终于共同探究得出规律:EF PA =__________(用含m 、n 的式子表示);β=___________ (用含α的式子表示).(2)求出120α=︒时EF PA的值和β的度数.7.(2021·湖南岳阳·中考真题)如图,在Rt ABC 中,90ACB ∠=︒,60A ∠=︒,点D 为AB 的中点,连接CD ,将线段CD 绕点D 顺时针旋转()60120αα︒<<︒得到线段ED ,且ED 交线段BC 于点G ,CDE ∠的平分线DM 交BC 于点H .(1)如图1,若90α=︒,则线段ED 与BD 的数量关系是________,GD CD=________;(2)如图2,在(1)的条件下,过点C 作//CF DE 交DM 于点F ,连接EF ,BE .①试判断四边形CDEF 的形状,并说明理由;②求证:BE FH =;(3)如图3,若2AC =,()tan 60m α-︒=,过点C 作//CF DE 交DM 于点F ,连接EF ,BE ,请直接写出BE FH的值(用含m 的式子表示).8.(2021·四川乐山·中考真题)在等腰ABC 中,AB AC =,点D 是BC 边上一点(不与点B 、C 重合),连结AD .(1)如图1,若60C ∠=°,点D 关于直线AB 的对称点为点E ,结AE ,DE ,则BDE ∠=________;(2)若60C ∠=°,将线段AD 绕点A 顺时针旋转60︒得到线段AE ,连结BE .①在图2中补全图形;②探究CD 与BE 的数量关系,并证明;(3)如图3,若AB AD k BC DE==,且ADE C ∠=∠,试探究BE 、BD 、AC 之间满足的数量关系,并证明.9.(2020·湖北省直辖县级单位·中考真题)实践操作:第一步:如图1,将矩形纸片ABCD 沿过点D 的直线折叠,使点A 落在CD 上的点A '处,得到折痕DE ,然后把纸片展平.第二步:如图2,将图1中的矩形纸片ABCD 沿过点E 的直线折叠,点C 恰好落在AD 上的点C '处,点B 落在点B '处,得到折痕EF ,B C ''交AB 于点M ,C F '交DE 于点N ,再把纸片展平.问题解决:(1)如图1,填空:四边形AEA D '的形状是_____________________;(2)如图2,线段MC '与ME 是否相等?若相等,请给出证明;若不等,请说明理由;(3)如图2,若2cm,'4cm AC DC '==,求:DN EN 的值.10.(2020·四川内江·中考真题)如图,正方形ABCD 中,P 是对角线AC 上的一个动点(不与A 、C 重合),连结BP ,将BP 绕点B 顺时针旋转90︒到BQ ,连结QP 交BC 于点E ,QP 延长线与边AD 交于点F .(1)连结CQ ,求证:AP CQ =;(2)若14AP AC =,求:CE BC 的值;(3)求证:PF EQ =.11.(2021·湖北十堰·中考真题)已知抛物线25y ax bx =+-与x 轴交于点()1,0A -和()5,0B -,与y轴交于点C ,顶点为P ,点N 在抛物线对称轴上且位于x 轴下方,连AN 交抛物线于M ,连AC 、CM .(1)求抛物线的解析式;(2)如图1,当tan 2ACM ∠=时,求M 点的横坐标;(3)如图2,过点P 作x 轴的平行线l ,过M 作MD l ⊥于D ,若MD =,求N 点的坐标.1.A【解析】【分析】直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【详解】过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠3,则△A1OM∽△OC1N,∵OA=5,OC=3,∴OA1=5,A1M=3,∴OM=4,∴设NO=3x,则NC1=4x,OC1=3,则(3x)2+(4x)2=9,解得:x=±35(负数舍去),则NO=95,NC1=125,故点C的对应点C1的坐标为:(-95,125).故选A.【点拨】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.2.B【解析】【分析】①正确:证明∠EOB=∠EOC=45°,再利用三角形的外角的性质即可得出答案;②正确:利用四点共圆证明∠AFP=∠ABP=45°即可;③正确:设BE=EC=a,求出AE,OA即可解决问题;④错误:通过计算正方形ABCD的面积为48;⑤正确:利用相似三角形的性质证明即可.【详解】①正确:如图,连接OE,∵四边形ABCD是正方形,∴AC⊥BD,OA=OC=OB=OD,∴∠BOC=90°,∵BE=EC,∴∠EOB=∠EOC=45°,∵∠EOB=∠EDB+∠OED,∠EOC=∠EAC+∠AEO,∴∠AED+∠EAC+∠EDO=∠EAC+∠AEO+∠OED+∠EDB=90°,故①正确;②正确:如图,连接AF,∵PF⊥AE,∴∠APF=∠ABF=90°,∴A,P,B,F四点共圆,∴∠AFP=∠ABP=45°,∴∠PAF=∠PFA=45°,∴PA=PF,故②正确;③正确:设BE=EC=a,则AE,OA=OC=OB=OD a,∴AE AO AE ,故③正确;④错误:根据对称性可知,OPE OQE ≅△△,∴OEQ S △=12OPEQ S 四边形=2,∵OB =OD ,BE =EC ,∴CD =2OE ,OE ⊥CD ,∴ EQ OE 1==DQ CD 2, OEQ CDQ △△,∴ODQ S =4△, CDQ S =8△,∴CDO S =12△,∴ABCD S =48正方形,故④错误;⑤正确:∵∠EPF =∠DCE =90°,∠PEF =∠DEC ,∴EPF ECD △△,∴EF PE =ED EC,∴EQ =PE ,∴CE•EF =EQ•DE ,故⑤正确;综上所诉一共有4个正确,故选:B .【点拨】本题主要考查了三角形外角性质、四点共圆问题、全等与相似三角形的综合运用,熟练掌握相关概念与方法是解题关键.3.B【解析】【分析】延长NM 交y 轴于P 点,则MN ⊥y 轴.连接CN .证明△PAB ∽△NCA ,得出PB PA NA NC=,设PA=x ,则NA=PN-PA=3-x ,设PB=y ,代入整理得到22393()24y x x x =-=--+,根据二次函数的性质以及12≤x≤3,求出y 的最大与最小值,进而求出b 的取值范围.【详解】解:如图,延长NM 交y 轴于P 点,则MN ⊥y 轴.连接CN .在△PAB 与△NCA 中,9090APB CNA PAB NCA CAN ∠∠︒⎧⎨∠∠︒-∠⎩====,∴△PAB ∽△NCA ,∴PB PA NA NC=,设PA=x ,则NA=PN-PA=3-x ,设PB=y ,∴31y x x =-,∴22393()24y x x x =-=--+,∵-1<0,12≤x≤3,∴x=32时,y 有最大值94,此时b=1-94=-54,x=3时,y 有最小值0,此时b=1,∴b 的取值范围是-54≤b≤1.故选:B .【点拨】本题考查了相似三角形的判定与性质,二次函数的性质,得出y 与x 之间的函数解析式是解题的关键.4.6.【解析】【详解】试题分析:∵将△ABC 绕点C 按逆时针方向旋转得到△A′B′C ,AB =2,AC =4,∴A′B′=AB =2,AC′=AC =4,∠CA′B′=∠A.又∵CB′∥AB ,∴∠A′CB′=∠A. ∴△A′CB′∽△DAC.∴CA A B AD AC'''=,即4284AD AD =⇒=. ∴BD=6.考点:1.旋转的性质;2.平行的性质;3.相似三角形的判定和性质.5.①②③④.【解析】【详解】试题分析:①正确.如图,∵∠ACB=90°,AC=BC ,CO ⊥AB∴AO=OB=OC ,∠A=∠B=∠ACO=∠BCO=45°,在△ADO 和△CEO 中,∵OA=OC ,∠A=∠ECO ,AD=CE ,∴△ADO ≌△CEO ,∴DO=OE ,∠AOD=∠COE ,∴∠AOC=∠DOE=90°,∴△DOE 是等腰直角三角形.故①正确.②正确.∵∠DCE+∠DOE=180°,∴D 、C 、E 、O 四点共圆,∴∠CDE=∠COE ,故②正确.③正确.∵AC=BC=1,∴S △ABC =12×1×1=12,S 四边形DCEO =S △DOC +S △CEO =S △CDO +S △ADO =S △AOC =12S △ABC =14,故③正确.④正确.∵D 、C 、E 、O 四点共圆,∴OP•PC=DP•PE ,∴22OP +2DP•PE=22OP +2OP•PC=2OP (OP+PC )=2OP•OC ,∵∠OEP=∠DCO=∠OCE=45°,∠POE=∠COE ,∴△OPE ∽△OEC ,∴OP OE OE OC =,∴OP•OC=2OE ,∴22OP +2DP•PE=22OE =2DE =22CD CE +,∵CD=BE ,CE=AD ,∴22222AD BE OP DP PE +=+⋅,∴22222AD BE OP DP PE +-=⋅.故④正确.考点:勾股定理;四点共圆.6.(1)32=DE ;(2)见解析.【解析】【分析】(1)由AD CF ∕∕,AF 平分DAC ∠,可得FAC AFC ∠=∠,得出5AC CF ==,可证出ADE FCE ∆∆∽,则AD DE CF CE =,可求出DE 长;(2)由ADG HBG ∆∆∽,可求出DG ,则DE DC DG DB=,可得EG BC ∕∕,则1AHC ∠=∠,根据DF AH ∕∕,可得AHC DFC ∠=∠,结论得证.【详解】(1)解:∵矩形ABCD 中, AD CF ∕∕,∴DAF ACF ∠=∠,∵AF 平分DAC ∠,∴DAF CAF ∠=∠,∴FAC AFC ∠=∠,∴AC CF =,∵4,3AB BC ==,∴5AC ==,∴5CF =,∵AD CF ∕∕,∴ADE FCE ∆∆∽,∴AD DECF CE =,设DE x =,则354xx =-,解得32x =∴32=DE ;(2)∵,AD FH AF DH ∕∕∕∕,∴四边形ADFH 是平行四边形,∴3AD FH ==,∴2,5CH BH ==∵AD BH ∕∕,∴ADG HBG ∆∆∽,∴DGADBG BH =,∴355DGDG =-,∴158DG =,∵32=DE ,∴45DE DCDG DB ==,∴EG BC ∕∕,∴1AHC ∠=∠,又∵DF AH ∕∕,∴AHC DFC ∠=∠,1DFC ∠=∠.【点拨】考核知识点:相似三角形综合运用.证明相似三角形,运用相似三角形性质是关键.7.(1)∠CC 1A 1=90°.(2)S △CBC1=254.(3)最小值为:EP 12.最大值为:EP 1= 7.【解析】【分析】(1)由旋转的性质可得:∠A 1C 1B=∠ACB=45°,BC=BC 1,又由等腰三角形的性质,即可求得∠CC 1A 1的度数.(2)由旋转的性质可得:△ABC ≌△A 1BC 1,易证得△ABA 1∽△CBC 1,利用相似三角形的面积比等于相似比的平方,即可求得△CBC 1的面积.(3)由①当P 在AC 上运动至垂足点D ,△ABC 绕点B 旋转,使点P 的对应点P 1在线段AB 上时,EP 1最小;②当P 在AC 上运动至点C ,△ABC 绕点B 旋转,使点P 的对应点P 1在线段AB 的延长线上时,EP 1最大,即可求得线段EP 1长度的最大值与最小值.【详解】解:(1)∵由旋转的性质可得:∠A 1C 1B=∠ACB=45°,BC=BC 1,∴∠CC 1B=∠C 1CB=45°.∴∠CC 1A 1=∠CC 1B+∠A 1C 1B=45°+45°=90°.(2)∵由旋转的性质可得:△ABC ≌△A 1BC 1,∴BA=BA 1,BC=BC 1,∠ABC=∠A 1BC 1.∴11BA BA BC BC =,∠ABC+∠ABC 1=∠A 1BC 1+∠ABC 1∴∠ABA 1=∠CBC 1.∴△ABA 1∽△CBC 1∴1122ABA CBC S AB 416S CB 525∆∆⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.∵S△ABA1=4,∴S△CBC1=254.(3)过点B作BD⊥AC,D为垂足,∵△ABC为锐角三角形,∴点D在线段AC上.在Rt△BCD中,①如图1,当P在AC上运动至垂足点D,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小.最小值为:EP1=BP1﹣BE=BD﹣2.②如图2,当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大.最大值为:EP1=BC+BE=5+2=7.8.(1)根据等腰直角三角形和旋转的性质,由SAS证出△BOF≌△COD,即可得出结论.(2)不成立.根据等边三角形和旋转的性质,证出△BOF∽△COD,即可得出结论.(3)BFtan CD2α=.【解析】【详解】分析:(1)根据等腰直角三角形和旋转的性质,由SAS证出△BOF≌△COD,即可得出结论.(2)根据等边三角形和旋转的性质,证出△BOF∽△COD,即可得出结论.(3)如图,连接CO、DO,仿(2)可证△BOF∽△COD,从而BF BO CD CO=.由点O是AB的中点,可得CO⊥AB,∴BOtan2COα=.∴BFtanCD2α=.解:(1)相等.证明如下:如图,连接CO、DO,∵△ABC是等腰直角三角形,点O是AB的中点,∴BO=CO,CO⊥AB.∴∠BOC=900.同理,FO=DO,∠DOF=900.∴∠BOF=900+∠COF,∠COD=900+∠COF.∴∠BOF=∠COD.∴△BOF≌△COD(SAS).∴BF=CD.(2)不成立.如图,连接CO、DO,∵△ABC 是等边三角形,∴∠CBO=600.∵点O 是AB 的中点,∴CO ⊥AB ,即∠BOC=900.∴在Rt △BOC 中,CO tan CBO BO ∠==同理,∠DOF=900,DO FO =.∴CO DO BO FO=.又∵∠BOF=900+∠COF ,∠COD=900+∠COF.∴∠BOF=∠COD.∴△BOF ∽△COD.∴CD CO BF BO==∴CD =.(3)BF tan CD 2α=.9.(1)证明见解析;(2)猜想:BD PE PF =+,理由见解析;(3)①51CPE ∠= ;②证明见解析.【解析】【详解】【分析】(1)根据平行线的判定,得到//PE AF ,//PF AE ,证明PE AF =.即可证明PE PF AB +=. (2)过点B 作DC 的平行线交EP 的延长线于点G ,证明FBP ∆≌()GBP ASA ∆,得到PF PG =.证明四边形BGED 是平行四边形,即可得到BD EG PG PE PE PF ==+=+.(3)①设CPE BPF x ∠=∠=,27APE PEA C CPE x ∠=∠=∠+∠=+ ,根据三角形的内角和列出方程,求解即可.②延长BA 至M ,使AM AP =,连结MP ,证明 ABP PBM ∆~∆.根据相似三角形的性质得到BP BM AB BP=,即可证明.【解答】(1)∵B C ∠=∠,CPE BPF ∠=∠,CPE C ∠=∠,∴B BPF CPE ∠=∠=∠,BPF C ∠=∠,∴PF BF =,//PE AF ,//PF AE ,∴PE AF =.∴PE PF AF BF AB +=+=.(2)猜想:BD PE PF =+,理由如下:过点B 作DC 的平行线交EP 的延长线于点G ,则ABC C CBG ∠=∠=∠,∵CPE BPF ∠=∠,∴BPF CPE BPG ∠=∠=∠,又BP BP =,∴FBP ∆≌()GBP ASA ∆,∴PF PG =.∵CBD CPE ∠=∠,∴//PE BD ,∴四边形BGED 是平行四边形,∴BD EG PG PE PE PF ==+=+.(3)①设CPE BPF x ∠=∠=,∵27C ∠= ,PA AE =,∴27APE PEA C CPE x ∠=∠=∠+∠=+ ,又180BPA APE CPE ∠+∠+∠= ,即27180x x x +++= ,∴51x = ,即51CPE ∠= .②延长BA 至M ,使AM AP =,连结MP ,∵27C ∠= ,51BPA CPE ∠=∠= .∴180BAP B BPA ∠=-∠-∠ 102M MPA ==∠+∠ ,∵AM AP =,∴1512M MPA BAP ∠=∠=∠= ,∴M BPA ∠=∠,而B B ∠=∠,∴ABP PBM ∆~∆.∴BP BM AB BP=,∴2BP AB BM =⋅.∵PB a =,PA AM b ==,AB c =,∴()2a c b c =+,∴22a cb c-=.【点评】考查平行四边形的判定与性质,全等三角形的判定与性质,相似三角形的判定与性质, 综合性比较强,对学生综合能力要求较高.10.(1)证明见试题解析;(2)相切,理由见试题解析;(3)2.【解析】【分析】(1)由∠ABC=90°和FD ⊥AC ,得到∠ABF=∠EBF ,由∠DEC=∠BEF ,得到∠DCE=∠EFB ,从而得到△ABC ≌△EBF (ASA );(2)BD 与⊙O 相切.连接OB ,只需证明∠DBE+∠OBE=90°,即可得到OB ⊥BD ,从而有BD 与⊙O 相切;(3)连接EA ,EH ,由DF 为线段AC 的垂直平分线,得到AE=CE ,由△ABC ≌△EBF ,得到AB=BE=1,进而得到=故1BF BC ==即可得出结论24EF =+又因为BH 为角平分线,易证△EHF 为等腰直角三角形,故222EF HF =,得到22122HF EF ==△GHF ∽△FHB ,得到2HG HB HF ⋅=.【详解】解:(1)∵∠ABC=90°,∴∠CBF=90°,∵FD ⊥AC ,∴∠CDE=90°,∴∠ABF=∠EBF ,∵∠DEC=∠BEF ,∴∠DCE=∠EFB ,∵BC=BF ,∴△ABC ≌△EBF (ASA );(2)BD 与⊙O 相切.理由:连接OB ,∵DF 是AC 的垂直平分线,∴AD=DC ,∴BD=CD ,∴∠DCE=∠DBE ,∵OB=OF ,∴∠OBF=∠OFB ,∵∠DCE=∠EFB ,∴∠DBE=∠OBF ,∵∠OBF+∠OBE=90°,∴∠DBE+∠OBE=90°,∴OB ⊥BD ,∴BD 与⊙O 相切;(3)连接EA ,EH ,∵DF 为线段AC 的垂直平分线,∴AE=CE ,∵△ABC ≌△EBF ,∴AB=BE=1,∴=,∴1BF BC ==+∴(2222114EF BE BF =+=+=+,又∵BH 为角平分线,∴∠EBH=∠EFH=45°,∴∠HEF=∠HBF=45°,∠HFG=∠EBG=45°,∴△EHF 为等腰直角三角形,∴222EF HF =,∴22122HF EF ==∵∠HFG=∠FBG=45°,∠GHF=∠GHF ,∴△GHF ∽△FHB ,∴HF HGHB HF =,∴2HG HB HF ⋅=,∴22HG HB HF ⋅==.【点拨】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,圆周角定理,勾股定理,线段的垂直平分线的性质,直角三角形的性质,等腰直角三角形的判定和性质,熟练掌握这些定理是解题的关键.1.D【解析】【分析】把M 点的运动过程分为AE 段(0x ≤≤)和BE x ≤≤可知在AE 段HAE GHD EOM GPS S S S S S =+--△△△△,分别表示出四个三角形的面积即可用x 表示出S ;同理当在BE 段时1111HAE GHD EO M GP S S S S S S =+++△△△△,分别表示出四个三角形的面积即可用x 表示出S ;最后根据x与S 的函数关系式对图像进行判断即可【详解】解:如下图所示,当M 点的运动过程在AE 段则由题意可知HAE GHD EOM GPSS S S S S =+--△△△△∵四边形ABCD 是矩形,直线l ⊥AB ,H 、E 、F 、G 为AD 、AB 、BC 、CD 的中点∴=HAE GHD S S △△,=EOM GPSS S △△∴22HAE EOMS S S =-△△∵1=2HAE S AE AH △,11122AH AD BC ===,12AE AB ==∴1=2HAE S AE AH △∵直线l ⊥AB∴∠OME =∠A =90°∴△HAE ∽△OME ∴AH OM AE ME=∴OM =又∵ME AE AM x=-=∴)OM x ==∴)212EOM S OM ME x ==- △∴)222HAE EOM S S S x =-=△△如下图所示,当M 点的运动过程在BE 段同理当在BE 段时1111HAE GHD EO M GP S S S S S S =+++△△△△即1122HAE EO M S S S =+△△同理可以得到111O M E =11M E AM AE x =-=∴111O M E x ==∴11211112EO M S O M M E x ==- △∴11222HAE EO MS S S x=+=△△综上所述当M点的运动过程在AE段时)222HAE EOMS S S x=-=--△△,二次函数开口向下;当M 点的运动过程在BE段时2S x=,二次函数开口向上故选D.【点拨】本题主要考查了二次函数图像,矩形的性质,相似三角形等等知识点,解题的关键在于能够熟练掌握相关知识点进行求解运算.2.A【解析】【分析】由四边形ABCD和四边形CGFE是正方形,得出△BCE≌△DCG,推出∠BEC+∠HDE=90°,从而得GH⊥BE;由GH是∠EGC的平分线,得出△BGH≌△EGH,再由O是EG的中点,利用中位线定理,得HO∥BG 且HO=12BG;由△EHG是直角三角形,因为O为EG的中点,所以OH=OG=OE,得出点H在正方形CGFE 的外接圆上,根据圆周角定理得出∠FHG=∠EHF=∠EGF=45°,∠HEG=∠HFG,从而证得△EHM∽△GHF;设HN=a,则BC=2a,设正方形ECGF的边长是2b,则NC=b,CD=2a,由HO∥BG,得出△DHN∽△DGC,即可得出DN HNDC CG=,得到b2a a2a2b-=,即a2+2ab-b2=0,从而求得BC1CG-,设正方形ECGF的边长是2b,则,得到,通过证得△MHO∽△MFE,得到OM OHEM EF===1OMOE===,进一步得到1HOM HOMHOE HOGS SS S∆∆∆∆==.【详解】解:如图,∵四边形ABCD 和四边形CGFE 是正方形,∴BC =CD ,CE =CG ,∠BCE =∠DCG ,在△BCE 和△DCG 中,BC CD BCE DCGCE CG =⎧⎪∠=∠⎨⎪=⎩∴△BCE ≌△DCG (SAS ),∴∠BEC =∠BGH ,∵∠BGH+∠CDG =90°,∠CDG =∠HDE ,∴∠BEC+∠HDE =90°,∴GH ⊥BE .故①正确;∵△EHG 是直角三角形,O 为EG 的中点,∴OH =OG =OE ,∴点H 在正方形CGFE 的外接圆上,∵EF =FG ,∴∠FHG =∠EHF =∠EGF =45°,∠HEG =∠HFG ,∴△EHM ∽△GHF ,故②正确;∵△BGH ≌△EGH ,∴BH =EH ,又∵O 是EG 的中点,∴HO ∥BG ,∴△DHN ∽△DGC ,DN HN DC CG∴=设EC 和OH 相交于点N .设HN =a ,则BC =2a ,设正方形ECGF 的边长是2b ,则NC =b ,CD =2a ,222b a a a b-∴=即a 2+2ab ﹣b 2=0,解得:a =b =(﹣b ,或a =(﹣1b (舍去),212ab ∴=1BCCG ∴=故③正确;∵△BGH ≌△EGH ,∴EG =BG ,∵HO 是△EBG 的中位线,∴HO =12BG ,∴HO =12EG ,设正方形ECGF 的边长是2b ,∴EG =,∴HOb ,∵OH ∥BG ,CG ∥EF ,∴OH ∥EF ,∴△MHO △MFE ,∴OM OH EM EF ===∴EMOM ,∴1OMOE ===,∴1HOMHOES S ∆∆=-∵EO =GO ,∴S △HOE =S △HOG ,∴1HOMHOGS S ∆∆=-故④错误,故选A .【点拨】本题考查了正方形的性质,以及全等三角形的判定与性质,相似三角形的判定与性质,正确求得两个三角形的边长的比是解决本题的关键.3.B【解析】【详解】过D 作DM ∥BE 交AC 于N ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC=90°,AD=BC ,∵BE ⊥AC 于点F ,∴∠EAC=∠ACB ,∠ABC=∠AFE=90°,∴△AEF ∽△CAB ,故①正确;∵AD ∥BC ,∴△AEF ∽△CBF ,∴AE AF BC CF =,∵AE=12AD=12BC ,∴12AF CF =,∴CF=2AF ,故②正确,∵DE ∥BM ,BE ∥DM ,∴四边形BMDE 是平行四边形,∴BM=DE=12BC ,∴BM=CM ,∴CN=NF ,∵BE ⊥AC 于点F ,DM ∥BE ,∴DN ⊥CF ,∴DF=DC ,故③正确;设AD=a ,AB=b ,易知△BAE ∽△ADC ,有A D AD B AE C =,即2a b a b=∵tan ∠CAD==CD b AD a ,∴tan ∠④错误;∵△AEF ∽△CBF ,∴12EF AE BF BC ==,∴S △AEF =12S △ABF ,S △ABF =16S 矩形ABCD ,∵S △ABE =14S 矩形ABCD ,S △ACD =12S 矩形ABCD ,∴S △AEF =112S 四边形ABCD ,又∵S 四边形CDEF =S △ACD ﹣S △AEF =12S 矩形ABCD ﹣112S 矩形ABCD =512S 矩形ABCD ,∴S 四边形CDEF =52S △ABF ,故⑤正确;故选B .考点:1.相似三角形的判定与性质;2.矩形的性质;3.综合题.4.①③.【解析】【详解】试题分析:①易证△ABF ≌△BCG ,即可解题;②易证△BNF ∽△BCG ,即可求得的值,即可解题;③作EH⊥AF,令AB=3,即可求得MN,BM的值,即可解题;④连接AG,FG,根据③中结论即可求得S四边形CGNF和S四边形ANGD,即可解题.①∵四边形ABCD为正方形,∴AB=BC=CD,∵BE=EF=FC,CG=2GD,∴BF=CG,∵在△ABF和△BCG中,,∴△ABF≌△BCG,∴∠BAF=∠CBG,∵∠BAF+∠BFA=90°,∴∠CBG+∠BFA=90°,即AF⊥BG;①正确;②∵在△BNF和△BCG中,,∴△BNF∽△BCG,∴,∴BN=NF;②错误;③作EH⊥AF,令AB=3,则BF=2,BE=EF=CF=1,AF=,∵S△ABF=AFBN=ABBF,∴BN=,NF=BN=,∴AN=AF﹣NF=,∵E是BF中点,∴EH是△BFN的中位线,∴EH=,NH=,BN∥EH,∴AH=,,解得:MN=,∴BM=BN﹣MN=,MG=BG﹣BM=,∴,③正确;④连接AG,FG,根据③中结论,则NG=BG﹣BN=,∵S四边形CGNF=S△CFG+S△GNF=CGCF+NFNG=1+,S四边形ANGD=S△ANG+S△ADG=ANGN+ADDG=,∴S四边形CGNF≠S四边形ANGD,④错误;故答案为①③.考点:全等三角形的判定和性质,相似三角形的判定和性质.5.①②④【解析】【分析】①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1;②连接AQ,如图2,根据勾股定理可求出BP.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求出BQ,从而求出PQ的值,就可得到PQBQ的值;③过点Q作QH⊥DC于H,如图3.易证△PHQ∽△PCB,运用相似三角形的性质可求出QH,从而可求出S△DPQ的值;④过点Q作QN⊥AD于N,如图4.易得DP∥NQ∥AB,根据平行线分线段成比例可得32DN PQAN BQ==,把AN=1-DN代入,即可求出DN,然后在Rt△DNQ中运用三角函数的定义,就可求出cos∠ADQ的值.【详解】解:①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1.故①正确;②连接AQ,如图2.则有CP=12,=.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求得则=,∴32 PQBQ=.故②正确;③过点Q作QH⊥DC于H,如图3.易证△PHQ∽△PCB,运用相似三角形的性质可求得QH=35,∴S△DPQ=12DP•QH=12×12×35=320.故③错误;④过点Q作QN⊥AD于N,如图4.易得DP ∥NQ ∥AB ,根据平行线分线段成比例可得32DN PQ AN BQ ==,则有312DN DN =-,解得:DN=35.由DQ=1,得cos ∠ADQ=35DN DQ =.故④正确.综上所述:正确结论是①②④.故答案为:①②④.【点拨】本题主要考查了圆周角定理、平行四边形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、平行线分线段成比例、等腰三角形的性质、平行线的性质、锐角三角函数的定义、勾股定理等知识,综合性比较强,常用相似三角形的性质、勾股定理、三角函数的定义来建立等量关系,应灵活运用.6.(1)【问题发现】12,60°,45°;【类比探究】见(2)题的解析;【归纳总结】2n m ,1802a ︒-;(2),30°【解析】【分析】(1)当60α=︒时,△ABC 和△PDC 都是等边三角形,可证△ACP ∽△ECF ,从而有12EF AP =,∠Q =β=∠ACB =60°;当90α=︒时,△ABC 和△PDC 都是等腰直角三角形,同理可证△ACP ∽△ECF 即可解决,依此可得出规律;(2)当120α=︒,可证CE AC =,CF CP =CE CA CF CP =,由∠ECF =∠ACP ,可得△PCA ∽△FCE 即可解决问题.【详解】(1)【问题发现】如图1,连接AE ,PF ,延长EF 、AP 交于点Q ,当60α=︒时,△ABC 和△PDC 都是等边三角形,∴∠PCD =∠ACB =60°,PC =CD ,AC =CB ,∵F 、E 分别是CD 、BC 的中点,∴12CF PC =,12CE AC =,∴CF CE PC AC=,又∵∠ACP =∠ECF ,∴△ACP ∽△ECF ,∴12EF AP =,∠CEF =∠CAP ,∴∠Q =β=∠ACB =60°,当90α=︒时,△ABC 和△PDC 都是等腰直角三角形,如图2,连接AE ,PF ,延长EF 、AP 交于点Q ,∴∠PCD =∠ACB =45°,PC CD ,AC ,∵F 、E 分别是CD 、BC 的中点,∴CE AC =,CF PC =∴CF CE PC AC=,又∵∠ACP=∠ECF,∴△ACP∽△ECF,∴EFAP==,∠CEF=∠CAP,∴∠Q=β=∠ACB=45°,【归纳总结】由此,可归纳出22nEF CE nAP AC m m===,β=∠ACB=1802a︒-;(2)当120α=︒,连接AE,PF,延长EF、AP交于点Q,∵AB=AC,E为BC的中点,∴AE⊥BC,∠CAE=60°∴sin60°=CEAC=,同理可得:CFCP=∴CE CFAC CP=,∴CE CACF CP=,又∵∠ECF=∠ACP,∴△PCA∽△FCE,∴EF ECAP AC==∠CEF=∠CAP,∴∠Q=β=∠ACB=30°.【点拨】本题主要考查了三角形相似的判定与性质,通过解决本题感受到:图形在变化但解决问题的方法不变,体会“变中不变”的思想.7.(1)ED BD =(2)①正方形,理由见解析;②见解析;(3【解析】【分析】(1)根据“斜中半”定理可得CD AD BD ==,然后根据旋转的性质可得CD ED =,从而得出ED BD =,再结合题意推出30B DCG ∠=∠=︒,从而根据正切函数的定义求出GD CD即可;(2)①通过证明CDF EDF △≌△,并综合条件//CF DE ,推出四边形CDEF 是正方形;②首先根据CFH DGH △△∽推出DH DG FH CD ==GBE GDH △≌△得到BE DH =,即可得出结论;(3)根据题意可首先证明四边形CDEF 是菱形,然后证明出EBG HFC △△∽,即可推出结论BE BG FH FC =,再作DK CG ⊥,通过解直角三角形,求出BG 的长度,从而得出结论.【详解】(1)∵点D 为Rt ABC 中斜边AB 的中点,∴CD AD BD ==,∵线段CD 绕点D 顺时针旋转得到线段ED ,∴CD ED =,∴ED BD =,∵Rt ABC 中,90ACB ∠=︒,60A ∠=︒,∴30B ∠=︒,∵CD BD =,∴30B DCG ∠=∠=︒,∴在Rt DCG 中,tan tan 30GD DCG CD =∠=︒=故答案为:ED BD =(2)①正方形,理由如下:∵90α=︒,DM 平分CDE ∠,∴90CDE ∠=︒,CDF EDF ∠=∠,∵CD ED =,DF DF =,∴()CDF EDF SAS △≌△,∴DCF DEF ∠=∠,∵//CF DE ,∴180FCD CDE ∠+∠=︒,∴90FCD ∠=︒,∴90DCF DEF CDE ∠=∠=∠=︒,∴四边形CDEF 为矩形,又∵CD ED =,∴四边形CDEF 为正方形;②显然,在正方形CDEF 中,CFH GDH △△∽,∴DH DG FH CF=,又∵CD CF =,∴DH DG FH CD ==由(1)得:60,,A CD AD ∠=︒=则ACD △为等边三角形,∴60ADC ∠=︒,∵90CDE ∠=︒,∴30GDB ∠=︒,∴GDB GBD ∠=∠,GD GB =,又∵DE DB =,∴()1180752DBE DEB GDB ∠=∠=︒-∠=︒,∴753045GBE ∠=︒-︒=︒,∵45GDH ∠=︒,∴GBE GDH∠=∠在GBE 与GDH 中,GDH GBE GD GBDGH BGE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()GBE GDH ASA △≌△,∴BE DH =,∴BE DH DG FH FH CD ===(3)同(2)中①理,CDF EDF △≌△,∴CDF EDF ∠=∠,CFD EFD ∠=∠,∵//CF DE ,∴CFD EDF ∠=∠,∴CFD CDF ∠=∠,EDF EFD ∠=∠,∴CF CD =,ED EF =,∴四边形CDEF 为菱形,∵ACD △为等边三角形,∴2AC CD AD BD ====,菱形的边长也为2,由题意,2HDG α∠=,13022DEB DBE ADE α∠=∠=∠=︒+,∵30DBG ∠=︒,∴2EBG α∠=,即:HDG EBG ∠=∠,∴EBG HDG △△∽,∵在菱形CDEF 中,HFC HDG △△∽,∴EBG HFC △△∽,∴BE BG FH FC=,如图,作DK CG ⊥,∵30DCK ∠=︒,∴60CDK ∠=︒,60KDG α∠=-︒,∵2CD =,∴1DK =,CK =在Rt KDG △中,()tan tan 60GK KDG m DKα=∠=-︒=,∴GK m =,∴CG m =,在Rt ABC 中,BC ==∴BG BC CG m m =-==,∵2CF CD ==,∴BE BG FH FC ==.【点拨】本题考查相似三角形的判定与性质,特殊平行四边形的判定与性质,以及锐角三角函数等,综合性较强,掌握基本图形的性质,灵活运用相似三角形以及锐角三角函数是解题关键.8.(1)30°;(2)①见解析;②CD BE =;见解析;(3)()AC k BD BE =+,见解析【解析】【分析】(1)先根据题意得出△ABC 是等边三角形,再利用三角形的外角计算即可(2)①按要求补全图即可②先根据已知条件证明△ABC 是等边三角形,再证明AEB ADC △≌△,即可得出CD BE=(3)先证明AC BC AD DE=,再证明ACB ADE △∽△,得出BAC EAD ∠=∠,从而证明AEB ADC △≌△,得出BD BE BC +=,从而证明()AC k BD BE =+【详解】解:(1)∵AB AC =,60C ∠=°∴△ABC 是等边三角形∴∠B =60°∵点D 关于直线AB 的对称点为点E∴AB ⊥DE ,∴BDE ∠=30︒故答案为:30︒;(2)①补全图如图2所示;②CD 与BE 的数量关系为:CD BE =;证明:∵AB AC =,60BAC ∠=︒.∴ABC 为正三角形,又∵AD 绕点A 顺时针旋转60︒,∴AD AE =,60EAD ∠=︒,∵60BAD DAC ∠+∠=︒,60BAD BAE ∠+∠=︒,∴BAE DAC ∠=∠,∴AEB ADC △≌△,∴CD BE =.(3)连接AE .∵AB AD k BC DE ==,AB AC =,∴AC AD BC DE =.∴AC BC AD DE=.又∵ADE C ∠=∠,∴ACB ADE △∽△,∴BAC EAD ∠=∠.∵AB AC =,∴AE AD =,∴BAD DAC BAD BAE ∠+∠=∠+∠,∴DAC BAE ∠=∠,∴AEB ADC △≌△,CD BE =.∵BD DC BC +=,∴BD BE BC +=.又∵AC k BC=,∴()AC k BD BE =+.【点拨】本题考查相似三角形的证明及性质、全等三角形的证明及性质、三角形的外角、轴对称,熟练进行角的转换是解题的关键,相似三角形的证明是重点9.(1)正方形;(2)MC ME '=,见解析;(3)25【解析】【分析】(1)有一组邻边相等且一个角为直角的平行四边形是正方形;(2)连接EC ',由(1)问的结论可知,90AD BC EAC B '=∠=∠=︒,,又因为矩形纸片ABCD 沿过点E 的直线折叠,可知折叠前后对应角以及对应边相等,有B B '∠=∠,B C BC ''=,90AE B C EAC B ''''=∠=∠=︒,,可以证明Rt EC A ' 和Rt C EB '' 全等,得到C EA EC B '''∠=∠,从而有MC ME '=;(3)由Rt EC A Rt C EB ''' ≌,有AC B E ''=;由折叠知,AC BE '=,可以计算出()8cm AB =;用勾股定理计算出DF 的长度,再证明DNF ENG ∽得出等量关系,从而得到:DN EN 的值.【详解】(1)解:∵ABCD 是平行四边形,∴'////AD BC EA ,'//AE DA ∴四边形'AEA D 是平行四边形∵矩形纸片ABCD 沿过点D 的直线折叠,使点A 落在CD 上的点A '处∴'AED A ED≌∴'AE A E=∵90A ∠=∴四边形AEA D '的形状是正方形故最后答案为:四边形AEA D '的形状是正方形;(2)MC ME'=理由如下:如图,连接EC ',由(1)知:AD AE=∵四边形ABCD 是矩形,∴90AD BC EAC B '=∠=∠=︒,由折叠知:B C BC B B'''=∠=∠,∴90AE B C EAC B ''''=∠=∠=︒,。
2023年九年级数学中考专题训练:二次函数综合压轴题(相似三角形问题)1.已知,二次函数23y ax bx =+-的图象与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于C 点,点A 的坐标为()1,0-,且OB OC =.(1)求二次函数的解析式;(2)当04x ≤≤时,求二次函数的最大值和最小值分别为多少?(3)设点C '与点C 关于该抛物线的对称轴对称.在y 轴上是否存在点P ,使PCC '△与POB 相似,且PC 与PO 是对应边?若存在,求出点P 的坐标;若不存在,请说明理由.2.如图1,抛物线234y x x =-++与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C ,连接,AC BC .(1)求ABC 的面积;(2)如图2,点P 为直线上方抛物线上的动点,过点P 作PD AC ∥交直线BC 于点D ,过点P 作直线PE x ∥轴交直线BC 于点E ,求PD PE +的最大值及此时P 的坐标;(3)在(2)的条件下,将原抛物线234y x x =-++沿射线AC 方向平移M 是新抛物线与原抛物线的交点,N 是平面内任意一点,若以P 、B 、M 、N 为顶点的四边形是平行四边形,请直接写出点N 的坐标.3.已知抛物线2y x bx c =++与x 轴交于()()1030A B ,、,两点,且与y 轴的公共点为点C ,设该抛物线的顶点为D .(1)求抛物线的表达式,并求出顶点D 的坐标;(2)若点P 为抛物线上一点,且满足PB PC =,求点P 的横坐标;(3)连接CD BC ,,点E 为线段BC 上一点,过点E 作EF CD ⊥交CD 于点F ,若12=DF CF ,求点E 的坐标.4.如图1,在平面直角坐标系中,点O 为坐标原点,抛物线24y ax bx =++与x 轴交于点A 、B (点A 在点B 左侧),与y 轴交于点C ,直线4y x =-+经过B 、C 两点,4OB OA =.(1)求抛物线的解析式;(2)如图2,点P 为第四象限抛物线上一点,过点P 作PD x ⊥轴交BC 于点D ,垂足为N ,连接PC 交x 轴于点E ,设点P 的横坐标为t ,PCD 的面积为S ,求S 与t 的函数关系式;(3)在(2)的条件下,如图3,过点P 作PF PC ⊥交y 轴于点F ,PF PE =.点G 在抛物线上,连接PG ,45CPG ∠=︒,连接BG ,求直线BG 的解析式.5.如图1,已知二次函数2y ax bx c =++的图象的顶点为()0,1D ,且经过点()2,2A .(1)求二次函数的解析式;(2)过点A 的直线与二次函数图象的另一交点为B ,与y 轴交于点C ,若BDC 的面积是ADC △的两倍,求直线AB 的解析式;(3)如图2,已知(),0E m ,是x 轴上一动点(E ,O 不重合),过E 的两条直线1l ,2l 与二次函数均只有一个交点,且直线1l ,2l 与y 轴分别交于点M 、N .对于任意的点E ,在y 轴上(点M 、N 上方)是否存在一点()0,F t ,使N FEM F E △∽△恒成立.若存在,求出t 的值;若不存在,请说明理由.6.如图,抛物线y 2b c x ++与x 轴交于点A 、B ,点A 、B 分别位于原点的左、右两侧,BO =3AO =3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C 、D ,BC.(1)求b、c的值;(2)求直线BD的直线解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.7.如图1,抛物线与坐标轴分别交于A(-1,0),B(3,0),C(0,3).(1)求抛物线解析式;(2)抛物线上是否存在点P,使得△CBP=△ACO,若存在,求出点P的坐标,若不存在,说明理由;(3)如图2,Q是△ABC内任意一点,求DQ EQ QFAD BE CF++的值.8.如图所示,平面直角坐标系中,二次函数y=a(x+2k)(x﹣k)图象与x轴交于A、B两点,抛物线对称轴为直线x=﹣2;(1)求k 的值;(2)点C 为抛物线上一点,连接BC 、AC ,作CD △x 轴于D ,当△BCA =90°时,设CD 长度为d ,求d 与a 的函数关系式;(3)抛物线顶点为S ,作S T 垂直AB 于T ,点Q 为第一象限抛物线上一点,连接AQ 交S T 于点P ,过B 作x 轴的垂线交AQ 延长线于点E ,连接OE 交BQ 于点G ,过O 作OE 的垂线交AQ 于点F ,若OF =OG ,tan△ABQ =2时,连接S Q ,求证:S Q =S P .9.已知抛物线23y x bx =-++的图象与x 轴相交于点A 和点B ,与y 轴交于点C ,图象的对称轴为直线=1x -.连接AC ,有一动点D 在线段AC 上运动,过点D 作x 轴的垂线,交抛物线于点E ,交x 轴于点F .设点D 的横坐标为m .(1)求AB 的长度;(2)连接AE CE 、,当ACE △的面积最大时,求点D 的坐标; (3)当m 为何值时,ADF △与CDE 相似.10.如图,抛物线28y ax bx =++与x 轴交于()2,0A -和点()8,0B ,与y 轴交于点C ,顶点为D ,连接AC ,BC ,BC 与抛物线的对称轴l 交于点E .(1)求该抛物线的函数表达式;(2)点P 是第一象限内抛物线上的动点,连接PB ,PC ,设四边形PBOC 和AOC 的面积分别为PBOC S 四边形和AOCS,记AOC PBOC S S S =-△四边形,求S 最大值点P 的坐标及S 的最大值;(3)点N 是对称轴l 右侧抛物线上的动点,在射线ED 上是否存在点M ,使得以点M ,N ,E 为顶点的三角形与BOC 相似?若存在,求点M 的坐标;若不存在,请说明理由.11.如图,抛物线24y ax bx =+-经过点()1,0C -,点()4,0B ,交y 轴于点A ,点H 是该抛物线上第四象限内的一个动点,HE △x 轴于点E ,交线段AB 于点D ,HQ △y 轴,交y 轴于点Q .(1)求抛物线的函数解析式.(2)若四边形HQOE 是正方形,求该正方形的面积.(3)连接OD 、AC ,抛物线上是否存在点H ,使得以点O 、A 、D 为顶点的三角形与△ABC 相似,若存在,请直接写出点H 的坐标,若不存在,请说明理由.12.如图,已知抛物线2y ax x c =-+的对称轴为直线x =1,与x 轴的一个交点为()10A -,,顶点为B .点()5C m ,在抛物线上,直线BC 交x 轴于点E .(1)求抛物线的表达式及点E 的坐标; (2)连接AB ,求△B 的余切值;(3)点G 为线段AC 上一点,过点G 作CB 的垂线交x 轴于点M (位于点E 右侧),当△CGM 与△ABE 相似时,求点M 的坐标.13.如图所示,抛物线2=23y x x --与x 轴相交于A 、B 两点,与y 轴相交于点C ,点M 为抛物线的顶点.(1)求点C 及顶点M 的坐标.(2)若点N 是第四象限内抛物线上的一个动点,连接BN 、CN ,求BCN △面积的最大值. (3)直线CM 交x 轴于点E ,若点P 是线段EM 上的一个动点,是否存在以点P 、E 、O 为顶点的三角形与ABC 相似.若存在,求出点P 的坐标;若不存在,请说明理由.14.如图,抛物线L 1:y =ax 2﹣2x +c (a ≠0)与x 轴交于A 、B (3,0)两点,与y 轴交于点C (0,﹣3),抛物线的顶点为D .抛物线L 2与L 1关于x 轴对称.(1)求抛物线L 1与L 2的函数表达式;(2)已知点E 是抛物线L 2的顶点,点M 是抛物线L 2上的动点,且位于其对称轴的右侧,过M 向其对称轴作垂线交对称轴于P ,是否存在这样的点M ,使得以P 、M 、E 为顶点的三角形与△BCD 相似,若存在请求出点M 的坐标,若不存在,请说明理由.15.综合与探究如图,抛物线212y x bx c =-++与x 轴交于A ,B 两点,与y 轴交于点C ,点B ,C 的坐标分别为(2,0),(0,3),点D 与点C 关于x 轴对称,P 是直线AC 上方抛物线上一动点,连接PD 、交AC 于点Q .(1)求抛物线的函数表达式及点A 的坐标; (2)在点P 运动的过程中,求PQ :DQ 的最大值;(3)在y 轴上是不存在点M ,使45AMB ∠=︒?若存在,请直接写出点M 的坐标;若不存在,请说明理由.16.如图,已知抛物线2y ax bx c =++与x 轴相交于点()1,0A -,()3,0B ,与y 轴的交点()0,6C .(1)求抛物线的解析式;(2)点(),P m n 在平面直角坐标系第一象限内的抛物线上运动,设PBC 的面积为S ,求S 关于m 的函数表达式(指出自变量m 的取值范围)和S 的最大值;(3)点M 在抛物线上运动,点N 在y 轴上运动,是否存在点M 、点N 使得△CMN =90°,且∆CMN 与OBC ∆相似,如果存在,请求出点M 和点N 的坐标.17.如图(1),直线y =-x +3与x 轴、y 轴分别交于点B (3,0)、点C (0,3),经过B 、C 两点的抛物线2y x bx c =++与x 轴的另一个交点为A ,顶点为P .(1)求该抛物线的解析式与点P 的坐标;(2)当0<x <3时,在抛物线上求一点E ,使△CBE 的面积有最大值; (3)连接AC ,点N 在x 轴上,点M 在对称轴上,△是否存在使以B 、P 、N 为顶点的三角形与△ABC 相似?若存在,请求出所有符合条件的点N 的坐标;若不存在,请说明理由;△是否存在点M ,N ,使以C 、P 、M 、N 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由. (图(2)、图(3)供画图探究)18.如图,已知抛物线213222y x x =-++与x 轴交于点A 、B ,与y 轴交于点C .(1)则点A 的坐标为_________,点B 的坐标为_________,点C 的坐标为_________;(2)设点11(,)P x y ,22(,)Q x y (其中12x x >)都在抛物线213222y x x =-++上,若121x x =+,请证明:12y y >;(3)已知点M 是线段BC 上的动点,点N 是线段BC 上方抛物线上的动点,若90CNM ∠=︒,且CMN 与OBC △相似,试求此时点N 的坐标.参考答案:1.(1)2=23y x x --(2)函数的最大值为5,最小值为4-(3)存在,(0,9)P -或9(0,)5P -2.(1)10;(2)最大值为4,()2,6P ; (3)N 点坐标为113,24⎛⎫ ⎪⎝⎭或345,24⎛⎫- ⎪⎝⎭或53,24⎛⎫- ⎪⎝⎭.3.(1)243y x x =-+,()21-,(2)⎝⎭或⎝⎭(3)207,99⎛⎫ ⎪⎝⎭4.(1)254y x x =-+ (2)32122S t t =-+ (3)416y x =-5.(1)2114y x =+ (2)312y x =-或132y x =-+ (3)存在,=2t6.(1)132b c ⎧=-⎪⎪⎨⎪=-⎪⎩(2)y=+(3)Q 1(,0)、Q 2(0)、Q 3,0)、Q 4(,0) 7.(1)223y x x =-++(2)存在,1217(,),(1,4)24P P - (3)DQ EQ QF AD BE CF ++的值为18.(1)k =4 (2)1d a=-9.(1)4(2)(32-,32-) (3)当2m =-或1m =-时ADF △与CDE 相似10.(1)21382y x x =-++ (2)()4,12P ,最大值为56(3)存在,()3,8,(3,5,()3,1111.(1)234y x x =--(2)6+(3)存在,点H 的坐标为1684,525⎛⎫- ⎪⎝⎭或521,24⎛⎫- ⎪⎝⎭12.(1)21322y x x =--;E (2,0) (2)3(3)M 点的坐标为(5,0)或(7,0)13.(1)C 点坐标为(0,-3),顶点M 的坐标为(1,-4);(2)278(3)P 点的坐标为39(,)44--或(-1,-2).14.(1)抛物线L 1:2=23y x x --,抛物线L 2:223y x x =-++; (2)435(,)39M 或(4,5)M -.15.(1)211322y x x =--+,A (-3,0); (2)316; (3)存在,M (0,6)或(0,-6)16.(1)2246y x x =-++(2)S 关于m 的函数表达式为239(03)S m m m =-+<<,S 的最大值是274 (3)存在,M (1,8),N (0,172)或M (74,558),N (0,838)或M (94,398),N (0,38)或M (3,0),N (0,﹣32)17.(1)243y x x =-+,顶点坐标为P (2,-1) (2)33,24E ⎛⎫- ⎪⎝⎭(3)△存在,()10,0N 或27,03N ⎛⎫ ⎪⎝⎭;△存在,点M 的坐标为(2,2);(2,-4);(2,4)18.(1)(-1,0),(4,0),(0,2);(3)点N 的坐标为(32,258)或(3,2).。
专题04相似三角形重要模型-一线三等角模型相似三角形在中考数学几何模块中占据着重要地位。
相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。
如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了.本专题就一线三等角模型进行梳理及对应试题分析,方便掌握。
模型1.一线三等角模型(相似模型)【模型解读与图示】“一线三等角”型的图形,因为一条直线上有三个相等的角,一般就会有两个三角形的“一对角相等”,再利用平角为180°,三角形的内角和为180°,就可以得到两个三角形的另外一对角也相等,从而得到两个三角形相似.1)一线三等角模型(同侧型)(锐角型)(直角型)(钝角型)条件:如图,∠1=∠2=∠3,结论:△ACE∽△BED.2)一线三等角模型(异侧型)条件:如图,∠1=∠2=∠3,结论:△ADE∽△BEC.3)一线三等角模型(变异型)图1图2图3①特殊中点型:条件:如图1,若C为AB的中点,结论:△ACE∽△BED∽△ECD.②一线三直角变异型1:条件:如图2,∠ABD=∠AFE=∠BDE=90°.结论:△ABC∽△BDE∽△BFC∽△AFB.③一线三直角变异型2:条件:如图3,∠ABD=∠ACE=∠BDE=90°.结论:△ABM∽△NDE∽△NCM.是边A.3B.5C.2D.1B (1)如图2,在53⨯个方格的纸上,小正方形的顶点为格点、边长均为1,AB 为端点在格点的已知线段.请用三种不...同连接格点.....的方法,作出以线段AB 为等联线、某格点P 为等联点的等联角,并标出等联角,保留作图痕迹;(2)如图3,在Rt APC △中,90A ∠=,AC AP >,延长AP 至点B ,使AB AC =,作A ∠的等联角CPD ∠和PBD ∠.将APC △沿PC 折叠,使点A 落在点M 处,得到MPC ,再延长PM 交BD 的延长线于E ,连接CE 并延长交PD 的延例5.(2022·浙江·嘉兴一中一模)阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①:在△ABC 中,∠ACB =90°,AC =BC ,分别过A 、B 向经过点C 直线作垂线,垂足分别为D 、E ,我们很容易发现结论:△ADC ≌△CEB .(1)探究问题:如果AC ≠BC ,其他条件不变,如图②,可得到结论;△ADC ∽△CEB .请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线y =12x 与直线CD 交于点M (2,1),且两直线夹角为α,且tanα=32,请你求出直线CD 的解析式.(3)拓展应用:如图④,在矩形ABCD 中,AB =4,BC =5,点E 为BC 边上一个动点,连接AE ,将线段AE 绕点E 顺时针旋转90°,点A 落在点P 处,当点P 在矩形ABCD 外部时,连接PC ,PD .若△DPC 为直角三角形时,请你探究并直接写出BE 的长.例6.(2023·浙江·九年级专题练习)在Rt ABC 中,90BAC ∠=︒,2AB AC ==,点D 在BC 所在的直线上运动,作45ADE ∠=︒(A 、D 、E 按逆时针方向).(1)如图,若点D 在线段BC 上运动,DE 交AC 于E .①求证:ABD DCE △△∽;②当ADE V 是等腰三角形时,求AE 的长;(2)如图,若点D 在BC 的延长线上运动,DE 的反向延长线与AC 的延长线相交于点E ',是否存在点D ,使ADE '△是等腰三角形?若存在,求出线段CD 的长度;若不存在,请简要说明理由;(3)若点D 在BC 的反向延长线上运动,是否存在点D ,使ADE V 是等腰三角形?若存在,写出所有点D 的位置;若不存在,请简要说明理由.上一点,轴9,23A.()9,3B.()3.(2023·湖南长沙·九年级专题练习)如图,在矩形4.(2021·浙江台州·中考真题)如图,点E,F,G分别在正方形ABCD的边AB,BC,AD上,AF⊥EG.若AB=5,AE=DG=1,则BF=_____.分别在边6.(2022秋·安徽淮北·九年级校考阶段练习)如图,在四边形分别在线段AD、DC上(点E与点A、CD=,在BC边上取中点E,连接DE,过点E 8.(2023·山东烟台·九年级统考期末)如图,在正方形ABCD中,4做EF ED⊥与AB交于点G,与DA的延长线交于点F.(1)求证:BEG CDE△∽△;(2)求AFG的面积.⊥交AB于点M,9.(2023·上海·九年级假期作业)在矩形ABCD中,3AB=,4=AD,点E是边AD上一点,EM EC∠=∠.(1)求证:AE是AM和AN的比例中项;(2)当点N在线段AB的延点N在射线MB上(如图),且ANE DCE长线上时,联结AC,且AC与NE互相垂直,求MN的长.的两个等腰直角三角形,(3)【拓展探究】在整个运动过程中,请直接写出N点运动的路径长,及CN的最小值.312.(2023·广东深圳·九年级校考阶段练习)如图,在ABC 中6cm AB AC ==,8cm BC =,点E 是线段BC 边上的一动点(不含B 、C 两端点),连接AE ,作AED B ∠=∠,交线段AB 于点D .(1)求证:BDE CEA△∽△(2)设BE x =,AD y =,请求y 与x 之间的函数关系式.(3)E 点在运动的过程中,ADE V 能否构成等腰三角形?若能,求出BE 的长;若不能,请说明理由.13.(2023春·广东深圳·八年级校考期中)【操作发现】如图1,在边长为1个单位长度的小正方形组成的网格中,ABC 的三个顶点均在格点上.①请按要求画图:将ABC 绕点A 顺时针方向旋转90︒,点B 的对应点为点B ',点C 的对应点为点C ',连接BB ';②在①中所画图形中,AB B '∠=______︒.【问题解决】如图2,在Rt ABC △中,190BC C =∠=︒,,延长CA 到D ,使1CD =,将斜边AB 绕点A 顺时针旋转90︒到AE ,连接DE ,求ADE ∠的度数.【拓展延伸】如图3,在四边形ABCD 中,AE BC ⊥,垂足为E ,BAE ADC ∠=∠,1BE CE ==,3CD =,2=AD AB ,求BD 的长.14.(2023·浙江·九年级专题练习)在平面直角坐标系中,O 为坐标原点,直线AB 与y 轴交于点A ,与x 轴交于点B ,2OA =,AOB 的面积为2.(1)如图1,求直线AB 的解析式.(2)如图2,线段OA 上有一点C ,直线BC 为2(0)y kx k k =-<,AD y ⊥轴,将BC 绕点B 顺时针旋转90︒,交AD 于点D ,求点D 的坐标.(用含k 的式子表示)(3)如图3,在(2)的条件下,连接OD ,交直线BC 于点E ,若345ABC BDO ∠-∠=︒,求点E 的坐标.九年级专题练习)某数学兴趣小组在学习了尺规作图、等腰三角形和相似三角形的有关知识后,在BC=.点E是线段AD上的动点(点E不与18.(2022·湖南郴州·中考真题)如图1,在矩形ABCD中,4AB=,6⊥,交AB于点F.点A,D重合),连接CE,过点E作EF CE∽;(1)求证:AEF DCE⊥,垂足为G,连接AG.点M是线段BC的中点,连接GM.(2)如图2,连接CF,过点B作BG CF①求AG GM+的最小值;②当AG GM+取最小值时,求线段DE的长.。
专题13 相似三角形一.选择题1.(2022·黑龙江哈尔滨)如图,,,AB CD AC BD ∥相交于点E ,1,2,3AE EC DE ===,则BD 的长为( )A .32B .4C .92D .6【答案】C【分析】根据相似三角形对应边长成比例可求得BE 的长,即可求得BD 的长.【详解】∵//AB CD ∴ABE CDE ∽ ∴AE BE EC DE= ∵1,2,3AE EC DE ===,∴32BE =∵BD BE ED =+ ∴92BD = 故选:C .【点睛】本题考查了相似三角形的对应边长成比例,解题的关键在于找到对应边长.2.(2022·广西贺州)如图,在ABC 中,25DE BC DE BC ==∥,,,则:ADE ABC S S 的值是( )A .325B .425C .25D .35【答案】B【分析】根据相似三角形的判定定理得到ADE ABC ,根据相似三角形的面积比等于相似比的平方计算,得到答案.【详解】解:25DE BC DE BC ==∥,,∴ADE ABC ,∴2224525ADE ABC S DE S BC ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ,故选:B .【点睛】此题考查相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.3.(2022·广西梧州)如图,以点O 为位似中心,作四边形ABCD 的位似图形''''A B C D ﹐已知'13OA OA =,若四边形ABCD 的面积是2,则四边形''''A B C D 的面积是( )A .4B .6C .16D .18【答案】D 【分析】两图形位似必相似,再由相似的图形面积比等于相似比的平方即可求解.【详解】解:由题意可知,四边形ABCD 与四边形''''A B C D 相似,由两图形相似面积比等于相似比的平方可知:''''22'1139ABCD A B C D S OA S OA ⎛⎫⎛⎫= ⎪= ⎪= ⎪ ⎪⎝⎭⎝⎭,又四边形ABCD 的面积是2,∴四边形''''A B C D 的面积为18,故选:D .【点睛】本题考察相似多边形的性质,属于基础题,熟练掌握相似图形的性质是解决本题的关键.4.(2022·四川雅安)如图,在△ABC 中,D ,E 分别是AB 和AC 上的点,DE ∥BC ,若AD BD =21,那么DE BC =( )A .49B .12C .13D .23【答案】D【分析】先求解2,3AD AB =再证明,ADE ABC ∽可得2.3DE AD BC AB ==【详解】解: AD BD =21,2,3AD AB ∴= DE ∥BC ,,ADE ABC ∴ ∽ 2,3DE AD BC AB ∴== 故选D 【点睛】本题考查的是相似三角形的判定与性质,证明ADE ABC △△∽是解本题的关键.5.(2022·内蒙古包头)如图,在边长为1的小正方形组成的网格中,A ,B ,C ,D 四个点均在格点上,AC 与BD 相交于点E ,连接,AB CD ,则ABE △与CDE △的周长比为( )A .1:4B .4:1C .1:2D .2:1【答案】D 【分析】运用网格图中隐藏的条件证明四边形DCBM 为平行四边形,接着证明ABE CDE ∽,最后利相似三角形周长的比等于相似比即可求出.【详解】如图:由题意可知,3DM =,3BC =, ∴DM BC =,而DM BC ∥,∴四边形DCBM 为平行四边形,∴AB DC ∥,∴BAE DCE ∠=∠,ABE CDE ∠=∠,∴ABE CDE ∽,∴21ABE CDE C AB C CD ===△△.故选:D .【点睛】本题考查了平行四边形的判定与性质、相似三角形的判定与性质及勾股定理,熟练掌握相关知识并正确计算是解题关键.6.(2022·黑龙江绥化)如图,在矩形ABCD 中,P 是边AD 上的一个动点,连接BP ,CP ,过点B 作射线,交线段CP 的延长线于点E ,交边AD 于点M ,且使得ABE CBP =∠∠,如果2AB =,5BC =,AP x =,PM y =,其中25x < .则下列结论中,正确的个数为( )(1)y 与x 的关系式为4y x x =-;(2)当4AP =时,ABP DPC ∽;(3)当4AP =时,3tan 5EBP ∠=.A .0个B .1个C .2个D .3个【答案】C 【分析】(1)证明ABM APB ∽,得AB AM AP AB=,将2AB =,AP x =,PM y =代入,即可得y 与x 的关系式;(2)利用两组对应边成比例且夹角相等,判定ABP DPC ∽;(3)过点M 作MF BP ⊥垂足为F ,在Rt APB △中,由勾股定理得BP 的长,证明FPM APB ∽,求出MF ,PF ,BF 的长,在Rt BMF △中,求出tan EBP ∠的值即可.【详解】解:(1)∵在矩形ABCD 中,∴AD BC ∥,90A D ∠=∠=︒,5BC AD ==,2AB DC ==,∴APB CBP ∠=∠,∵ABE CBP =∠∠,∴ABE APB ∠=∠,∴ABM APB ∽,∴AB AM AP AB=,∵2AB =,AP x =,PM y =,∴22x y x -=,解得:4y x x=-,故(1)正确;(2)当4AP =时,541DP AD AP =-=-=,∴12DC DP AP AB ==,又∵90A D ∠=∠=︒,∴ABP DPC ∽,故(2)正确;(3)过点M 作MF BP ⊥垂足为F ,∴90A MFP MFB ∠=∠=∠=︒,∵当4AP =时,此时4x =,4413y x x =-=-=,∴3PM =,在Rt APB 中,由勾股定理得:222BP AP AB =+,∴BP ===,∵FPM APB ∠=∠,∴FPM APB ∽,∴MF PF PM AB AP PB ==,∴24MF PF ==∴MF =PF =∴BF BP PF =-=∴3tan 4MF EBP BF ∠===故(3)不正确;故选:C .【点睛】本题主要考查相似三角形的判定和性质,勾股定理的应用,矩形的性质,正确找出相似三角形是解答本题的关键.7.(2022·湖北鄂州)如图,定直线MN ∥PQ ,点B 、C 分别为MN 、PQ 上的动点,且BC =12,BC 在两直线间运动过程中始终有∠BCQ =60°.点A 是MN 上方一定点,点D 是PQ 下方一定点,且AE ∥BC ∥DF ,AE =4,DF =8,ADBC 在平移过程中,AB +CD 的最小值为()A .B .C .D .【答案】C 【分析】如图所示,过点F 作FH CD ∥交BC 于H ,连接EH ,可证明四边形CDFH 是平行四边形,得到CH =DF =8,CD =FH ,则BH =4,从而可证四边形ABHE 是平行四边形,得到AB =HE ,即可推出当E 、F 、H 三点共线时,EH +HF 有最小值EF 即AB +CD 有最小值EF ,延长AE 交PQ 于G ,过点E 作ET ⊥PQ 于T ,过点A 作AL ⊥PQ 于L ,过点D 作DK ⊥PQ 于K ,证明四边形BEGC 是平行四边形,∠EGT =∠BCQ =60°,得到EG =BC =12,然后通过勾股定理和解直角三角形求出ET 和TF 的长即可得到答案.【详解】解:如图所示,过点F 作FH CD ∥交BC 于H ,连接EH ,∵BC DF FH CD ∥∥,,∴四边形CDFH 是平行四边形,∴CH =DF =8,CD =FH ,∴BH =4,∴BH =AE =4,又∵AE BC ∥,∴四边形ABHE 是平行四边形,∴AB =HE ,∵EH FH EF +≥,∴当E 、F 、H 三点共线时,EH +HF 有最小值EF 即AB +CD 有最小值EF ,延长AE 交PQ 于G ,过点E 作ET ⊥PQ 于T ,过点A 作AL ⊥PQ 于L ,过点D 作DK ⊥PQ 于K ,∵MN PQ BC AE ∥∥,,∴四边形BEGC 是平行四边形,∠EGT =∠BCQ =60°,∴EG =BC =12,∴=cos =6=sin GT GE EGT ET GE EGT ⋅⋅∠,∠,同理可求得8GL AL ==,,4KF DK ==,,∴2TL =,∵AL ⊥PQ ,DK ⊥PQ ,∴AL DK ∥,∴△ALO ∽△DKO ,∴2AL AO DK DO==,∴2133AO AD DO AD ====∴24OL OK ===,,∴42TF TL OL OK KF =+++=,∴EF ==故选C .【点睛】本题主要考查了平行四边形的性质与判定,相似三角形的性质与判定,勾股定理,解直角三角形,正确作出辅助线推出当E 、F 、H 三点共线时,EH +HF 有最小值EF 即AB +CD 有最小值EF 是解题的关键.8.(2022·广西贵港)如图,在边长为1的菱形ABCD 中,60ABC ∠=︒,动点E 在AB 边上(与点A 、B 均不重合),点F 在对角线AC 上,CE 与BF 相交于点G ,连接,AG DF ,若AF BE =,则下列结论错误的是( )A .DF CE =B .120BGC ∠=︒C .2AF EG EC =⋅D .AG【答案】D【分析】先证明△BAF ≌△DAF ≌CBE ,△ABC 是等边三角形,得DF =CE ,判断A 项答案正确,由∠GCB +∠GBC =60゜,得∠BGC =120゜,判断B 项答案正确,证△BEG ∽△CEB 得BE CE GE BE= ,即可判断C 项答案正确,由120BGC ∠=︒,BC =1,得点G 在以线段BC 为弦的弧BC 上,易得当点G 在等边△ABC 的内心处时,AG 取最小值,由勾股定理求得AG D 项错误.【详解】解:∵四边形ABCD 是菱形,60ABC ∠=︒,∴AB =AD =BC =CD ,∠BAC =∠DAC =12∠BAD =12(180)ABC ⨯︒-∠=60ABC ︒=∠,∴△BAF ≌△DAF ≌CBE ,△ABC 是等边三角形,∴DF =CE ,故A 项答案正确,∠ABF =∠BCE ,∵∠ABC =∠ABF +∠CBF =60゜,∴∠GCB +∠GBC =60゜,∴∠BGC =180゜-60゜=180゜-(∠GCB +∠GBC )=120゜,故B 项答案正确,∵∠ABF =∠BCE ,∠BEG =∠CEB ,∴△BEG ∽△CEB ,∴BE CE GE BE = ,∴2BE GE CE = ,∵AF BE =,∴2AF GE CE = ,故C 项答案正确,∵120BGC ∠=︒,BC =1,点G 在以线段BC 为弦的弧BC 上,∴当点G 在等边△ABC 的内心处时,AG 取最小值,如下图,∵△ABC 是等边三角形,BC =1,∴BF AC ⊥,AF =12AC =12,∠GAF =30゜,∴AG =2GF ,AG 2=GF 2+AF 2,∴2221122AG AG ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭, 解得AG D 项错误,故应选:D【点睛】本题主要考查了菱形的基本性质、等边三角形的判定及性质、圆周角定理,熟练掌握菱形的性质是解题的关键.9.(2022·贵州贵阳)如图,在ABC 中,D 是AB 边上的点,B ACD ∠=∠,:1:2AC AB =,则ADC 与ACB △的周长比是( )A .B .1:2C .1:3D .1:4【答案】B 【分析】先证明△ACD ∽△ABC ,即有12AC AD CD AB AC BC ===,则可得12AC AD CD AB AC BC ++=++,问题得解.【详解】∵∠B =∠ACD ,∠A =∠A ,∴△ACD ∽△ABC ,∴AC AD CD AB AC BC ==,∵12AC AB =,∴12AC AD CD AB AC BC ===,∴12AC AD CD AC AD CD AB AC BC AB AC BC ++====++,∴△ADC 与△ACB 的周长比1:2,故选:B .【点睛】本题主要考查了相似三角形的判定与性质,证明△ACD ∽△ABC 是解答本题的关键.10.(2022·广西)已知△ABC 与△A 1B 1C 1是位似图形,位似比是1:3,则△ABC 与△A 1B 1C 1的面积比( )A .1 :3B .1:6C .1:9D .3:1【答案】C【分析】根据位似图形的面积比等于位似比的平方,即可得到答案.【详解】∵△ABC 与△A 1B 1C 1是位似图形,位似比是1:3,∴△ABC 与△A 1B 1C 1的面积比为1:9,故选:C .【点睛】本题考查位似图形的性质,熟练掌握位似图形的面积比等于位似比的平方是解题的关键.11.(2022·山东临沂)如图,在ABC 中,∥DE BC ,23AD DB =,若6AC =,则EC =( )A .65B .125C .185D .245【答案】C【分析】由∥DE BC ,23AD DB =,可得2,3AD AE DB EC ==再建立方程即可.【详解】解: ∥DE BC ,23AD DB =,2,3AD AE DB EC ∴== 6AC =,62,3CE CE -∴= 解得:18.5CE =经检验符合题意故选C 【点睛】本题考查的是平行线分线段成比例,证明“23AD AE DB EC ==”是解本题的关键.12.(2022·山东威海)由12个有公共顶点O 的直角三角形拼成如图所示的图形,∠AOB =∠BOC =∠COD =…=∠LOM =30°.若S △AOB =1,则图中与△AOB 位似的三角形的面积为( )A .(43)3B .(43)7C .(43)6D .(34)6【答案】C【分析】根据题意得出A 、O 、G 在同一直线上,B 、O 、H 在同一直线上,确定与△AOB 位似的三角形为△GOH ,利用锐角三角函数找出相应规律得出OG=6x ,再由相似三角形的性质求解即可.【详解】解:∵∠AOB =∠BOC =∠COD =…=∠LOM =30°∴∠AOG =180°,∠BOH =180°,∴A 、O 、G 在同一直线上,B 、O 、H 在同一直线上,∴与△AOB 位似的三角形为△GOH ,设OA =x ,则OB=1cos30OA x ==︒,∴OC=24cos303OB x x ==︒,∴OD=3cos30OC x ==︒,…∴OG=6x ,∴6OG OA =,∴12643GOH AOB S S ⎛⎫== ⎪⎝⎭ ,∵1AOB S = ,∴643GOH S ⎛⎫= ⎪⎝⎭ ,故选:C .【点睛】题目主要考查利用锐角三角函数解三角形,找规律问题,相似三角形的性质等,理解题意,找出相应边的比值规律是解题关键.二.填空题13.(2022·贵州黔东南)如图,折叠边长为4cm 的正方形纸片ABCD ,折痕是DM ,点C 落在点E 处,分别延长ME 、DE 交AB 于点F 、G ,若点M 是BC 边的中点,则FG =______cm.【答案】53【分析】根据折叠的性质可得DE =DC =4,EM =CM =2,连接DF ,设FE =x ,由勾股定理得BF ,DF ,从而求出x 的值,得出FB ,再证明FEG FBM ∆∆ ,利用相似三角形对应边成比例可求出FG .【详解】解:连接,DF 如图,∵四边形ABCD 是正方形,∴4,90.AB BC CD DA A B C CDA ︒====∠=∠=∠=∠=∵点M 为BC 的中点,∴114222BM CM BC ===⨯=由折叠得,2,4,ME CM DE DC ====∠90,DEM C ︒=∠=∴∠90DEF ︒=,90,FEG ∠=︒设,FE x =则有222DF DE EF =+∴2224DF x =+又在Rt FMB ∆中,2,2FM x BM =+=,∵222FM FB BM =+∴FB ==∴4AF AB FB =-=在Rt DAF ∆中,222,DA AF DF +=∴2224(44,x +=+解得,124,83x x ==-(舍去)∴4,3FE =∴410233FM FE ME =+=+=∴83FB ==∵∠90DEM ︒=∴∠90FEG ︒=∴∠,FEG B =∠又∠.GFE MFB =∠∴△FEG FBM∆ ∴,FG FE FM FB=即4310833FG =∴5,3FG =故答案为:53【点睛】本题主要考查了正方形的性质,折叠的性质,勾股定理,相似三角形的判定与性质,正确作出辅助线是解答本题的关键.14.(2022·上海)如图,在△ABC 中,∠A =30°,∠B =90°,D 为AB 中点,E 在线段AC 上,AD DE AB BC=,则AE AC =_____.【答案】12或14【分析】由题意可求出12DE BC =,取AC 中点E 1,连接DE 1,则DE 1是△ABC 的中位线,满足112DE BC =,进而可求此时112AE AC =,然后在AC 上取一点E 2,使得DE 1=DE 2,则212DE BC =,证明△DE1E2是等边三角形,求出E1E2=14AC ,即可得到214AE AC =,问题得解.【详解】解:∵D 为AB中点,∴12AD DE AB BC ==,即12DE BC =,取AC 中点E 1,连接DE 1,则DE 1是△ABC 的中位线,此时DE 1∥BC ,112DE BC =,∴112AE AD AC AB ==,在AC 上取一点E 2,使得DE 1=DE 2,则212DE BC =,∵∠A =30°,∠B =90°,∴∠C =60°,BC =12AC ,∵DE 1∥BC ,∴∠DE1E2=60°,∴△DE1E2是等边三角形,∴DE 1=DE 2=E1E2=12BC ,∴E1E2=14AC ,∵112AE AC =,∴214AE AC =,即214AE AC =,综上,AE AC 的值为:12或14,故答案为:12或14.【点睛】本题考查了三角形中位线的性质,平行线分线段成比例,等边三角形的判定和性质以及含30°角的直角三角形的性质等,根据12DE BC =进行分情况求解是解题的关键.15.(2022·北京)如图,在矩形ABCD 中,若13,5,4AF AB AC FC ===,则AE 的长为_______.【答案】1【分析】根据勾股定理求出BC ,以及平行线分线段成比例进行解答即可.【详解】解:在矩形ABCD 中:AD BC ∥,90ABC ∠=︒,∴14AE AF BC FC ==,4BC =,∴144AE =,∴1AE =,故答案为:1.【点睛】此题考查了勾股定理以及平行线分线段成比例,掌握平行线分线段成比例是解题的关键.16.(2022·江苏常州)如图,在Rt ABC △中,90C ∠=︒,9AC =,12BC =.在Rt DEF 中,90F ∠=︒,3DF =,4EF =.用一条始终绷直的弹性染色线连接CF ,Rt DEF 从起始位置(点D 与点B 重合)平移至终止位置(点E 与点A 重合),且斜边DE 始终在线段AB 上,则Rt ABC △的外部被染色的区域面积是______.【答案】28【分析】过点F 作AB 的垂线交于G ,同时在图上标出,,M N F '如图,需要知道的是Rt ABC 的被染色的区域面积是MNF F S '梯形,所以需要利用勾股定理,相似三角形、平行四边形的判定及性质,求出相应边长,即可求解.【详解】解:过点F 作AB 的垂线交于G ,同时在图上标出,,M N F '如下图:90C ∠=︒ ,9AC =,12BC =,15AB ∴==,在Rt DEF 中,90F ∠=︒,3DF =,4EF =.5DE ∴==,15510AE AB DE =-=-= ,//,EF AF EF AF ''= ,∴四边形AEFF '为平行四边形,10AE FF '∴==,11622DEF S DF EF DE GF =⋅=⋅= ,解得:125GF =, //DF AC ,,DFM ACM FDM CAM ∴∠=∠∠=∠,DFM ACM ∴ ∽,13DM DF AM AC ∴==,1115344DM AM AB ∴===,//BC AF ' ,同理可证:ANF DNC ' ∽,13AF AN BC DN '∴==,345344DN AN AB ∴===,451530444MN DN DM ∴=-=-=,Rt ABC 的外部被染色的区域面积为130121028245MNF F S '⎛⎫=⨯+⨯= ⎪⎝⎭梯形,故答案为:28.【点睛】本题考查了直角三角形,相似三角形的判定及性质、勾股定理、平行四边形的判定及性质,解题的关键是把问题转化为求梯形的面积.17.(2022·广西)数学兴趣小组通过测量旗杆的影长来求旗杆的高度,他们在某一时刻测得高为2米的标杆影长为1.2米,此时旗杆影长为7.2米,则旗杆的高度为______米.【答案】12【分析】根据同时、同地物高和影长的比不变,构造相似三角形,然后根据相似三角形的性质解答.【详解】解:设旗杆为AB ,如图所示:根据题意得:ABC DEF ∆∆ ,∴DE EF AB BC= ∵2DE =米, 1.2EF =米,7.2BC =米,∴2 1.2=7.2AB 解得:AB =12米.故答案为:12.【点睛】本题考查了中心投影、相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.18.(2022·广东深圳)已知ABC 是直角三角形,90,3,5,B AB BC AE ∠=︒===连接CE 以CE 为底作直角三角形CDE 且,CD DE =F 是AE 边上的一点,连接BD 和,BF BD 且45,FBD ∠=︒则AF 长为______.【分析】将线段BD 绕点D 顺时针旋转90︒,得到线段HD ,连接BH ,HE ,利用SAS 证明EDH CDB ∆≅∆,得5EH CB ==,90HED BCD ∠=∠=︒,从而得出////HE DC AB ,则ABF EHF ∆∆∽,即可解决问题.【详解】解:将线段BD 绕点D 顺时针旋转90︒,得到线段HD ,连接BH ,HE ,BDH ∴∆是等腰直角三角形,又EDC ∆ 是等腰直角三角形,HD BD ∴=,EDH CDB ∠=∠,ED CD =,()EDH CDB SAS ∴∆≅∆,5EH CB ∴==,90HED BCD ∠=∠=︒,90EDC ∠=︒ ,90ABC ∠=︒,////HE DC AB ∴,,ABF EHF BAF HEF ∴∠=∠∠=∠,ABF EHF ∴∆∆∽,∴==-AB AF AF EH EF AE AF ,AE =∴35=AF ∴=,【点睛】本题主要考查了等腰直角三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质等知识,解题的关键是作辅助线构造全等三角形.19.(2022·广西河池)如图,把边长为1:2的矩形ABCD 沿长边BC ,AD 的中点E ,F 对折,得到四边形ABEF ,点G ,H 分别在BE ,EF 上,且BG =EH =25BE =2,AG 与BH 交于点O ,N 为AF 的中点,连接ON ,作OM ⊥ON 交AB 于点M ,连接MN ,则tan ∠AMN =_____.【答案】58##0.625【分析】先判断出四边形ABEF 是正方形,进而判断出△ABG ≌△BEH ,得出∠BAG =∠EBH ,进而求出∠AOB =90°,再判断出△AOB ~△ABG ,求出OA OB ==△OBM ~△OAN ,求出BM =1,即可求出答案.【详解】解:∵点E ,F 分别是BC ,AD 的中点,∴11,22AF AD BE BC ==,∵四边形ABCD 是矩形,∴∠A =90°,AD ∥BC ,AD =BC ,∴12AF BE AD ==,∴四边形ABEF 是矩形,由题意知,AD =2AB ,∴AF =AB ,∴矩形ABEF 是正方形,∴AB =BE ,∠ABE =∠BEF =90°,∵BG =EH ,∴△ABG≌△BEH(SAS),∴∠BAG=∠EBH,∴∠BAG+∠ABO=∠EBH+∠ABO=∠ABG=90°,∴∠AOB=90°,∵BG=EH=25BE=2,∴BE=5,∴AF=5,∴AG==∵∠OAB=∠BAG,∠AOB=∠ABG,∴△AOB∽△ABG,∴OA OB ABAB BG AG==,即52OA OB==∴OA OB==∵OM⊥ON,∴∠MON=90°=∠AOB,∴∠BOM=∠AON,∵∠BAG+∠FAG=90°,∠ABO+∠EBH=90°,∠BAG=∠EBH,∴∠OBM=∠OAN,∴△OBM~△OAN,∴OB BM OA AN=,∵点N是AF的中点,∴1522AN AF==,52BM=,解得:BM=1,∴AM=AB-BM=4,∴552tan48ANAMNAM∠===.故答案为:5 8【点睛】此题主要考查了矩形性质,正方形性质和判定,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,求出BM 是解本题的关键.20.(2022·内蒙古赤峰)如图,为了测量校园内旗杆AB 的高度,九年级数学应用实践小组,根据光的反射定律,利用镜子、皮尺和测角仪等工具,按以下方式进行测量:把镜子放在点O 处,然后观测者沿着水平直线BO 后退到点D ,这时恰好能在镜子里看到旗杆顶点A ,此时测得观测者观看镜子的俯角α=60°,观测者眼睛与地面距离CD =1.7m ,BD =11m ,则旗杆AB 的高度约为_________m . 1.7≈)【答案】17【分析】如图容易知道CD ⊥BD ,AB ⊥BD ,即∠CDO =∠ABO =90°.由光的反射原理可知∠COD =∠AOB =60°,这样可以得到△COD ∽△AOB ,然后利用对应边成比例就可以求出AB .【详解】解:由题意知∠COD =∠AOB =60°,∠CDE =∠ABE =90°,∵CD =1.7m ,∴OD =60CD tan =︒≈1(m),∴OB =11-1=10(m),∴△COD ∽△AOB .∴CD OD AB OB =,即1.7110AB =,∴AB =17(m),答:旗杆AB 的高度约为17m .故答案为:17.【点睛】本题考查了解直角三角形的应用,相似三角形的应用,本题只要是把实际问题抽象到相似三角形中,利用相似三角形的性质就可以求出结果.21.(2022·湖北鄂州)如图,在边长为6的等边△ABC 中,D 、E 分别为边BC 、AC 上的点,AD 与BE 相交于点P ,若BD =CE =2,则△ABP 的周长为 _____.【答案】6+【分析】如图所示,过点E 作EF ⊥AB 于F ,先解直角三角形求出AF ,EF ,从而求出BF ,利用勾股定理求出BE 的长,证明△ABD ≌△BCE 得到∠BAD =∠CBE ,AD =BE ,再证明△BDP ∽△ADB ,得到62BP PD==,即可求出BP ,PD ,从而求出AP ,由此即可得到答案.【详解】解:如图所示,过点E 作EF ⊥AB 于F ,∵△ABC 是等边三角形,∴AB =BC ,∠ABD =∠BAC =∠BCE =60°,∵CE =BD =2,AB =AC =6,∴AE =4,∴cos 2sin AF AE EAF EF AE EAF =⋅∠==⋅∠=,,∴BF =4,∴BE =又∵BD =CE ,∴△ABD ≌△BCE (SAS ),∴∠BAD =∠CBE ,AD =BE ,又∵∠BDP =∠ADB ,∴△BDP ∽△ADB ,∴BD BP DP AD AB BD==,62BP PD==,∴BP PD =∴AP AD AP =-=,∴△ABP 的周长=6AB BP AP ++=故答案为:6+【点睛】本题主要考查了等边三角形的性质,解直角三角形,勾股定理,相似三角形的性质与判定,全等三角形的性质与判定,正确作出辅助线是解题的关键.22.(2022·山东潍坊)《墨子·天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD 的面积为4,以它的对角线的交点为位似中心,作它的位似图形A B C D '''',若:2:1A B AB ='',则四边形A B C D ''''的外接圆的周长为___________.【答案】【分析】根据正方形ABCD 的面积为4,求出2AB =,根据位似比求出4A B ''=,周长即可得出;【详解】解: 正方形ABCD 的面积为4,∴2AB =,:2:1A B AB ''=,∴4A B ''=,∴A C ''==所求周长=;故答案为:.【点睛】本题考查位似图形,涉及知识点:正方形的面积,正方形的对角线,圆的周长,解题关键求出正方形ABCD 的边长.23.(2022·内蒙古包头)如图,在Rt ABC 中,90ACB ∠=︒,3AC BC ==,D 为AB 边上一点,且BD BC =,连接CD ,以点D 为圆心,DC 的长为半径作弧,交BC 于点E (异于点C ),连接DE ,则BE的长为___________.【答案】3##3-+【分析】过点D 作DF ⊥BC 于点F ,根据题意得出DC DE =,根据等腰三角形性质得出CF EF =,根据90ACB ∠=︒,3AC BC ==,得出AB =CF x =,则3BF x =-,证明DF AC ,得出BF BDCF AD=,列出关于x 的方程,解方程得出x 的值,即可得出3BE =.【详解】解:过点D 作DF ⊥BC 于点F ,如图所示:根据作图可知,DC DE =,∵DF ⊥BC ,∴CF EF =,∵90ACB ∠=︒,3AC BC ==,∴AB ===∵3BD BC ==,∴3AD =,设CF x =,则3BF x =-,∵90ACB ∠=︒,∴AC BC ⊥,∵DF BC ⊥,∴DF AC ,∴BF BDCF AD =,即3x x -=,解得:x =,∴226CE x ===-,∴3363BE CE =-=-+=.故答案为:3.【点睛】本题主要考查了等腰三角形的性质和判定,勾股定理,平行线分线段成比例定理,平行线的判定,作出辅助线,根据题意求出CF 的长,是解题的关键.24.(2022·江苏泰州)如图上,Δ,90,8,6,ABC C AC BC ∠=== 中O 为内心,过点O 的直线分别与AC 、AB 相交于D 、E ,若DE=CD+BE ,则线段CD 的长为__________.【答案】2或12##12或2【分析】分析判断出符合题意的DE 的情况,并求解即可;【详解】解:①如图,作//DE BC ,OF BC OG AB ⊥⊥,,连接OB ,则OD ⊥AC ,∵//DE BC ,∴OBF BOE ∠=∠∵O 为ABC ∆的内心,∴OBF OBE ∠=∠,∴BOE OBE ∠=∠∴BE OE =,同理,CD OD =,∴DE=CD+BE ,10AB ===∵O 为ABC ∆的内心,∴OF OD OG CD ===,∴BF BG AD AG==,∴6810AB BG AG BC CD AC CD CD CD =+=-+-=-+-=∴2CD =②如图,作DE AB ⊥,由①知,4BE =,6AE =,∵ACB AED CAB EAD ∠=∠∠=∠,∴ABC ADE ∆∆ ∴AB ADAC AE=∴1061582AB AE AD AC ⋅⨯===∴151822CD AC AD =-=-=∵92DE ===∴19422DE BE CD =+=+=∴12CD =故答案为:2或12.【点睛】本题主要考查三角形内心的性质、勾股定理、三角形的相似,根据题意正确分析出符合题意的情况并应用性质定理进行求解是解题的关键.25.(2022·黑龙江绥化)如图,60AOB ∠=︒,点1P 在射线OA 上,且11OP =,过点1P 作11PK OA ⊥交射线OB 于1K ,在射线OA 上截取12PP ,使1211PPPK =;过点2P 作22P K OA ⊥交射线OB 于2K ,在射线OA 上截取23P P ,使2322P P P K =.按照此规律,线段20232023P K 的长为________.20221【分析】解直角三角形分别求得11PK ,22P K ,33P K ,……,探究出规律,利用规律即可解决问题.【详解】解:11PK OA ⊥ ,11OPK ∴△是直角三角形,在11Rt OPK 中,60AOB ∠=︒,11OP =,12111tan 60PP PK OP ∴==⋅︒=11PK OA ⊥ ,22P K OA ⊥,1122PK P K ∴∥,2211OP K OPK ∴△∽△,222111P K OP PK OP ∴=,=221P K ∴,同理可得:2331P K =+,3441P K =,……,11n n n P K -∴=,2022202320231P K ∴=,20221.【点睛】本题考查了图形的规律,解直角三角形,平行线的判定,相似三角形的判定与性质,解题的关键是学会探究规律的方法.26.(2022·黑龙江)如图,在平面直角坐标系中,点1A ,2A ,3A ,4A ……在x 轴上且11OA =,212OA OA =,322OA OA =,432OA OA =……按此规律,过点1A ,2A ,3A ,4A ……作x轴的垂线分别与直线y =交于点1B ,2B ,3B ,4B ……记11OA B ,22OA B △,33 OA B ,44 OA B ……的面积分别为1S ,2S ,3S ,4S ……,则2022S =______.【答案】2【分析】先求出11A B =,可得11OA B S =112233n n A B A B A B A B ⋯⋯∥∥∥∥,从而得到11OA B ∽22OA B △∽33 OA B ∽44 OA B ∽……∽n n OA B △,再利用相似三角形的性质,可得11OA B S ∶22OA B S ∶33OA B S ∶44OA B S ∶……∶n n OA B S =()()()2222231:2:2:2::2n ,即可求解.【详解】解:当x =1时,y =,∴点(1B ,∴11A B =∴11112OA B S =⨯= ,∵根据题意得:112233n n A B A B A B A B ⋯⋯∥∥∥∥,∴11OA B ∽22OA B △∽33 OA B ∽44 OA B ∽……∽n n OA B △,∴11OA B S ∶22OA B S ∶33OA B S ∶44OA B S :……∶n n OA B S = OA 12∶OA 22∶OA 32∶……∶OAn 2,∵11OA =,212OA OA =,322OA OA =,432OA OA =,……,∴22OA =,2342OA ==,3482OA ==,……,12n n OA -=,∴11OA B S ∶22OA B S ∶33OA B S ∶44OA B S ∶……∶n n OA B S =()()()2222231246221:2:2:2::21:2:2:2::2n n --= ,∴11222n n n OA B OA B S S -= ,∴220222202222S ⨯-==故答案为:2【点睛】本题主要考查了图形与坐标的规律题,相似三角形的判定和性质,明确题意,准确得到规律,是解题的关键.27.(2022·广西)如图,在正方形ABCD 中,AB =,对角线,AC BD 相交于点O .点E 是对角线AC 上一点,连接BE ,过点E 作EF BE ⊥,分别交,CD BD 于点F 、G ,连接BF ,交AC 于点H ,将EFH △沿EF 翻折,点H 的对应点H '恰好落在BD 上,得到EFH '△若点F 为CD 的中点,则EGH '△的周长是_________.【答案】5+【分析】过点E 作PQ //AD 交AB 于点P ,交DC 于点Q ,得到BP =CQ ,从而证得BPE ≌EQF △,得到BE =EF ,再利用BC =F 为中点,求得BF ==BE EF ===,再求出2EO ==,再利用AB //FC ,求出ABH CFH △∽△21AH CH ==,求得216833AH =⨯=,18833CH =⨯=,从而得到EH =AH -AE =1610233-=,再求得EOB GOE △∽△得到21242OG ===,求得EG OG =1, 过点F 作FM ⊥AC 于点M ,作FN ⊥OD 于点N ,求得FM =2,MH =23,FN =2,证得Rt FH N '△≌Rt FMH 得到23H N MH '==,从而得到ON =2,NG =1,25133GH '=+=,从而得到答案.【详解】解:过点E 作PQ //AD 交AB 于点P ,交DC 于点Q ,∵AD //PQ ,∴AP =DQ ,BPQ CQE ∠=∠,∴BP =CQ ,∵45ACD ∠=︒,∴BP =CQ =EQ ,∵EF ⊥BE ,∴90PEB FEQ ∠+∠=︒∵90PBE PEB ∠+∠=︒∴PBE FEQ ∠=∠,在BPE 与EQF △中BPQ FQE PB EQPBE FEQ ∠=∠⎧⎪=⎨⎪∠=∠⎩∴BPE ≌EQF △,∴BE =EF ,又∵BC AB ==F 为中点,∴CF =∴BF ==∴BE EF ===,又∵4BO ==,∴2EO ==,∴AE =AO -EO =4-2=2,∵AB //FC ,∴ABH CFH △∽△,∴AB AH CF CH=,21AH CH ==,∵8AC ==, ∴216833AH =⨯=,18833CH =⨯=,∴EH =AH -AE =1610233-=,∵90BEO FEO ∠+∠=︒,+90BEO EBO ∠∠=︒,∴FEO EBO ∠=∠,又∵90EOB EOG ∠=∠=︒,∴EOB GOE△∽△∴EG OG OE BE OE OB==,21242OG ===,∴EG OG =1,过点F 作FM ⊥AC 于点M ,∴FM=MC 2=,∴MH =CH -MC =82233-=, 作FN ⊥OD 于点N ,2,FN ==,在Rt FH N '△与Rt FMH 中FH FH FN FM'=⎧⎨=⎩∴Rt FH N '△≌Rt FHM∴23H N MH '==,∴ON =2,NG =1,∴25133GH '=+=,∴10533EGH C EH EG GH EH EG GH '''=++=++=△,故答案为:【点睛】本题考查了正方形的性质应用,重点是与三角形相似和三角形全等的结合,熟练掌握做辅助线是解题的关键.28.(2022·辽宁)如图,在正方形ABCD 中,E 为AD 的中点,连接BE 交AC 于点F .若6AB =,则AEF 的面积为___________.【答案】3【分析】由正方形的性质可知1113222AE AD AB BC ====,//AD BC ,则有AEF CBF ∽△△,然后可得12EF AE BF BC ==,进而问题可求解.【详解】解:∵四边形ABCD 是正方形,6AB =,∴6AD BC AB ===,//AD BC ,∴AEF CBF ∽△△,∴EF AE BF BC=,∵E 为AD 的中点,∴1113222AE AD AB BC ====,∴12EF AE BF BC ==,192ABE S AE AB =⋅= ,∴13EF BE =,∴133AEF ABE S S == ;故答案为3.【点睛】本题主要考查正方形的性质及相似三角形的性质与判定,熟练掌握正方形的性质及相似三角形的性质与判定是解题的关键.29.(2022·贵州贵阳)如图,在四边形ABCD 中,对角线AC ,BD 相交于点E ,6cm AC BC ==,90ACB ADB ∠=∠=︒.若2BE AD =,则ABE △的面积是_______2cm ,AEB ∠=_______度.【答案】 36-36- 112.5【分析】通过证明ADE BCE ,利用相似三角形的性质求出23m AE =,263m CE =-,再利用勾股定理求出其长度,即可求三角形ABE 的面积,过点E 作EF ⊥AB ,垂足为F ,证明AEF 是等腰直角三角形,再求出AE CE =,继而证明()Rt BCE Rt BFE HL ≅ ,可知122.52EBF EBC ABC ∠=∠=∠=︒,利用外角的性质即可求解.【详解】90,ACB ADB AED BEC ∠=∠=︒∠=∠ ,ADE BCE ∴ ,AD AE BC BE∴=,6,2BC AC BE AD === ,设,2AD m BE m ==,62m AE m∴=,23m AE ∴=,263m CE ∴=-,在Rt BCE 中,由勾股定理得222BC CE BE +=,22226(6)(2)2m m ∴+-=,解得236m =-或236m =+ 对角线AC ,BD 相交于点E ,236m ∴=-,12AE ∴=-,6CE ∴=,∴(2111263622ABE S AE BC =⋅⋅=⨯-⨯=- ,过点E 作EF ⊥AB ,垂足为F ,90,ACB AC BC ∠=︒= ,45BAC ABC AEF ∴∠=∠=︒=∠,6AE AF AE CE ∴====,BE BE = ,()Rt BCE Rt BFE HL ∴≅ ,122.52EBF EBC ABC ∴∠=∠=∠=︒,112.5AEB ACB EBC ∴∠=∠+∠=︒,故答案为:36-,112.5.【点睛】本题考查了相似三角形的判定和性质,勾股定理,等腰直角三角形的判定和性质,全等三角形的判定和性质及三角形外角的性质,熟练掌握知识点是解题的关键.三.解答题30.(2022·河北)如图,某水渠的横断面是以AB 为直径的半圆O ,其中水面截线MN AB ∥.嘉琪在A 处测得垂直站立于B 处的爸爸头顶C 的仰角为14°,点M 的俯角为7°.已知爸爸的身高为1.7m .(1)求∠C 的大小及AB 的长;(2)请在图中画出线段DH ,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).(参考数据:tan 76︒取4 4.1)【答案】(1)=76C ∠︒, 6.8(m)AB =(2)见详解,约6.0米【分析】(1)由水面截线MN AB ∥可得BC AB ⊥,从而可求得76C ∠=︒,利用锐角三角形的正切值即可求解.(2)过点O 作O H M N ⊥,交MN 于D 点,交半圆于H 点,连接OM ,过点M 作MG ⊥OB 于G ,水面截线MN AB ∥,即可得DH 即为所求,由圆周角定理可得14BOM ∠=︒,进而可得ABC OGM ,利用相似三角形的性质可得4OG GM =,利用勾股定理即可求得GM 的值,从而可求解.(1)解:∵水面截线MN AB∥BC AB ∴⊥,90ABC ∴∠=︒,90=76C CAB ∴∠=︒-∠︒,在t R ABC 中,90ABC ∠=︒, 1.7BC =,tan 76 1.7AB AB BC ∴︒==,解得 6.8(m)AB ≈.(2)过点O 作O H M N ⊥,交MN 于D 点,交半圆于H 点,连接OM ,过点M 作MG ⊥OB 于G ,如图所示:水面截线MN AB ∥,OH AB ⊥,DH MN ∴⊥,GM OD =,DH ∴为最大水深,7BAM ∠=︒ ,214BOM BAM ∴∠=∠=︒,90ABC OGM ∠=∠=︒ ,且14BAC ∠=︒,ABC OGM ∴ ,OG MG AB CB ∴=,即6.8 1.7OG MG =,即4OG GM =,在Rt OGM △中,90OGM ∠=︒, 3.42AB OM =≈,222OG GM OM ∴+=,即2224(3.4)GM GM +=(),解得0.8GM ≈,= 6.80.86DH OH OD ∴-=-≈,∴最大水深约为6.0米.【点睛】本题考查了解直角三角形,主要考查了锐角三角函数的正切值、圆周角定理、相似三角形的判定及性质、平行线的性质和勾股定理,熟练掌握解直角三角形的相关知识是解题的关键.31.(2022·吉林)下面是王倩同学的作业及自主探究笔记,请认真阅读并补充完整.【作业】如图①,直线12l l ∥,ABC 与DBC △的面积相等吗?为什么?解:相等.理由如下:设1l 与2l 之间的距离为h ,则12ABC S BC h =⋅ ,12DBC S BC h =⋅△.∴ABC DBC S S = .【探究】(1)如图②,当点D 在1l ,2l 之间时,设点A ,D 到直线2l 的距离分别为h ,h ',则ABC DBC S h S h ='△△.证明:∵ABC S(2)如图③,当点D 在1l ,2l 之间时,连接AD 并延长交2l 于点M ,则ABC DBC S AM S DM =△△.证明:过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,则90AEM DFM ∠=∠=︒,∴AE ∥ .∴AEM △∽ .∴AE AM DF DM =.由【探究】(1)可知ABC DBC S S =△△ ,∴ABC DBC S AM S DM =△△.(3)如图④,当点D 在2l 下方时,连接AD 交2l 于点E .若点A ,E ,D 所对应的刻度值分别为5,1.5,0,ABC DBC S S △△的值为 .【答案】(1)证明见解析(2)证明见解析(3)73【分析】(1)根据三角形的面积公式可得11,22ABC DBC S S BC h BC h '=⋅=⋅ ,由此即可得证;(2)过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,先根据平行线的判定可得AE DF ,再根据相似三角形的判定可证AEM DFM ~ ,根据相似三角形的性质可得AE AM DF DM=,然后结合【探究】(1)的结论即可得证;(3)过点A 作AM BC ⊥于点M ,过点D 作DN BC ⊥于点N ,先根据相似三角形的判定证出AME DNE ~ ,再根据相似三角形的性质可得73AM AE DN DE ==,然后根据三角形的面积公式可得12ABC S BC AM =⋅ ,12DBC S BC DN =⋅ ,由此即可得出答案.(1)证明:12ABC S BC h =⋅ ,12DBC BC h S '=⋅ ,ABC DBC S h S h ∴='.(2)证明:过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,则90AEM DFM ∠=∠=︒,AE DF ∴∥.AEM DFM ~∴ .AE AM DF DM∴=.由【探究】(1)可知ABC DBC S AE S DF= ,ABC DBC S AM S DM ∴= .(3)解:过点A 作AM BC ⊥于点M ,过点D 作DN BC ⊥于点N ,则90AME DNE ∠=∠=︒,AM DN ∴ ,AME DNE ∴~ ,AM AE DN DE∴=, 点,,A E D 所对应的刻度值分别为5,1.5,0,5 1.5 3.5AE ∴=-=, 1.5DE =,3.571.53AM DN ∴==,又12ABC S BC AM =⋅ ,12DBC S BC DN =⋅ ,73ABCDBC S AM S DN =∴= ,故答案为:73.【点睛】本题考查了相似三角形的判定与性质、平行线的判定、三角形的面积等知识点,熟练掌握相似三角形的判定与性质是解题关键.32.(2022·山东青岛)如图,在Rt ABC △中,90,5cm,3cm ACB AB BC ∠=︒==,将ABC 绕点A 按逆时针方向旋转90︒得到ADE ,连接CD .点P 从点B 出发,沿BA 方向匀速运动,速度为1cm/s ;同时,点Q 从点A 出发,沿AD 方向匀速运动,速度为1cm/s .PQ 交AC 于点F ,连接,CP EQ .设运动时间为(s)(05)t t <<.解答下列问题:(1)当EQ AD ⊥时,求t 的值;(2)设四边形PCDQ 的面积为()2cm S ,求S 与t 之间的函数关系式;(3)是否存在某一时刻t ,使PQ CD ∥?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)16s 5(2)213714210S t t =-+(3)存在,65s 29t =【分析】(1)利用AQE AED △∽△得AQ AE AE AD =,即445t =,进而求解;(2)分别过点C ,P 作,CM AD PN BC ⊥⊥,垂足分别为M ,N ,证ABC CAM △∽△得,AB BC AC CA AM CM ==,求得121655AM CM ==,再证BPN BAC △∽△得BP PN BA AC=,得出45PN t =,根据ABC ACD APQ BPC PCDQ S S S S S S ==+-- 四边形即可求出表达式;(3)当PQ CD ∥时AQP ADC ∠=∠,易证APQ MCD △∽△,得出AP AQ MC MD =,则5161355t t -=,进而求出t 值.(1)解:在Rt ABC △中,由勾股定理得,4AC ===∵ABC 绕点A 按逆时针方向旋转90︒得到ADE。
《相似三角形》复习题及答案一.选择题(1)△ABC 中,D 、E 、F 分别是在AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,那么下列各式正确的是( ) A.DB AD =EC BF B.AC AB =FCEF C.DB AD =FC BF D.EC AE =BF AD (2)在△ABC 中,BC=5,CA=45,AB=46,另一个与它相似的三角形的最短边是15,则最长边是( ) A.138 B.346 C.135 D.不确定(3)在△ABC 中,AB=AC,∠A=36°,∠ABC 的平分线交AC 于D ,则构成的三个三角形中,相似的是( )A.△ABD ∽△BCDB.△ABC ∽△BDCC.△ABC ∽△ABDD.不存在(4)将三角形高分为四等分,过每个分点作底边的平行线,将三角形分四个部分,则四个部分面积之比是( )A.1∶3∶5∶7B.1∶2∶3∶4C.1∶2∶4∶5D.1∶2∶3∶5(5)下列命题中,真命题是( )A.有一个角为30°的两个等腰三角形相似B.邻边之比都等于2的两个平行四边形相似C.底角为40°的两个等腰梯形相似D.有一个角为120°的两个等腰三角形相似(6)直角梯形ABCD 中,AD 为上底,∠D=Rt ∠,AC ⊥AB ,AD=4,BC=9,则AC 等于( )A.5B.6C.7D.8 (7)已知CD 为Rt △ABC 斜边上的中线,E 、F 分别是AC 、BC 中点,则CD 与EF 关系是( )A.EF >CDB.EF=CDC.EF <CDD.不能确定(8)下列命题①相似三角形一定不是全等三角形 ②相似三角形对应中线的比等于对应角平分线的比;③边数相同,对应角相等的两个多边形相似;④O 是△ABC 内任意一点.OA 、OB 、OC 的中点连成的三角形△A′B′C′∽△ABC 。
其中正确的个数是( )A.0个B.1个C.2个D.3个(9)D 为△ABC 的AB 边上一点,若△ACD ∽△ABC ,应满足条件有下列三种可能①∠ACD=∠B ②∠ADC=∠ACB ③AC 2=AB·AD ,其中正确的个数是( )A.0个B.1个C.2个D.3个(10)下列命题错误的是( )A.如果一个菱形的一个角等于另一个菱形的一个角,则它们相似B.如果一个矩形的两邻边之比等于另一个矩形的两邻边之比,则它们相似C.如果两个平行四边形相似,则它们对应高的比等于相似比D.对应角相等,对应边成比例的两个多边形相似二、填空题(1)比例的基本性质是________________________________________(2)若线段a=3cm,b=12cm,a、b的比例中项c=________,a、b、c的第四比例线段d=________(3)如下图,EF∥BC,若AE∶EB=2∶1,EM=1,MF=2,则AM∶AN=________,BN∶NC=________(4)有同一三角形地块的甲乙两地图,比例尺分别为1∶200和1∶500,则甲地图与乙地图的相似比为________,面积比为________(5)若两个相似三角形的面积之比为1∶2,则它们对应边上的高之比为________(6)已知CD是Rt△ABC斜边AB上的高,则CD2=________(7)把一个三角形改成和它相似的三角形,如果边长扩大为原来的10倍,那么面积扩大为原来的____倍,周长扩大为原来的______倍.(8)Rt△ABC中,∠C=90°,CD为斜边上的高。
2023年九年级数学中考专题:二次函数综合压轴题(相似三角形问题)1.如图,二次函数216y x bx c =++的图象交坐标轴于点()4,0A ,()0,2B -,点P 为x 轴上一动点.(1)求二次函数216y x bx c =++的表达式; (2)将线段PB 绕点P 逆时针旋转90︒得到线段PD ,若D 恰好在抛物线上,求点D 的坐标; (3)过点P 作PQ x ⊥轴分别交直线AB ,抛物线于点Q ,C ,连接AC .若以点B 、Q 、C 为顶点的三角形与APQ △相似,直接写出点P 的坐标. 2.抛物线25y ax bx =++经过点1,0A 和点()5,0B .(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线25y x =+相交于C 、D 两点,点P 是抛物线上的动点且位于x 轴下方,直线PM y ∥轴,分别与x 轴和直线CD 交于点M 、N .①连结PC PD 、,如图1,在点P 运动过程中,PCD 的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;①连结PB ,过点C 作CQ PM ⊥,垂足为点Q ,如图2,是否存在点P ,使得CNQ 与PBM 相似?若存在,直接写出满足条件的点P 的坐标;若不存在,说明理由.3.已知抛物线24y ax ax b =-+与x 轴交于A ,B 两点,(A 在B 的左侧),与y 轴交于C ,若OB OC =,且03C (,).(1)求抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且APD ACB ∠=∠,求点P 的坐标; (3)在抛物线上是否存在一点M ,过M 作MN x ⊥轴于N ,以A 、M 、N 为顶点的三角形与AOC ∆相似,若存在,求出所有符合条件的M 点坐标,若不存在,请说明理由. 4.如图.在平面直角坐标系中.抛物线212y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C .点A 的坐标为()1,0-,点C 的坐标为()0,2-.已知点(),0E m 是线段AB 上的动点(点E 不与点A ,B 重合).过点E 作PE x ⊥轴交抛物线于点P ,交BC 于点F .(1)求该抛物线的表达式;(2)若:1:2EF PF =,请求出m 的值;(3)是否存在这样的m ,使得BEP △与ABC 相似?若存在,求出此时m 的值;若不存在,请说明理由;(4)当点E 运动到抛物线对称轴上时,点M 是x 轴上一动点,点N 是抛物线上的动点,在运动过程中,是否存在以C 、B 、M 、N 为顶点的四边形是平行四边形?若不存在,请说明理由;若存在,请直接写出点M 的坐标.5.如图,二次函数212y x bx c =-++图像交x 轴于点A ,B (A 在B 的左侧),与y 轴交于点(0,3)C ,CD y ⊥轴,交抛物线于另一点D ,且5CD =,P 为抛物线上一点,PE y轴,与x 轴交于E ,与BC ,CD 分别交于点F ,G .(1)求二次函数解析式;(2)当P 在CD 上方时,是否存在点P ,使得以C ,P ,G 为顶点的三角形与FBE 相似,若存在,求出CPG △与FBE 的相似比,若不存在,说明理由.(3)点D 关于直线PC 的对称点为D ,当点D 落在抛物线的对称轴上时,此时点P 的坐标为________.6.如图,抛物线22y ax bx =++与x 轴交于点A ,B ,与y 轴交于点C ,已知A ,B 两点坐标分别是(1,0)A ,(4,0)B -,连接,AC BC .(1)求抛物线的表达式;(2)将ABC ∆沿BC 所在直线折叠,得到DBC ∆,点A 的对应点D 是否落在抛物线的对称轴上?若点D 在对称轴上,请求出点D 的坐标;若点D 不在对称轴上,请说明理由;(3)若点P 是抛物线位于第二象限图象上的一动点,连接AP 交BC 于点Q ,连接BP ,BPQ ∆的面积记为1S ,ABQ ∆的面积记为2S ,求12S S 的值最大时点P 的坐标. 7.已知,二次函数23y ax bx =+-的图象与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于C 点,点A 的坐标为()1,0-,且OB OC =.(1)求二次函数的解析式;(2)当04x ≤≤时,求二次函数的最大值和最小值分别为多少?(3)设点C '与点C 关于该抛物线的对称轴对称.在y 轴上是否存在点P ,使PCC '△与POB 相似,且PC 与PO 是对应边?若存在,求出点P 的坐标;若不存在,请说明理由.8.已知菱形OABC 的边长为5,且点(34)A ,,点E 是线段BC 的中点,过点A ,E 的抛物线2y ax bx c =++与边AB 交于点D ,(1)求点E 的坐标;(2)连接DE ,将BDE △沿着DE 翻折痕.①当B 点的对应点B '恰好落在线段AC 上时,求点D 的坐标;①连接OB ,BB ',若BB D '△与BOC 相似,请直接写出此时抛物线二次项系数=a ______. 9.如图,抛物线22(0)y ax x c a =-+≠与x 轴交于A 、()3,0B 两点,与y 轴交于点()0,3C -,抛物线的顶点为D .(1)求抛物线的解析式;(2)已知点M 是x 轴上的动点,过点M 作x 轴的垂线交抛物线于点G ,是否存在这样的点M ,使得以点A 、M 、G 为顶点的三角形与BCD △相似,若存在,请求出点M 的坐标;若不存在,请说明理由.(3)在直线BC 下方抛物线上一点P ,作PQ 垂直BC 于点Q ,连接CP ,当CPQ 中有一个角等于ACO ∠时,求点P 的坐标.10.如图,抛物线顶点D 在x 轴上,且经过(0,3)-和(4,3)-两点,抛物线与直线l 交于A 、B 两点.(1)直接写出抛物线解析式和D 点坐标;(2)如图1,若()03A ,-,且 94ABDS =,求直线l 解析式; (3)如图2,若90ADB ∠=︒,求证:直线l 经过定点,并求出定点坐标.11.如图1,已知抛物线2=23y x x --与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接BC ,点P 是线段BC 下方抛物线上一动点,过点P 作∥PE BC ,交x 轴于点E ,连接OP 交BC 于点F .(1)直接写出点A ,B ,C 的坐标以及抛物线的对称轴; (2)当点P 在线段BC 下方抛物线上运动时,求BFPE取到最小值时点P 的坐标; (3)当点P 在y 轴右边抛物线上运动时,过点P 作PE 的垂线交抛物线对称轴于点G ,是否存在点P ,使以P 、E 、G 为顶点的三角形与①AOC 相似?若存在,来出点P 的坐标;若不存在,请说明理由.12.如图,抛物线212ax ax b =-+y 经过()1,0A -,32,2C ⎛⎫⎪⎝⎭两点,与x 轴交于另一点B .(1)求此抛物线的解析式;(2)若抛物线的顶点为M ,点P 为线段OB 上一动点(不与点B 重合),点Q 在线段MB 上移动,且2PM MQ MB =⋅,设线段OP x =,2MQ y =,求2y 与x 的函数关系式,并直接写出自变量x 的取值范围;并直接写出PM APPQ BQ-的值;(3)在同一平面直角坐标系中,两条直线x m =,x n =分别与抛物线交于点E ,G ,与(2)中的函数图象交于点F ,.H 问四边形EFHG 能否为平行四边形?若能,求m ,n 之间的数量关系;若不能,请说明理由.13.已知抛物线213222y x x =-++交x 轴于A 、B 两点,A 在B 的左边,交y 轴于点C .(1)求抛物线顶点的坐标;(2)如图1,若10,2E ⎛⎫- ⎪⎝⎭,P 在抛物线上且在直线AE 上方,PQ AE ⊥于O ,求PQ 的最大值;(3)如图2,点(),3D a (32a <)在抛物线上,过A 作直线交抛物线于第四象限另一点F ,点M 在x 轴上,以M 、B 、D 为顶角的三角形与AFB △相似,求点M 的坐标. 14.如图,抛物线23y ax bx =+-与x 轴交于点()1,0A 、()3,0B ,与y 轴交于点C ,联结AC 、BC .(1)求该抛物线的表达式及顶点D 的坐标;(2)如果点P 在抛物线上,CB 平分ACP ∠,求点P 的坐标:(3)如果点Q 在抛物线的对称轴上,DBQ 与ABC 相似.求点Q 的坐标.15.如图,抛物线23y ax x c =-+与x 轴交于(4,0)A -,B 两点,与y 轴交于点(0,4)C ,点D 为x 轴上方抛物线上的动点,射线OD 交直线AC 于点E ,将射线OD 绕点O 逆时针旋转45︒得到射线OP ,OP 交直线AC 于点F ,连接DF .(1)求抛物线的解析式; (2)当点D 在第二象限且34DE EO =时,求点D 的坐标; (3)当ODF △为直角三角形时,请直接写出点D 的坐标.16.如图①,抛物线与x 轴交于A ,B 两点,与y 轴交于点C (0,3),顶点为D (4,-1),对称轴与直线BC 交于点E ,与x 轴交于点F .(1)求二次函数的解析式;(2)点M 在第一象限抛物线的对称轴上,若点C 在BM 的垂直平分线上,求点M 的坐标; (3)如图①,过点E 作对称轴的垂线在对称轴的右侧与抛物线交于点H ,x 轴上方的对称轴上是否存在一点P ,使以E ,H ,P 为顶点的三角形与EFB △相似,若存在,求出P点坐标;若不存在,请说明理由.17.如图,在平面直角坐标系xOy 中,已知抛物线2y ax x c =++经过()2,0A -,()0,4B 两点,直线3x =与x 轴交于点C .(1)求a ,c 的值;(2)经过点O 的直线分别与线段AB ,直线3x =交于点D ,E ,且BDO △与OCE △的面积相等,求直线DE 的解析式;(3)P 是抛物线上位于第一象限的一个动点,在线段OC 和直线3x =上是否分别存在点F ,G ,使B ,F ,G ,P 为顶点的四边形是以BF 为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.18.如图1,抛物线2y ax bx c =++与x 轴交于A ,B (点A 在点B 左侧),与y 轴负半轴交于C ,且满足2OA OB OC ===.(1)求抛物线的解析式;(2)如图2,D 为y 轴负半轴上一点,过D 作直线l 垂直于直线BC ,直线l 交抛物线于E ,F 两点(点E 在点F 右侧),若3DF DE =,求D 点坐标; (3)如图3,点M 为抛物线第二象限部分上一点,点M ,N 关于y 轴对称,连接MB ,P 为线段MB 上一点(不与M 、B 重合),过P 点作直线x t =(t 为常数)交x 轴于S ,交直线NB 于Q ,求QS PS -的值(用含t 的代数式表示).参考答案:1.(1)211266y x x =-- (2)()3,1D -或()8,10D -(3)点P 的坐标为()011-,或()10,.2.(1)265y x x =-+ (2)37,24⎛⎫- ⎪⎝⎭或()3,4-3.(1)243y x x =-+ (2)()2,2P 或()2,2-(3)存在符合条件的M 点,且坐标为:110(3M ,7)9-,()26,15M ,38(3M ,5)9-4.(1)213222y x x =--; (2)2m =;(3)存在,m 的值为0或3;(4)存在,M 点的坐标为()7,0或()1,0M 或⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭.5.(1)215322y x x =-++;(2)存在点P ,使得以C ,P ,G 为顶点的三角形与FBE 相似,CPG △与FBE 的相似比为2或25;(3)P 点横坐标55.6.(1)213222y x x =--+(2)点D 不在抛物线的对称轴上, (3)(2,3)-7.(1)2=23y x x --(2)函数的最大值为5,最小值为4- (3)存在,(0,9)P -或9(0,)5P -8.(1)13(2)2E , (2)①11(4)2D ,或23(4)6D ,;①47-9.(1)2=23y x x --(2)()0,0,()6,0,8,03⎛⎫ ⎪⎝⎭,10,03⎛⎫⎪⎝⎭(3)57,24⎛⎫- ⎪⎝⎭或者315,24⎛⎫- ⎪⎝⎭10.(1)()2324y x =--,()2,0D (2)334y x =-或1534y x =- (3)证明见解析,定点坐标为423⎛⎫- ⎪⎝⎭,11.(1)A (﹣1,0),B (3,0),C (0,﹣3),对称轴为直线x =1(2)当t =32时,BF PE 最小,最小值为47,此时P (32,﹣154).(3)存在,点P 的坐标为(2,﹣3)12.(1)211322y x x =-++(2)22150322y x x x =-+≤<(),PM AP PQ BQ -的值为0 (3)m 、n 之间的数量关系是2(1)m n m +=≠13.(1)(32,258)答案第3页,共3页(3)(2,0)或(-5,0)或13,07⎛⎫ ⎪⎝⎭或2205⎛⎫- ⎪⎝⎭,14.(1)2=+43y x x --,(21)D , (2)111639⎛⎫ ⎪⎝⎭,- (3)(2,−2)或12,3⎛⎫ ⎪⎝⎭15.(1)234y x x =--+(2)(1,6)D -或(3,4)D -(3)(3,4)-或(0,4)或2⎫⎪⎪⎝⎭或2⎫⎪⎪⎝⎭16.(1)21234y x x =-+(2)(4,3(3)存在P 1)或(4,1),使以E ,H ,P 为顶点的三角形与EFB △相似,17.(1)12a =-,4c = (2)23y x =- (3)存在这样的点F ,点F 的坐标为(2,0)或18.(1)2122y x =- (2)()0,1D -或190,8D ⎛⎫- ⎪⎝⎭, (3)24QS PS t -=-+。
考向5.6 相似三角形的判定和性质【知识要点】1、相似三角形:两个对应角相等,对应边成比例的三角形叫做相似三角形。
说明:证两个三角形相似时和证两个三角形全等一样,通常把表示对应顶点的字母写在对应的位置上,这样便于找出相似三角形的对应角和对应边。
2、相似比:相似三角形对应边的比k,叫做相似比(或叫做相似系数)。
3、相似三角形的基本定理:平分于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
说明:这个定理反映了相似三角形的存在性,所以有的书把它叫做相似三角形的存在定理,它是证明三角形相似的判定定理的理论基础。
4、三角形相似的判定定理:(1)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么就两个三角形相似。
可简单说成:两角对应相等,两三角形相似。
(2)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似,可简单说成:两边对应成比例且夹角相等,两三角形相似。
(3)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简单说成:三边对应成比例,两三角形相似。
(4)直角三角形相似的判定定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
说明:以上四个判定定理不难证明,以下判定三角形相似的命题是正确的,在解题时,也可以用它们来判定两个三角形的相似。
第一:顶角(或底角)相等的两个等腰三角形相似。
第二:腰和底对应成比例的两个等腰三角形相似。
第三:有一个锐角相等的两个直角三角形相似。
第四:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
第五:如果一个三角形的两边和其中一边上的中线与另一个三角形的两边和其中一边上的中线对应成比例,那么这两个三角形.相似。
5、相似三角形的性质:(1)相似三角形性质1:相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比。
2018中考数学专题相似形(共40题)1.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)求证:BD=CE;(2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长;2.如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.(1)如图1,若BD=BA,求证:△ABE≌△DBE;(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AF•AC.3.如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.4.如图,点E是正方形ABCD的边BC延长线上一点,连结DE,过顶点B作BF ⊥DE,垂足为F,BF分别交AC于H,交CD于G.(1)求证:BG=DE;(2)若点G为CD的中点,求的值.5.(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF 于点M,探究AE与BF的数量关系,并证明你的结论.6.如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.(1)证明:∠BDC=∠PDC;(2)若AC与BD相交于点E,AB=1,CE:CP=2:3,求AE的长.7.△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.8.如图,在矩形ABCD中,E为AB边上一点,EC平分∠DEB,F为CE的中点,连接AF,BF,过点E作EH∥BC分别交AF,CD于G,H两点.(1)求证:DE=DC;(2)求证:AF⊥BF;(3)当AF•GF=28时,请直接写出CE的长.9.在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.(1)如图1,当∠ABC=45°时,求证:AD=DE;(2)如图2,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由.10.如图1,边长为2的正方形ABCD中,E是BA延长线上一点,且AE=AB,点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,直线EP交AD 于点F,过点F作直线FG⊥DE于点G,交AB于点R.(1)求证:AF=AR;(2)设点P运动的时间为t,①求当t为何值时,四边形PRBC是矩形?②如图2,连接PB.请直接写出使△PRB是等腰三角形时t的值.11.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知BD=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.12.将两块全等的三角板如图1摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图1中△A1B1C绕点C顺时针旋转45°得图2,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图2中,若AP1=a,则CQ等于多少?(3)将图2中△A1B1C绕点C顺时针旋转到△A2B2C(如图3),点P2是A2C与AP1的交点.当旋转角为多少度时,有△AP1C∽△CP1P2?这时线段CP1与P1P2之间存在一个怎样的数量关系?.13.把Rt△ABC和Rt△DEF按如图(1)摆放(点C与E重合),点B、C(E)、F 在同一条直线上.已知:∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=10cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点A出发,以2cm/s的速度沿AB向点B匀速移动;当点P移动到点B时,点P停止移动,△DEF也随之停止移动.DE与AC交于点Q,连接PQ,设移动时间为t(s).(1)用含t的代数式表示线段AP和AQ的长,并写出t的取值范围;(2)连接PE,设四边形APEQ的面积为y(cm2),试探究y的最大值;(3)当t为何值时,△APQ是等腰三角形.14.△ABC,∠A、∠B、∠C的对边分别是a、b、c,一条直线DE与边AC相交于点D,与边AB相交于点E.(1)如图①,若DE将△ABC分成周长相等的两部分,则AD+AE等于多少;(用a、b、c表示)(2)如图②,若AC=3,AB=5,BC=4.DE将△ABC分成周长、面积相等的两部分,求AD;(3)如图③,若DE将△ABC分成周长、面积相等的两部分,且DE∥BC,则a、b、c满足什么关系?15.已知:如图,四边形ABCD是正方形,∠PAQ=45°,将∠PAQ绕着正方形的顶点A旋转,使它与正方形ABCD的两个外角∠EBC和∠FDC的平分线分别交于点M和N,连接MN.(1)求证:△ABM∽△NDA;(2)连接BD,当∠BAM的度数为多少时,四边形BMND为矩形,并加以证明.16.如图,在锐角△ABC中,D,E分别为AB,BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.(1)点G在BE上,且∠BDG=∠C,求证:DG•CF=DM•EG;(2)在图中,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.17.△ABC中,AB=AC,点D、E、F分别在BC、AB、AC上,∠EDF=∠B.(1)如图1,求证:DE•CD=DF•BE(2)D为BC中点如图2,连接EF.①求证:ED平分∠BEF;②若四边形AEDF为菱形,求∠BAC的度数及的值.18.如图,在△ABC 中,点P是AC边上的一点,过点P作与BC平行的直线PQ,交AB于点Q,点D在线段BC上,联接AD交线段PQ于点E,且=,点G 在BC延长线上,∠ACG的平分线交直线PQ于点F.(1)求证:PC=PE;(2)当P是边AC的中点时,求证:四边形AECF是矩形.19.如图,已知△ABC中,AC=BC,点D、E、F分别是线段AC、BC、AD的中点,BF、ED的延长线交于点G,连接GC.(1)求证:AB=GD;(2)如图2,当CG=EG时,求的值.20.如图,在△ABC中,D、E分别为AB、AC上的点,线段BE、CD相交于点O,且∠DCB=∠EBC=∠A.(1)求证:△BOD∽△BAE;(2)求证:BD=CE;(3)若M、N分别是BE、CE的中点,过MN的直线交AB于P,交AC于Q,线段AP、AQ相等吗?为什么?21.如图,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE与AC 交于点M,EF与AC交于点N,动点P从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,伴随点P的运动,矩形PEFG在射线AB上滑动;动点K从点P出发沿折线PE﹣﹣EF以每秒1个单位长的速度匀速运动.点P、K同时开始运动,当点K到达点F时停止运动,点P也随之停止.设点P、K运动的时间是t秒(t>0).(1)当t=1时,KE=,EN=;(2)当t为何值时,△APM的面积与△MNE的面积相等?(3)当点K到达点N时,求出t的值;(4)当t为何值时,△PKB是直角三角形?22.如图(1),在△ABC中,AD是BC边的中线,过A点作AE∥BC与过D点作DE∥AB交于点E,连接CE.(1)求证:四边形ADCE是平行四边形.(2)连接BE,AC分别与BE、DE交于点F、G,如图(2),若AC=6,求FG的长.23.已知:在正方形ABCD中,点E、F分别是CB、CD延长线上的点,且BE=DF,联结AE、AF、DE、DE交AB于点M.(1)如图1,当E、A、F在一直线上时,求证:点M为ED中点;(2)如图2,当AF∥ED,求证:AM2=AB•BM.24.已知,如图1,点D、E分别在AB,AC上,且=.(1)求证:DE∥BC.(2)已知,如图2,在△ABC中,点D为边AC上任意一点,连结BD,取BD中点E,连结CE并延长CE交边AB于点F,求证:=.(3)在(2)的条件下,若AB=AC,AF=CD,求的值.25.已知△ABC,AC=BC,点E,F在直线AB上,∠ECF=∠A.(1)如图1,点E,F在AB上时,求证:AC2=AF•BE;(2)如图2,点E,F在AB及其延长线上,∠A=60°,AB=4,BE=3,求BF的长.26.如图,正方形ABCD,∠EAF=45°.交BC、CD于E、F,交BD于H、G.(1)求证:AD2=BG•DH;(2)求证:CE=DG;(3)求证:EF=HG.27.如图,C为线段BD上一动点,过B、D分别作BD的垂线,使AB=BC,DE=DB,连接AD、AC、BE,过B作AD的垂线,垂足为F,连接CE、EF.(1)求证:AC•DF=BF•BD;(2)点C运动的过程中,∠CFE的度数保持不变,求出这个度数;(3)当点C运动到什么位置时,CE∥BF?并说明理由.28.如图,在△ABC中,点D在边AB上(不与A,B重合),DE∥BC交AC于点E,将△ADE沿直线DE翻折,得到△A′DE,直线DA′,EA′分别交直线BC于点M,N.(1)求证:DB=DM.(2)若=2,DE=6,求线段MN的长.(3)若=n(n≠1),DE=a,则线段MN的长为(用含n的代数式表示).29.如图,已知四边形ABCD和四边形DEFG为正方形,点E在线段DC上,点A、D、G在同一直线上,且AD=3,DE=1,连接AC、CG、AE,并延长AE交OG于点H.(1)求证:∠DAE=∠DCG.(2)求线段HE的长.30.如图,△ABC中,点E、F分别在边AB,AC上,BF与CE相交于点P,且∠1=∠2=∠A.(1)如图1,若AB=AC,求证:BE=CF;(2)若图2,若AB≠AC,①(1)中的结论是否成立?请给出你的判断并说明理由;②求证:=.31.如图1,在锐角△ABC中,D、E分别是AB、BC的中点,点F在AC上,且满足∠AFE=∠A,DM∥EF交AC于点M.(1)证明:DM=DA;(2)点G在BE上,且∠BDG=∠C,如图2,求证:△DEG∽△ECF;(3)在图2中,取CE上一点H,使得∠CFH=∠B,若BG=5,求EH的长.32.如图,正方形ABCD中,边长为12,DE⊥DC交AB于点E,DF平分∠EDC 交BC于点F,连接EF.(1)求证:EF=CF;(2)当=时,求EF的长.33.如图,已知在△ABC中,P为边AB上一点,连接CP,M为CP的中点,连接BM并延长,交AC于点D,N为AP的中点,连接MN.若∠ACP=∠ABD.(1)求证:AC•MN=BN•AP;(2)若AB=3,AC=2,求AP的长.34.如图,已知AC、EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=90°,当四边形ABCD和EFCG均为正方形时,连接BF.(1)求证:△CAE∽△CBF;(2)若BE=1,AE=2,求CE的长.35.如图①,矩形ABCD中,AB=2,BC=5,BP=1,∠MPN=90°,将∠MPN绕点P 从PB处开始按顺时针方向旋转,PM交边AB(或AD)于点E,PN交边AD(或CD)于点F,当PN旋转至PC处时,∠MPN的旋转随即停止.(1)特殊情形:如图②,发现当PM过点A时,PN也恰巧过点D,此时,△ABP △PCD(填“≌”或“~”);(2)类比探究:如图③,在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由.36.如图,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是1、4、25.则△ABC的面积是.37.如图,△ABC中,∠ACB=90°,AC=5,BC=12,CO⊥AB于点O,D是线段OB 上一点,DE=2,ED∥AC(∠ADE<90°),连接BE、CD.设BE、CD的中点分别为P、Q.(1)求AO的长;(2)求PQ的长;(3)设PQ与AB的交点为M,请直接写出|PM﹣MQ|的值.38.尤秀同学遇到了这样一个问题:如图1所示,已知AF,BE是△ABC的中线,且AF⊥BE,垂足为P,设BC=a,AC=b,AB=c.求证:a2+b2=5c2该同学仔细分析后,得到如下解题思路:先连接EF,利用EF为△ABC的中位线得到△EPF∽△BPA,故,设PF=m,PE=n,用m,n把PA,PB分别表示出来,再在Rt△APE,Rt△BPF中利用勾股定理计算,消去m,n即可得证(1)请你根据以上解题思路帮尤秀同学写出证明过程.(2)利用题中的结论,解答下列问题:在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图2所示,求MG2+MH2的值.39.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.40.如图,四边形中ABCD中,E,F分别是AB,CD的中点,P为对角线AC延长线上的任意一点,PF交AD于M,PE交BC于N,EF交MN于K.求证:K是线段MN的中点.参考答案与试题解析(共40题)1.(2017•阿坝州)如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)求证:BD=CE;(2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长;【解答】解:(1)∵△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠DAB=∠CAE.∴△ADB≌△AEC.∴BD=CE.(2)解:①当点E在AB上时,BE=AB﹣AE=1.∵∠EAC=90°,∴CE==.同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴=.∴=.∴PB=.②当点E在BA延长线上时,BE=3.∵∠EAC=90°,∴CE==.同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠BEP=∠CEA,∴△PEB∽△AEC.∴=.∴=.∴PB=.综上所述,PB的长为或.2.(2017•常德)如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF ⊥AD分别交AD于E,AC于F.(1)如图1,若BD=BA,求证:△ABE≌△DBE;(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AF•AC.【解答】证明:(1)在Rt△ABE和Rt△DBE中,,∴△ABE≌△DBE;(2)①过G作GH∥AD交BC于H,∵AG=BG,∴BH=DH,∵BD=4DC,设DC=1,BD=4,∴BH=DH=2,∵GH∥AD,∴==,∴GM=2MC;②过C作CN⊥AC交AD的延长线于N,则CN∥AG,∴△AGM∽△NCM,∴=,由①知GM=2MC,∴2NC=AG,∵∠BAC=∠AEB=90°,∴∠ABF=∠CAN=90°﹣∠BAE,∴△ACN∽△BAF,∴=,∵AB=2AG,∴=,∴2CN•AG=AF•A C,∴AG2=AF•AC.3.(2017•杭州)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG ⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.【解答】解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴=由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=4.(2017•眉山)如图,点E是正方形ABCD的边BC延长线上一点,连结DE,过顶点B作BF⊥DE,垂足为F,BF分别交AC于H,交CD于G.(1)求证:BG=DE;(2)若点G为CD的中点,求的值.【解答】解:(1)∵BF⊥DE,∴∠GFD=90°,∵∠BCG=90°,∠BGC=∠DGF,∴∠CBG=∠CDE,在△BCG与△DCE中,∴△BCG≌△DCE(ASA),∴BG=DE,(2)设CG=1,∵G为CD的中点,∴GD=CG=1,由(1)可知:△BCG≌△DCE(ASA),∴CG=CE=1,∴由勾股定理可知:DE=BG=,∵sin∠CDE==,∴GF=,∵AB∥CG,∴△ABH∽△CGH,∴=,∴BH=,GH=,∴=5.(2017•河池)(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF 于点M,探究AE与BF的数量关系,并证明你的结论.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:AE=BF,理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴=,∴AE=BF.6.(2017•泰安)如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.(1)证明:∠BDC=∠PDC;(2)若AC与BD相交于点E,AB=1,CE:CP=2:3,求AE的长.【解答】(1)证明:∵AB=AD,AC平分∠BAD,∴AC⊥BD,∴∠ACD+∠BDC=90°,∵AC=AD,∴∠ACD=∠ADC,∴∠ADC+∠BDC=90°,∵PD⊥AD,∴∠ADC+∠PDC=90°,∴∠BDC=∠PDC;(2)解:过点C作CM⊥PD于点M,∵∠BDC=∠PDC,∴CE=CM,∵∠CMP=∠ADP=90°,∠P=∠P,∴△CPM∽△APD,∴=,设CM=CE=x,∵CE:CP=2:3,∴PC=x,∵AB=AD=AC=1,∴=,解得:x=,故AE=1﹣=.7.(2017•天水)△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.【解答】(1)证明:∵△ABC是等腰直角三角形,∴∠B=∠C=45°,AB=AC,∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=CE,在△BPE和△CQE中,∵,∴△BPE≌△CQE(SAS);(2)解:∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∴△BPE∽△CEQ,∴=,∵BP=2,CQ=9,BE=CE,∴BE2=18,∴BE=CE=3,∴BC=6.8.(2017•绥化)如图,在矩形ABCD中,E为AB边上一点,EC平分∠DEB,F 为CE的中点,连接AF,BF,过点E作EH∥BC分别交AF,CD于G,H两点.(1)求证:DE=DC;(2)求证:AF⊥BF;(3)当AF•GF=28时,请直接写出CE的长.【解答】解:(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠DCE=∠CEB,∵EC平分∠DEB,∴∠DEC=∠CEB,∴∠DCE=∠DEC,∴DE=DC;(2)如图,连接DF,∵DE=DC,F为CE的中点,∴DF⊥EC,∴∠DFC=90°,在矩形ABCD中,AB=DC,∠ABC=90°,∴BF=CF=EF=EC,∴∠ABF=∠CEB,∵∠DCE=∠CEB,∴∠ABF=∠DCF,在△ABF和△DCF中,,∴△ABF≌△DCF(SAS),∴∠AFB=∠DFC=90°,∴AF⊥BF;(3)CE=4.理由如下:∵AF⊥BF,∴∠BAF+∠ABF=90°,∵EH∥BC,∠ABC=90°,∴∠BEH=90°,∴∠FEH+∠CEB=90°,∵∠ABF=∠CEB,∴∠BAF=∠FEH,∵∠EFG=∠AFE,∴△EFG∽△AFE,∴=,即EF2=AF•GF,∵AF•GF=28,∴EF=2,∴CE=2EF=4.9.(2017•雨城区校级自主招生)在Rt△ABC中,∠BAC=90°,过点B的直线MN ∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.(1)如图1,当∠ABC=45°时,求证:AD=DE;(2)如图2,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由.【解答】(1)证明:如图1,过点D作DF⊥BC,交AB于点F,则∠BDE+∠FDE=90°,∵DE⊥AD,∴∠FDE+∠ADF=90°,∴∠BDE=∠ADF,∵∠BAC=90°,∠ABC=45°,∴∠C=45°,∵MN∥AC,∴∠EBD=180°﹣∠C=135°,∵∠BFD=45°,DF⊥BC,∴∠BFD=45°,BD=DF,∴∠AFD=135°,∴∠EBD=∠AFD,在△BDE和△FDA中,∴△BDE≌△FDA(ASA),∴AD=DE;(2)解:DE=AD,理由:如图2,过点D作DG⊥BC,交AB于点G,则∠BDE+∠GDE=90°,∵DE⊥AD,∴∠GDE+∠ADG=90°,∴∠BDE=∠ADG,∵∠BAC=90°,∠ABC=30°,∴∠C=60°,∵MN∥AC,∴∠EBD=180°﹣∠C=120°,∵∠ABC=30°,DG⊥BC,∴∠BGD=60°,∴∠AGD=120°,∴∠EBD=∠AGD,∴△BDE∽△GDA,∴=,在Rt△BDG中,=tan30°=,∴DE=AD.10.(2017•深圳模拟)如图1,边长为2的正方形ABCD中,E是BA延长线上一点,且AE=AB,点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,直线EP交AD于点F,过点F作直线FG⊥DE于点G,交AB于点R.(1)求证:AF=AR;(2)设点P运动的时间为t,①求当t为何值时,四边形PRBC是矩形?②如图2,连接PB.请直接写出使△PRB是等腰三角形时t的值.【解答】(1)证明:如图,在正方形ABCD中,AD=AB=2,∵AE=AB,∴AD=AE,∴∠AED=∠ADE=45°,又∵FG⊥DE,∴在Rt△EGR中,∠GER=∠GRE=45°,∴在Rt△ARF中,∠FRA=∠AFR=45°,∴∠FRA=∠RFA=45°,∴AF=AR;(2)解:①如图,当四边形PRBC是矩形时,则有PR∥BC,∴AF∥PR,∴△EAF∽△ERP,∴,即:由(1)得AF=AR,∴,解得:或(不合题意,舍去),∴,∵点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,∴(秒);②若PR=PB,过点P作PK⊥AB于K,设FA=x,则RK=BR=(2﹣x),∵△EFA∽△EPK,∴,即:=,解得:x=±﹣3(舍去负值);∴t=(秒);若PB=RB,则△EFA∽△EPB,∴=,∴,∴BP=AB=×2=∴CP=BC﹣BP=2﹣=,∴(秒).综上所述,当PR=PB时,t=;当PB=RB时,秒.11.(2017•江汉区校级模拟)如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知BD=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.【解答】解:(1)∵四边形ABCD是正方形,∴△ABD是等腰直角三角形,∴2AB2=BD2,∵BD=,∴AB=1,∴正方形ABCD的边长为1;(2)CN=2EM证明方法一、理由:∵四边形ABCD是正方形,∴AC⊥BD,OA=OC∵CF=CA,CE是∠ACF的平分线,∴CE⊥AF,AE=FE∴EO为△AFC的中位线∴EO∥BC∴∴在Rt△AEN中,OA=OC∴EO=OC=AC,∴CM=EM∵CE平分∠ACF,∴∠OCM=∠BCN,∵∠NBC=∠COM=90°,∴△CBN∽△COM,∴,∴CN=CM,即CN=2EM.证明方法二、∵四边形ABCD是正方形,∴∠BAC=45°=∠DBC,由(1)知,在Rt△ACE中,EO=AC=CO,∴∠OEC=∠OCE,∵CE平分∠ACF,∴∠OCE=∠ECB=∠OEC,∴EO∥BC,∴∠EOM=∠DBC=45°,∵∠OEM=∠OCE∴△EOM∽△CAN,∴,∴CN=2CM.12.(2017•济宁二模)将两块全等的三角板如图1摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图1中△A1B1C绕点C顺时针旋转45°得图2,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图2中,若AP1=a,则CQ等于多少?(3)将图2中△A1B1C绕点C顺时针旋转到△A2B2C(如图3),点P2是A2C与AP1的交点.当旋转角为多少度时,有△AP1C∽△CP1P2?这时线段CP1与P1P2之间存在一个怎样的数量关系?.【解答】(1)证明:∵∠B1CB=45°,∠B1CA1=90°,∴∠B1CQ=∠BCP1=45°;又B1C=BC,∠B1=∠B,∴△B1CQ≌△BCP1(ASA)∴CQ=CP1;(2)解:如图:作P1D⊥AC于D,∵∠A=30°,∴P1D=AP1;∵∠P1CD=45°,∴=sin45°=,∴CP1=P1D=AP1;又AP1=a,CQ=CP1,∴CQ=a;(3)解:当∠P1CP2=∠P1AC=30°时,由于∠CP1P2=∠AP1C,则△AP1C∽△CP1P2,所以将图2中△A1B1C绕点C顺时针旋转30°到△A2B2C时,有△AP1C∽△CP1P2.这时==,∴P1P2=CP1.13.(2017•惠阳区模拟)把Rt△ABC和Rt△DEF按如图(1)摆放(点C与E重合),点B、C(E)、F在同一条直线上.已知:∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=10cm.如图(2),△DEF从图(1)的位置出发,以1cm/s 的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点A 出发,以2cm/s的速度沿AB向点B匀速移动;当点P移动到点B时,点P停止移动,△DEF也随之停止移动.DE与AC交于点Q,连接PQ,设移动时间为t(s).(1)用含t的代数式表示线段AP和AQ的长,并写出t的取值范围;(2)连接PE,设四边形APEQ的面积为y(cm2),试探究y的最大值;(3)当t为何值时,△APQ是等腰三角形.【解答】(1)解:AP=2t∵∠EDF=90°,∠DEF=45°,∴∠CQE=45°=∠DEF,∴CQ=CE=t,∴AQ=8﹣t,t的取值范围是:0≤t≤5;(2)过点P作PG⊥x轴于G,可求得AB=10,SinB=,PB=10﹣2t,EB=6﹣t,∴PG=PBSinB=(10﹣2t)∴y=S△ABC ﹣S△PBE﹣S△QCE==∴当(在0≤t≤5内),y有最大值,y最大值=(cm2)(3)若AP=AQ,则有2t=8﹣t解得:(s)若AP=PQ,如图①:过点P作PH⊥AC,则AH=QH=,PH∥BC ∴△APH∽△ABC,∴,即,解得:(s)若AQ=PQ,如图②:过点Q作QI⊥AB,则AI=PI=AP=t∵∠AIQ=∠ACB=90°∠A=∠A,∴△AQI∽△ABC∴即,解得:(s)综上所述,当或或时,△APQ是等腰三角形.14.(2017•庐阳区一模)△ABC,∠A、∠B、∠C的对边分别是a、b、c,一条直线DE与边AC相交于点D,与边AB相交于点E.(1)如图①,若DE将△ABC分成周长相等的两部分,则AD+AE等于多少;(用a、b、c表示)(2)如图②,若AC=3,AB=5,BC=4.DE将△ABC分成周长、面积相等的两部分,求AD;(3)如图③,若DE将△ABC分成周长、面积相等的两部分,且DE∥BC,则a、b、c满足什么关系?【解答】解:(1)∵DE将△ABC分成周长相等的两部分,∴AD+AE=CD+BC+BE=(AB+AC+BC)=(a+b+c);(2)设AD=x,AE=6﹣x,=AD•AE•sinA=3,∵S△ADE即:x(6﹣x)•=3,解得:x1=(舍去),x2=,∴AD=;(3)∵DE∥BC,∴△ADE∽△ABC,∴,∵=,∴AD=b,AE=c,∴b c=(a+b+c),∴=﹣1.15.(2017•嘉兴模拟)已知:如图,四边形ABCD是正方形,∠PAQ=45°,将∠PAQ绕着正方形的顶点A旋转,使它与正方形ABCD的两个外角∠EBC和∠FDC 的平分线分别交于点M和N,连接MN.(1)求证:△ABM∽△NDA;(2)连接BD,当∠BAM的度数为多少时,四边形BMND为矩形,并加以证明.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠ADC=∠BAD=90°,∵BM、DN分别是正方形的两个外角平分线,∴∠ABM=∠ADN=135°,∵∠MAN=45°,∴∠BAM=∠AND=45°﹣∠DAN,∴△ABM∽△NDA;(2)解:当∠BAM=22.5°时,四边形BMND为矩形;理由如下:∵∠BAM=22.5°,∠EBM=45°,∴∠AMB=22.5°,∴∠BAM=∠AMB,∴AB=BM,同理AD=DN,∵AB=AD,∴BM=DN,∵四边形ABCD是正方形∴∠ABD=∠ADB=45°,∴∠BDN=∠DBM=90°∴∠BDN+∠DBM=180°,∴BM∥DN∴四边形BMND为平行四边形,∵∠BDN=90°,∴四边形BMND为矩形.16.(2017•肥城市三模)如图,在锐角△ABC中,D,E分别为AB,BC中点,F 为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.(1)点G在BE上,且∠BDG=∠C,求证:DG•CF=DM•EG;(2)在图中,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.【解答】(1)证明:如图1所示,∴D,E分别为AB,BC中点,∴DE∥AC∵DM∥EF,∴四边形DEFM是平行四边形,∴DM=EF,如图2所示,∵D、E分别是AB、BC的中点,∴DE∥AC,∴∠BDE=∠A,∠DEG=∠C,∵∠AFE=∠A,∴∠BDE=∠AFE,∴∠BDG+∠GDE=∠C+∠FEC,∵∠BDG=∠C,∴∠GDE=∠FEC,∴△DEG∽△ECF;∴,∴,∴,∴DG•CF=DM•EG;(2)解:如图3所示,∵∠BDG=∠C=∠DEB,∠B=∠B,∴△BDG∽△BED,∴,∴BD2=BG•BE,∵∠AFE=∠A,∠CFH=∠B,∴∠C=180°﹣∠A﹣∠B=180°﹣∠AFE﹣∠CFH=∠EFH,又∵∠FEH=∠CEF,∴△EFH∽△ECF,∴=,∴EF2=EH•EC,∵DE∥AC,DM∥EF,∴四边形DEFM是平行四边形,∴EF=DM=DA=BD,∴BG•BE=EH•EC,∵BE=EC,∴EH=BG=1.17.(2017•肥城市模拟)△ABC中,AB=AC,点D、E、F分别在BC、AB、AC上,∠EDF=∠B.(1)如图1,求证:DE•CD=DF•BE(2)D为BC中点如图2,连接EF.①求证:ED平分∠BEF;②若四边形AEDF为菱形,求∠BAC的度数及的值.【解答】(1)证明:∵△ABC中,AB=AC,∴∠B=∠C.∵∠B+∠BDE+∠DEB=180°,∠BDE+∠EDF+∠FDC=180°,∠EDF=∠B,∴∠FDC=∠DEB,∴△BDE∽△CFD,∴,即DE•CD=DF•BE;(2)解:①由(1)证得△BDE∽△CFD,∴,∵D为BC中点,∴BD=CD,∴=,∵∠B=∠EDF,∴△BDE~△DFE,∴∠BED=∠DEF,∴ED平分∠BEF;②∵四边形AEDF为菱形,∴∠AEF=∠DEF,∵∠BED=∠DEF,∴∠AEF=60°,∵AE=AF,∴∠BAC=60°,∵∠BAC=60°,∴△ABC是等边三角形,∴∠B=60°,∴△BED是等边三角形,∴BE=DE,∵AE=DE,∴AE=AB,∴=.18.(2017•长宁区二模)如图,在△ABC 中,点P是AC边上的一点,过点P作与BC平行的直线PQ,交AB于点Q,点D在线段BC上,联接AD交线段PQ于点E,且=,点G在BC延长线上,∠ACG的平分线交直线PQ于点F.(1)求证:PC=PE;(2)当P是边AC的中点时,求证:四边形AECF是矩形.【解答】(1)证明:∵PQ∥BC,∴△AQE∽△ABD,△AEP∽△ADC,∴=,,∴=,∵=,∴=,∴PC=PE;(2)∵PF∥DG,∴∠PFC=∠FCG,∵CF平分∠PCG,∴∠PCF=∠FCG,∴∠PFC=∠FCG,∴PF=PC,∴PF=PE,∵P是边AC的中点,∴AP=CP,∴四边形AECF是平行四边形,∵PQ∥CD,∴∠PEC=∠DCE,∴∠PCE=∠DCE,∴∠PCE+∠PCF=(∠PCD+∠PCG)=90°,∴∠ECF=90°,∴平行四边形AECF是矩形.19.(2017•安徽模拟)如图,已知△ABC中,AC=BC,点D、E、F分别是线段AC、BC、AD的中点,BF、ED的延长线交于点G,连接GC.(1)求证:AB=GD;(2)如图2,当CG=EG时,求的值.【解答】解:(1)∵D、E分别是线段AC、BC的中点,∴DE为△ABC的中位线,∴DE∥AB,即EG∥AB,∴∠FDG=∠A,∵点F为线段AD的中点,∴AF=DF,在△ABF与△DGF中,∴△ABF≌△DGF(ASA)∴AB=GD(2)∵DE为△ABC的中位线,∴DE=AB,CE=BC=AC∵DG=AB,∴EG=DE+DG∴EG=AB∵DE∥AB,∴∠GEC=∠CBA,∵AC=BC,CG=EG∴△GEC∽△CBA∴,即,∴20.(2017•蜀山区二模)如图,在△ABC中,D、E分别为AB、AC上的点,线段BE、CD相交于点O,且∠DCB=∠EBC=∠A.(1)求证:△BOD∽△BAE;(2)求证:BD=CE;(3)若M、N分别是BE、CE的中点,过MN的直线交AB于P,交AC于Q,线段AP、AQ相等吗?为什么?【解答】(1)证明:∵∠BCO=∠CBO,∴∠DOB=∠BCO+CBO=2∠BCO,∵∠A=2∠BCO,∴∠DOB=∠A,∵∠ABE=∠ABE,∴△BOD∽△BAE;(2)解:延长CD,在CD延长线上取一点F,使BF=BD,∴∠BDF=∠BFD,∵∠BDF=∠ABO+∠DOB,∠BEC=∠ABO+∠A,由(1)得∠BOD=∠A,∴∠BDF=∠BEC,∴∠BFD=∠BEC,在△BFC与△CEB中,,∴△BFC≌△CEB,∴BD=BF,∴BD=CE;(3)解:AP=AQ,理由:取BC的中点G,连接GM,GN,∵M,N分别是BE,CD的中点,∴GM,GN是中位线,∴GM∥CE,GM=CE,GN∥BD,GN=BD,∵BD=CE,∴GM=GN,∴∠3=∠4,∵GM∥CE,∴∠2=∠4,∵GN∥BD,∴∠3=∠1,∴∠1=∠2,∴AP=AQ.21.(2017•石家庄二模)如图,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE与AC交于点M,EF与AC交于点N,动点P从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,伴随点P的运动,矩形PEFG在射线AB上滑动;动点K从点P出发沿折线PE﹣﹣EF以每秒1个单位长的速度匀速运动.点P、K同时开始运动,当点K到达点F时停止运动,点P也随之停止.设点P、K 运动的时间是t秒(t>0).(1)当t=1时,KE=1,EN=;(2)当t为何值时,△APM的面积与△MNE的面积相等?(3)当点K到达点N时,求出t的值;(4)当t为何值时,△PKB是直角三角形?【解答】解:(1)当t=1时,根据题意得,AP=1,PK=1,∵PE=2,∴KE=2﹣1=1,∵四边形ABCD和PEFG都是矩形,∴△APM∽△ABC,△APM∽△NEM,∴=,=,∴MP=,ME=,∴NE=;故答案为:1;;(2)由(1)并结合题意可得,AP=t,PM=t,ME=2﹣t,NE=﹣t,∴t×t=(2﹣t)×(﹣t),解得,t=;(3)当点K到达点N时,则PE+NE=AP,由(2)得,﹣t+2=t,解得,t=;(4)①当K在PE边上任意一点时△PKB是直角三角形,即,0<t≤2;②当点k在EF上时,则KE=t﹣2,BP=8﹣t,∵△BPK∽△PKE,∴PK2=BP×KE,PK2=PE2+KE2,∴4+(t﹣2)2=(8﹣t)(t﹣2),解得t=3,t=4;③当t=5时,点K在BC边上,∠KBP=90°.综上,当0<t≤2或t=3或t=4或5时,△PKB是直角三角形.22.(2017•农安县模拟)如图(1),在△ABC中,AD是BC边的中线,过A点作AE∥BC与过D点作DE∥AB交于点E,连接CE.(1)求证:四边形ADCE是平行四边形.(2)连接BE,AC分别与BE、DE交于点F、G,如图(2),若AC=6,求FG的长.【解答】(1)证明:∵AE∥BC,DE∥AB.∴四边形ABDE是平行四边形,∴AE=BD,又∵BD=DC,∴AE=DC,又∵AE∥DC,∴四边形ADCE是平行四边形.(2)解:∵四边形ADCE是平行四边形,AC=6,∴AG=GC=3,又∵AE∥BC,∴△AEF∽△CBF,∴==,∴AF=2,∴FG=AG﹣AF=1.23.(2017•杨浦区三模)已知:在正方形ABCD中,点E、F分别是CB、CD延长线上的点,且BE=DF,联结AE、AF、DE、DE交AB于点M.。