不同结构PEG-PCL共聚物纳米粒的制备及质量评价
- 格式:doc
- 大小:5.81 MB
- 文档页数:33
聚合物纳米微球的制备及其性能研究聚合物纳米微球是一种具有广泛应用前景的新型材料。
其具有超强的稳定性、可调控的形貌、优异的生物相容性等特性,被广泛应用于生物医学、纳米电子器件等领域。
本篇文章将介绍聚合物纳米微球的制备及其性能研究。
一、聚合物纳米微球的制备方法1.逆微乳液聚合法逆微乳液聚合法是一种常用的制备聚合物纳米微球的方法。
它是将水和有机相相互包覆分散形成的微乳液作为反应介质,在反应中添加催化剂和单体进行聚合,形成具有均一尺寸和形貌的聚合物纳米微球。
2.悬浮聚合法悬浮聚合法是将单体直接悬浮在水相中,通过加入交联剂进行聚合反应,形成纳米微球。
这种方法具有操作简单、成本低等优点,但是纳米微球的尺寸分布范围较大。
3.自模板聚合法自模板聚合法是一种新型的制备聚合物纳米微球的方法。
通过在单体中溶解丙烯酸酯单体和甲基丙烯酸甲酯单体,加入表面活性剂后生成胶束,再通过添加模板进行聚合反应,形成具有高度均一的形貌和尺寸分布的聚合物纳米微球。
二、聚合物纳米微球的性能研究1.形貌和尺寸聚合物纳米微球具有高度可控的形貌和尺寸特性,可以根据需求进行调节。
同时,聚合物纳米微球具有很好的尺寸分布,能够保证其在应用领域中的稳定性和均一性。
2.稳定性聚合物纳米微球具有超强的稳定性,既可以在水相中稳定存在,也可以在有机相中稳定存在。
这种稳定性可以保证其在不同应用领域中的性能优异性和持久性。
3.生物相容性聚合物纳米微球具有良好的生物相容性,可以与生物体内的环境相适应,不会对生物体产生有害作用。
这种特性使其在生物医学领域中具有广泛的应用前景。
4.表面活性与功能性聚合物纳米微球的表面活性和功能性可以通过掺杂或修饰实现。
在纳米电子器件等领域中,聚合物纳米微球可以用作传感器、催化剂等功能性材料。
总之,聚合物纳米微球具有广泛的应用前景,其制备和性能研究也在不断深入。
随着研究的不断深入,聚合物纳米微球将会成为更广泛、更重要的纳米材料。
PCL-b-PEG-b-PCL聚合物载药体系的构建及抗肿瘤研究恶性肿瘤已成为导致人类死亡的第二大原因,仅次于心血管疾病导致的死亡率。
化学治疗是治疗转移性恶性肿瘤的重要手段之一。
但传统化疗对肿瘤组织和细胞缺乏选择性杀灭作用,常规治疗剂量即可对正常组织器官产生显著毒副作用,导致患者不能耐受,降低药物疗效。
为了提高抗肿瘤药物的靶向性和生物利用率,降低毒副作用,改善治疗效果,纳米药物载体已成为肿瘤化疗研究的热点领域,其中代表性的给药系统有脂质体、纳米粒、纳米乳、聚合物胶束、聚合物囊泡等。
两亲性聚合物能够在不同条件下自组装成聚合物胶束、聚合物囊泡等不同结构的药物载体。
本文以具有良好生物相容性和可生物降解性的两亲性三嵌段共聚物—聚己内酯-b-聚乙二醇-b-聚己内酯(PCL-b-PEG-b-PCL)为载体材料,通过分子自组装用不同亲水/疏水链段的PCL-b-PEG-b-PCL分别研制出聚合物胶束和聚合物囊泡这两种药物载体,同时,进一步研制出基于PCL-b-PEG-b-PCL的磷脂-聚合物杂化纳米粒作为第三种药物载体。
以目前临床使用最广泛的抗肿瘤药物紫杉醇和阿霉素为模型药物,研制载紫杉醇聚合物胶束、叶酸靶向载紫杉醇磷脂-聚合物杂化纳米粒、双重载药(亲水内腔载阿霉素、疏水双分子膜层载紫杉醇)聚合物纳米囊泡,研究其作为抗肿瘤药物载体的有效性。
本文的主要研究内容如下:一、两亲性三嵌段共聚物PCL-b-PEG-b-PCL形成不同载体的研究两亲性聚合物可以自组装形成球状胶束、柱状胶束、蠕虫状胶束、聚合物囊泡等不同结构,亲水链段的质量比或体积比、共聚物分子量及制备方法是决定自组装形成不同载体结构的关键参数。
对两亲性三嵌段共聚物PCL-b-PEG-b-PCL,目前尚无研究文献报道其形成聚合物胶束和聚合物囊泡所需亲水疏水嵌段比及分子量。
本文合成了一系列质量可控、结构准确的不同分子量、不同比例亲水疏水链段的聚合物,已经初步确定了PCL-b-PEG-b-PCL聚合物自组装形成囊泡的亲水部分与疏水部分的比例及形成囊泡的规律。
基于瞬时纳米沉淀法制备尺寸可控载药纳米粒子马俊;李莉;王铭纬;周志明;郭旭虹【摘要】合成了5种具有不同分子量、不同亲疏水链段比例的两亲性嵌段共聚物——甲氧基聚乙二醇-b-聚己内酯(mPEG-b-PCL),并以其为表面活性剂,采用瞬时纳米沉淀(Flash Nano Precipitation,FNP)法制备出一系列包裹模型药物β-胡萝卜素的纳米粒子.通过改变两亲性共聚物的结构、分子量、浓度及溶剂体积比(V(H2O)∶V(THF)),成功实现了对纳米粒子尺寸的调控.实验结果表明:聚合物亲水链段分子量比例增大,则纳米粒子尺寸减小;当亲水链段分子量比例相同时,聚合物分子量越大,则纳米粒子尺寸越小;当聚合物质量浓度较高(10.0 g/L)时,制备的纳米粒子粒径分布较窄,粒子性能较稳定.%Five amphiphilic diblock copolymers,methoxy poly (ethylene glycol)-b-polycaprolactone (mPEG-b-PCL) with different molecular weights and hydrophilic/hydrophobic proportions were synthesized.A series of nano particles encapsulated model drug beta-carotene and protected by the prepared copolymers as surfactants were prepared by using flash nano-precipitation (FNP) method.The size and size distribution of nano particles were controllable by changing the block structure,molecular weight,polymer concentration and solvent ratio (V (H2O) ∶ V (THF)).Experimental results showed that the size of nano particles decreased by increasing the solvent ratio or hydrophilic proportion.Under the same proportion of the hydrophilic moieties,the size of particles was decreased by increasing the molecular weight.The nano particles became more stable and their size distribution was narrower upon increasing polymer concentrations.【期刊名称】《华东理工大学学报(自然科学版)》【年(卷),期】2017(043)005【总页数】9页(P597-605)【关键词】FNP;聚合物纳米粒子;尺寸可控【作者】马俊;李莉;王铭纬;周志明;郭旭虹【作者单位】华东理工大学化工学院,上海200237;华东理工大学化工学院,上海200237;华东理工大学化工学院,上海200237;华东理工大学化工学院,上海200237;华东理工大学化工学院,上海200237【正文语种】中文【中图分类】TQ317瞬时纳米沉淀 (Flash Nano Precipitation,FNP) 技术由Johnson和Prud’homme在2003年首次提出,是一种可以在极短的时间内制备包含有机活性物质聚合物纳米粒子的新型技术[1]。
聚合物纳米粒子的制备、表征以及作为药物载体的初步应用一、本文概述本文旨在探讨聚合物纳米粒子的制备技术、表征方法,以及它们作为药物载体的初步应用。
随着纳米科技的快速发展,聚合物纳米粒子作为一种新型的纳米材料,已经在生物医药、药物递送、生物成像等领域展现出巨大的应用潜力。
本文将首先概述聚合物纳米粒子的基本特性,包括其尺寸、形貌、表面性质等,然后详细介绍其制备方法,包括乳液聚合法、溶剂挥发法、自组装法等。
接着,本文将阐述聚合物纳米粒子的表征技术,如透射电子显微镜(TEM)、动态光散射(DLS)、原子力显微镜(AFM)等,并讨论这些技术在聚合物纳米粒子表征中的应用。
本文将初步探讨聚合物纳米粒子作为药物载体的可行性,包括其在药物包封、药物释放、细胞摄取和生物相容性等方面的研究进展,以期为未来聚合物纳米粒子在药物递送领域的应用提供有益的参考。
二、聚合物纳米粒子的制备方法聚合物纳米粒子的制备方法多种多样,主要包括乳液聚合法、微乳液聚合法、纳米沉淀法、自组装法等。
这些方法的选择主要依赖于所需的纳米粒子尺寸、形态、稳定性以及功能化需求。
乳液聚合法是一种常用的制备聚合物纳米粒子的方法。
该方法通常在含有乳化剂的水相中进行,将单体分散在水相中形成乳液,然后通过引发剂引发单体聚合,最终得到聚合物纳米粒子。
通过调整乳化剂的类型和浓度、单体浓度、引发剂种类和浓度等因素,可以控制纳米粒子的尺寸和形态。
微乳液聚合法是乳液聚合法的改进,其中单体和引发剂在表面活性剂形成的微乳液滴中进行聚合。
这种方法可以获得尺寸更小、分布更均匀的纳米粒子。
通过调整微乳液的组成和聚合条件,可以实现对纳米粒子尺寸和形态的精确控制。
纳米沉淀法是一种简单而有效的制备聚合物纳米粒子的方法。
该方法通常是将聚合物溶解在良溶剂中,然后逐渐加入不良溶剂或改变溶液pH值,使聚合物从溶液中沉淀出来形成纳米粒子。
通过控制沉淀条件和后续处理,可以得到不同尺寸和形态的纳米粒子。
聚己内酯药物控释材料的研究进展鲁手涛;徐海荣;刘黎明;曹文瑞;张海军【摘要】综述了聚ε-己内酯(PCL)药物控释材料的研究进展,以及PCL微球、PCL 纳米微粒、PCL纤维、PCL薄膜、PCL胶束、PCL水凝胶的制备方法及应用.PCL 在药物控释领域研究中,可通过与其他聚合物共混或共聚来改善亲水性和控释行为.PCL共聚物也可应用到靶向给药系统中,靶向给药系统不仅能够将药物输送至病灶部位,还能实现定向释放.随着新材料的不断研发,构建新型智能药物控释系统的前景将更加广阔.【期刊名称】《合成树脂及塑料》【年(卷),期】2018(035)004【总页数】5页(P94-98)【关键词】可降解高分子;药物控释;药物载体;聚ε-己内酯;靶向给药【作者】鲁手涛;徐海荣;刘黎明;曹文瑞;张海军【作者单位】生物医用材料改性技术国家地方联合工程实验室,山东省德州市251100;生物医用材料改性技术国家地方联合工程实验室,山东省德州市251100;生物医用材料改性技术国家地方联合工程实验室,山东省德州市251100;生物医用材料改性技术国家地方联合工程实验室,山东省德州市251100;生物医用材料改性技术国家地方联合工程实验室,山东省德州市251100;同济大学介入血管研究所,上海市200072【正文语种】中文【中图分类】TQ323.8药物控释是一种新兴的交叉学科,它可以控制药物在人体内的释放、吸收过程,使药物按照预定的剂量,以一定的模式在体内释放或使药物在指定部位释放。
与传统给药模式相比,控释系统不仅能够减少给药次数,维持血药浓度,提高药物浓度稳定性,还降低了药物的不良反应,提高了药物治疗的有效性[1-2]。
药物载体是控释技术的支撑点,不同性质的载体具有不同的药物释放参数。
可降解高分子药物控释载体具有良好的生物相容性和较高的载药量,而且人体的代谢可以清除它们的降解产物,使可降解高分子成为首选的药物控释载体之一。
可降解高分子载体(如微米和纳米微粒、纤维等),可用于药物运输和靶向药物输送系统[3-5]。
PLGA-PLL-PEG纳米粒的制备药学院浦药剂1005 吉冬悦林丽洪峰赵星龙摘要:本课题选用可生物降解材料聚乳酸羟基乙酸(PLGA)、聚赖氨酸(PLL)、聚乙二醇(PEG)作为合成新型纳米载药系统的原料,通过优化反应条件,制得PLGA-PLL-PEG聚合物。
采用该聚合物包载抗白血病经典药物柔红霉素(DNR)及第三代MDR逆转剂汉防己甲素(Tet),并偶联转铁蛋白(Tf),构建一种具有主动靶向性能的Tf-PEG-PLL-PLGA纳米粒,以期逆转白血病多药耐药。
本课题具体研究内容与结果如下:选用复乳化溶剂挥发法制备共载DNR和Tet的PLGA-PLL-PEG纳米粒,优化工艺条件并交联Tf,其平均粒径为213.0±12nm,PI值为0.075,zeta电位为-19.16mv,外观规则圆形。
纳米粒中DNR载药量为3.63±0.15%,包封率为70.23±1.91%,Tet载药量为4.27±0.12%,包封率为86.5±0.7%,Tf含量为2.18±0.11%(w/w)。
关键字:载药纳米粒子;制备工艺;溶剂扩散法;复乳化溶剂挥发法;转铁蛋白In our research, we use the biodegradable materials including poly(lactic-co-glycolic acid) (PLGA), poly-L-lysine (PLL), polyethylene glycol (PEG) to synthesis novel nanodrug carrier system. We optimize the reaction conditions to synthesis PLGA-PLL-PEG, then use it to delivery the classical antileukemic drug daunorubicin (DNR) and the MDR reversal agents of tetrandrine (Tet) and couple transferrin (Tf).We except the Tf-PEG-PLL-PLGA nanoparticles can overcome the problem of multidrug resistance of leukemia. The main research contents and results are as follows. We chose double-emulsion method to prepare Tf-DNR/Tet-loaded PLGA-PLL-PEG nanoparticle through optimizing process conditions and cross-linking Tf. Nanoparticle was regular roundness, it’s average size was 213.0 ± 12 nm with polydisperse index (PI) of 0.075, and the zeta potential was -19.16 mv. The drug loading of nanoparticles DNR was 3.63 ± 0.15%, encapsulation efficiency was 70.23 ± 1.91%. The drug loading of Tet was 4.27 ± 0.12%, the encapsulation efficiency was 86.5 ±0.7%, the concentration of transferrin was 2.18 ± 0.11%(w/w).Keywords: drug-loaded nanoparticles; preparation process; solvent diffusion method; double emulsion solvent evaporation method; transferrin1、研究背景药物纳米化可能会使得一些难溶有机化合物用作药物,这将使目前用于医药的合成化学物质数量增加。
Vo.l302009年12月 CHEM I CAL J OURNAL OF CH I NESE UN I VERSI T I E S 2508~2513温敏性PCL-PEG-PCL水凝胶的合成、表征及蛋白药物释放苗博龙,马桂蕾,宋存先(中国医学科学院、北京协和医学院生物医学工程研究所,天津300192)摘要 考察了温敏性PCL-PEG-PCL水凝胶中聚乙二醇(PE G)及聚己内酯(PCL)不同嵌段组成对其溶胶-凝胶相转变温度以及亲水性药物(牛血清白蛋白,BS A)释放速率的影响.采用开环聚合法,以辛酸亚锡为催化剂、PEG1500/PEG1000为引发剂,与己内酯单体发生开环共聚,合成了一系列具有不同PEG和PCL嵌段长度的PCL-PEG-PCL型三嵌段共聚物.通过核磁共振氢谱及凝胶渗透色谱对其组成、结构及分子量进行了表征.共聚物的溶胶-凝胶相变温度由翻转试管法测定.利用透射电镜、核磁共振氢谱及荧光探针技术证实了该材料在水溶液中胶束的形成.以BSA为模型蛋白药物,制备载药水凝胶,利用m icroBCA法测定药物在释放介质中的浓度,研究其体外释放行为.实验结果表明,共聚物的溶胶-凝胶相变温度与PCL及PEG嵌段长度紧密相关,即在给定共聚物浓度情况下,固定PEG嵌段长度而增加PCL嵌段长度,会导致相变温度降低;而固定PCL嵌段长度而增加PEG嵌段长度,其相变温度相应升高.水凝胶中蛋白药物的释放速率与疏水的PCL嵌段长度无关,而与亲水的PEG嵌段长度密切相关,即PEG嵌段越长,蛋白药物释放越快.关键词 PCL-PEG-PCL共聚物;温度敏感;水凝胶;凝胶相变温度;蛋白药物释放中图分类号 O631.1+1 文献标识码 A 文章编号 0251-0790(2009)12-2508-06近年来,由于生物技术的快速发展和人类基因组测序的完成,大量可用于治疗疾病的蛋白类药物的发展前景广阔.于是蛋白药物在体内经肝脏代谢可导致其血浆半衰期较短,目前临床上把皮下注射作为其主要的给药方式.但这种方法的最大缺陷在于需要频繁注射以确保药物疗效[1,2].因此,有必要设计并合成出一种新型材料作为蛋白药物的缓释给药体系,使得药物活性免受外界条件影响,保持理想的疗效,提高蛋白药物的临床应用价值.温敏性水凝胶是一种亲水的聚合物网络,对其大量的研究发现,其在凝胶形成过程中不涉及化学反应,分子链间的交联通过分子间相互作用力(范德华力、疏水相互作用及氢键等)形成.通过改变温度就可以影响并改变这些疏水相互作用以及氢键作用,在水中经过简单的可逆性相转变(溶胶-凝胶)即可形成水凝胶.因此温敏性水凝胶的制备过程更为简单,且不需要有机溶剂,将更有利于蛋白类药物的传递[3].目前一些研究表明,温敏性PLGA/PEG水凝胶具有比较理想的凝胶特性,可在温度低于30 时装载蛋白药物,在体温条件下发生溶胶-凝胶相变,并由于其良好的生物可降解性和安全性而受到广泛的关注.但这种给药体系仍存在一些尚未解决的问题,如载药时须在较低温度下操作,且蛋白药物的缓释周期较短(仅为7d),给临床应用带来了不便和局限.另外,从材料角度看,提高疏水的PLGA嵌段长度会引起蛋白药物的聚集[4].众所周知,聚己内酯(PCL)是一种被广泛研究的可生物降解的结晶聚合物,共聚物可呈粉末状形态,相比于其它材料在临床使用时更易于处理,而且,聚己内酯具有良好的生物相容性、低毒性、疏水性且药物通透性好;而聚乙二醇(PEG)也由于其良好的理化性质,如低毒性、低免疫原性及低抗原性等,已得到美国食品药品监督管理局的批准用于人体内使用[5,6].基于上述优点,PCL和PEG的共聚物被认为安全无毒、生物相容性好且生物降解速度可调,在生物医用材料领域具有广阔的应用前景.收稿日期:2009-03-18.基金项目:教育部博士点新教师基金(批准号:200800231138)资助.联系人简介:宋存先,女,研究员,主要从事医用高分子材料和药物缓控释放的研究.E-m ai:l scx i an@to m.co mHw ang 等[7]合成了温敏性PEG -PCL-PEG 型水凝胶;Gong 等[8]考察了PEG-PCL -PEG 型水凝胶在昆明鼠体内凝胶的形成、体外药物的释放及材料的细胞毒性.尽管PEG-PCL -PEG 型共聚物具有良好的应用前景,但其合成及纯化过程较为繁琐.本文采用一步开环共聚法合成了温敏性PCL -PEG-PCL 型可降解水凝胶共聚物,减少了己二异氰酸酯偶联步骤,合成方法更为简单,且具有理想的理化性质;同时着重探讨了不同疏水嵌段(PCL)及亲水嵌段(PEG )长度及组成对水凝胶温敏性能及药物释放行为的影响,以期筛选出适合作为蛋白类药物缓控释的新型给药载体.1 实验部分1.1 试剂与仪器己内酯单体( -CL )购自A l d irich 公司,在氮气保护下,经氢化钙减压蒸馏除水;聚乙二醇(PEG,M w =1000,1500)购自Fluka 公司;辛酸亚锡[Sn(O ct)2,分析纯]、牛血清白蛋白(BSA )和Plur onic F127均购自S ig m a 公司;芘(Pyrene ,分析纯)购自天津阳光允能生物技术开发有限公司;二氯甲烷和石油醚均为分析纯.B r uker AM 300核磁共振仪;W aters ALC /GPC 244GPC 仪;H itach i F4500荧光光谱仪;J EOL JE M-100S 透射电镜(TE M );Spectra Plus 384(M o lecularD ev ices)紫外-可见分光光度仪.1.2 合 成分别将干燥的PEG (M w =1000,1500)和 -CL 按不同比例加入到封管中,用注射器加入一滴Sn(O ct)2,抽真空,通氮气,置换5次,排尽管中氧气.喷枪封管后,置于120 油浴中搅拌反应24h .反应结束后,将产物溶于二氯甲烷中,用石油醚沉淀纯化2次,真空干燥过夜,密封后于4 冷藏保存.具体合成路线见Sche m e 1.Sch e m e 1 Syn thetic rou te of PCL -PEG-PCL1.3 1H NMR 和GPC 测试在25 下,核磁共振氢谱(1H NMR)由Bruker AM 300核磁共振仪测定,溶剂为CDC l 3,TM S 为内标.在35 下,凝胶渗透色谱(GPC )由W aters ALC /GPC 244GPC 仪测定,溶剂为THF,流速为1 0mL /m i n ,PS 为标准物.1.4 So-l gel 转变相图测定材料的So-l gel 转变相图采用翻转试管法测定.在室温下,分别将一定量的不同材料置于4mL 试管中,加入1mL 双蒸水,完全溶解,浸没到恒温水浴中,每步升温速率为1 /10m in ,达到指定温度后稳定20m i n ,根据流动(So l)-不流动(Ge l)的原则进行判断,绘制So-l gel 转变相图,精确度为 1 [7,9].1.5 胶束的形成将1滴含有质量分数为0 1%磷钨酸的纳米粒混悬液置于包有碳膜的铜网上,然后用电镜观察[10].将材料配制成一系列浓度(0 1~1 10-6g /L),以芘(6 0 10-7m o l/L)为荧光探针,固定发射波长 em =390nm,利用H itach i F4500荧光光谱仪测定荧光强度,通过计算得到该材料的临界胶束浓度(c m c)[11,12].为证实共聚物可在水中形成核-壳结构的胶束,采用Bruker AM 300核磁共振仪测定其1H NMR 谱,溶剂为CDC l 3和D 2O,T M S 为内标.1.6 体外药物释放实验以p H =7 4的PBS 缓冲液作为释放介质,在37 的恒温空气浴振荡器中进行凝胶的体外药物释放实验.包药过程如下:将材料(0 25mg )置于10mL 试管中,加入1mL 双蒸水,完全溶解后,加入一定量的BSA,混合均匀.释放过程如下:将试管置于37 的振荡培养箱中,形成凝胶状态,加入5mL 释放液(PBS,p H =7 4),恒温振荡(60r /m in).定时取样时,将释放液全部取出用于测定药物释放量,2509 N o .12苗博龙等:温敏性PCL -PEG-PCL 水凝胶的合成、表征及蛋白药物释放并补充上新鲜的空白PBS 液.采用m icroBC A 法测定牛血清白蛋白(BSA )在凝胶中的释放速率,工作曲线为 =(A -0 0082)/0 0014,计算并绘制药物累积释放曲线图,质量浓度单位为mg /mL .2 结果与讨论2.1 材料的1H NMR 和GPC 表征以辛酸亚锡为催化剂,分别以PEG1500和PEG1000为引发剂,与 -CL 发生开环共聚反应.所得材料的物理参数列于表1.Tab le 1 Physica l para m e ters of th e syn thesized PCL-PEG-PCL tr i b lock copoly m ersSa m p l ePCL-PEG-PCL a n (EG )/n (CL)a M n a M n b PD I b A1(CL)7 0-(EG )22 7-(CL)7 01 6800-1000-80026501 1A2(CL)9 8-(EG )22 7-(CL)9 81 31120-1000-112034001 3B1(CL)11 0-(EG )34 1-(CL)11 01 61250-1500-125041001 2B2(CL)11 8-(EG )34 1-(CL)11 81 41350-1500-135043501 3 a .C al cu lated fro m 1H NM R of EG(4H,3 63)and CL(2H,4 04);b .cal cu l ated fro m GPC.图1是材料的300MH z 1H NMR 谱.各吸收峰对应的质子归属如下: 3 63(图1峰e)为PEG 链段上的 C H 2C H 2 的特征峰, 4 04(图1中峰d), 2 36(图1峰a), 1 68(图1峰b)及 1 36(图1峰c)则分别对应PCL 链段上的 C H 2 质子.由于PEG 链段分子量已知,因此PCL 链段的分子量可通过PEG 嵌段中 C H 2C H 2 基团的特征峰e 与PCL 嵌段中 C H 2 基团的特征峰d 的峰强度比值计算得出.Fig .1 1H N M R of triblock copo l y m er i n CDC l3F i g .2 TE M i m age of 0 1%sa m p l e A2i n water2.2 材料胶束的形成图2为温敏性PCL-PEG-PCL 三嵌段共聚物的透射电镜(TE M )照片,可见共聚物在溶液中形成了胶束.Fig .3 1H N MR of triblock copo l y m er i n D 2O (A)and CDC l 3(B )图3(A )和(B)分别为共聚物在D 2O 和CDC l 3中的1H NMR 谱,可确证PCL-PEG-PCL 三嵌段共聚物在水中形成了具有核-壳结构的胶束.这是由于PCL 和PEG 嵌段均溶于CDC l 3,二者以液态形式存在,不形成胶束,因此二者的质子特征峰在CDC l 3中全部出现[图3(B )].在D 2O 中[图3(A )],PCL 嵌段不溶形成胶束的内核,而PEG 嵌段溶解形成胶束的外壳,所以PCL 嵌段特征峰(图1a ,b ,c ,d)全部消失,而PEG 嵌段特征峰(图1e)则得到保留[13].图4是以芘为荧光探针的样品B1水溶液的荧光光谱图,可见共聚物的质量浓度依次增加(自下而上,范围是1 10-6~0 1g /L),荧光强度也依次增加.当质量浓度增加到一定值时,荧光光谱的最大吸收峰发生红移,即从333 5nm 处转移到335 5nm 处.这说明芘先是分配到疏水区域,其最2510高等学校化学学报 V o.l 30Fig .4 Fluorescen t s p ec tra of sa m p l e B1solution大吸收峰位于333 5nm.随着胶束的形成,芘从水环境中转移到胶束的疏水内核中,其最大吸收峰位于335 5nm,这一荧光红移现象进一步证明了样品在水中胶束的形成.将333 5和335 5n m 处荧光激发光谱强度之比与溶液质量浓度对数作图,可得到样品A1,A2,B1和B2的临界胶束浓度(c m c)分别为5 10-4,3 10-4,6 0 10-4及3 0 10-4g /L [11].证明当亲水嵌段长度一致时,疏水嵌段越长,材料在水中越易胶束化,即c m c 值越小.以上3种方法证实了PCL -PEG-PCL 三嵌段共聚物可在水中形成具有核-壳结构胶束的能力,为凝胶的胶束机理研究提供了实验依据.2.3 材料的So-l gel 转变相图PCL -PEG-PCL 型三嵌段共聚物在水中均呈现可逆的温敏性So -l ge l 相变能力.温敏凝胶的So -l gel F i g .5 So-l ge l tran sition phase diagra m转变相图可以反映凝胶转变温度和浓度之间的关系.图5是利用翻转试管法测定的4种材料的So-l gel 转变相图.在考察的温度范围(20~55 )内,所有的水凝胶均呈3种基本的物理形态,即溶胶、凝胶以及浑浊的沉淀(图6).随着温度的变化,共聚物由溶胶状态[图6(A )]转变为水凝胶状态[图6(B)],并最终形成沉淀状态[图6(C )].温敏性PCL-PEG-PCL 型共聚物由疏水的PCL 嵌段和亲水的PEG 嵌段组成,其中PCL 嵌段起到交联形成的作用,而PEG 嵌段则发挥使共聚物分子保留于水中的作用.在较低温度时,亲水的PEG 嵌段和水分子之间形成的氢键起主要作用,导致共聚物溶于水中;当温度升高时,氢键作用减弱,疏水的PCL 嵌段间的疏水作用力增强,从而发生So-l gel 相变[14].如图5所示,共聚物的嵌段组成对相变温度影响显著.当材料质量分数为15%~30%时,随着PCL 嵌段长度分别由分子量1120(B1)增大到1250(B2),或由800(A1)增大到1000(A 2),共聚物的凝胶相变温度规律地下降.这说明在固定PEG 嵌段长度的条件下,增大PCL 嵌段的长度会提高共聚物中该嵌段的疏水性,增强其聚集趋势,使共聚物在水溶液中更早地形成水凝胶.而共聚物B1的So -l ge l 相变温度高于共聚物A2,则表明当疏水PCL 嵌段长度相近时,增大PEG 嵌段长度,共聚物的亲水性会得到提高.F i g .6 Op tical i m ages of s a m p le A l(A)C l ear s o,l 25 ;(B)opaque ge,l 31 ;(C )preci p itati on,47 .进一步观察到共聚物B1和B2(PEG 分子量为1500)的凝胶窗口由两部分组成,在温度相对较低下呈透明凝胶状态,而在温度相对较高下呈不透明凝胶状态.根据Yu 等[15]的报道,凝胶相变的发生是由于胶束的聚集,而驱动胶束聚集的原因是胶束间的疏水相互作用.2511 N o .12 苗博龙等:温敏性PCL -PEG-PCL 水凝胶的合成、表征及蛋白药物释放综上所述,我们认为共聚物的凝胶过程可能包括如下4个步骤:(1)两亲性共聚物在水中通过自组装形成胶束,此时体系呈澄清的溶胶状态[图7(A )];(2)随着温度的升高,胶束间的疏水相互作用增强,胶束由不均一的介观胶束网络进一步聚集形成宏观的凝胶.相比于共聚物A1和A2,共聚物B1和B2中亲水的PEG 嵌段较大,不易发生大规模的胶束聚集,而是形成相对 稀疏 的胶束网络,即透明凝胶[图7(B)];(3)随着温度进一步升高,胶束网络会发生糙化(Coarsening effect),形成相对 致密 的胶束簇.当胶束簇尺寸或胶束簇间隔的大小进入可见光波长范围内时,便形成了肉眼可见的不透明凝胶[图7(C )];(4)当温度过高时,由于共聚物的疏水性过大,导致胶束结构破坏,从而形成浑浊的沉淀[图7(D)].Fig .7 O p tica l i m ages of copoly m er B1solution s i n the test tube at tested te m peratures(A)C lear s o,l 25 ;(B )transparent ge,l 34 ;(C )opaque ge,l 37 ;(D)preci p itati on ,51 .另外,当材料的质量分数在15%~30%范围时,这4种材料So -l ge l 相变温度位于23~37 区间,符合人体37 模拟药物缓释及保持蛋白药物活性的要求.2.4 材料的体外药物释放图8所示为模型蛋白药物BS A 在合成的PCL-PEG-PCL 型温敏水凝胶及对照用Plur onic F127中的F i g .8 Cu m u l ative release p rofile of B SAfro m hyd roge ls 体外释放曲线.由图8可见,Pl u ron ic F127在1d内将全部药物释放完毕,而本文合成的材料对于BSA 的释放时间分别达到18d 和32d ,起到了对蛋白药物的控制释放的作用.在图8中,药物在前24h 的释放速率较高,自24h 起释放速率有所减缓且趋于平稳.这主要是因为PCL -PEG-PCL 共聚物在水中形成了胶束,疏水性的PCL 嵌段形成胶束的内核,而亲水性的PEG形成胶束的外壳.亲水性药物BSA 会分布在亲水性PEG 区域,并与胶束最外层负责连接PEG 与PCL的C O 基团形成氢键.当外层的作用位点饱和时,水凝胶中游离药物的含量增加.此时,游离的BSA 分子更易以较高的速率从凝胶的亲水通道扩散并释放出去.当游离药物释放完毕时,其余的结合药物便会以较低的速率释放[14].另外,从图8还可观察到,在PEG 嵌段长度一定的情况下,PCL 嵌段的长度对于药物释放速率无明显影响,但PEG 嵌段的长度直接决定了药物释放的速率(如材料A1,A2与B1).综上可以得到如下结论:(1)由于疏水的PCL 嵌段居于胶束的内部,不与BSA 分子发生作用,故其嵌段长度对药物释放速率影响不大;(2)亲水性嵌段PEG 处于胶束外部,直接与亲水性药物BSA 发生相互作用.随着增加PEG 嵌段的长度,聚合物中PEG 区域的亲水性提高,从而使BSA 与PEG 嵌段之间的相互作用加强,进而减缓药物释放速率.这充分解释了A1和A2亲水药物释放速率高于B1和B2的现象.值得注意的是,尽管Pluronic F127中的PEG 含量远高于本文合成的材料,但其凝胶的机械性能较差,其结构在1d 内全部破坏,这直接导致了药物的快速释放;而PCL -PEG-PCL 水凝胶则在30d 内仍保持了完整的结构.以上事实证明,共聚物中合理的PEG 嵌段长度和良好的凝胶机械性能是保证达到药物缓控释效果的关键.2512高等学校化学学报 V o.l 30参 考 文 献[1] Sanders L.M..E ur .J .Drug M etab Phar m acok i net[J ],1990,15(2):95 102[2] S i ngh S.,W ebs t er D . C.,S i ngh J ..I n tern ati ona l Journal of Phar m aceuti cs[J],2007,341:68 77[3] Ru e-lGari py E.,L eroux J . C..E urop ean Journ al of Phar m aceuti cs and B i ophar m aceuti cs[J ],2004,58(2):409 426[4] Yu T.,S i ngh J ..I n ternati onal Journal ofPhar m aceuti cs [J],2009,365:34 43[5] Rich t er A .W.,Ak erb l o m E..In t .Arch .A ll ergy App.l I mm uno.l [J ],1983,70(2):124 131[6] M arcotte N .,Pol k A.,Goosen M.F ..J .Phar m.Sc.i [J ],1990,79(5):407 410[7] Hw angM.J .,Suh J .M.,B ae Y.H.,et a l ..B i o m acro m olecu les[J],2005,6:885 890[8] Gong C.Y .,Sh i S.,Dong P .W.,et a l ..In ternati onal J ournal of Phar maceu tics[J],2009,365:89 99[9] Loh X .J .,G oh S.H.,L i J ..B i omacro m ol ecu l es[J ],2007,8:585 593[10] G eH.X.,Hu Y.,J i ang X .Q .,et al ..Jou rnal of Ph ar m aceu tical Sciences[J],2002,91(6):1463 1473[11] W il h el m M.,Zhao C.L .,W ang Y . C.,et a l ..M acro m olecu les[J],1991,24:1033 1040[12] LI N H ao(林浩),TI AN Hu a -Yu(田华雨),SUN J i ng -Ru (孙敬茹),et al ..Ch e m.J .Ch i nes e Un i versiti es (高等学校化学学报)[J],2006,27(7):1385 1388[13] Ryu J .G.,J eong Y.I .,K i m I .S .,e t al ..Internati onal Jou rnal of Ph ar m aceu tics[J],2000,200(2):231 242[14] Q iao M.X.,C hen D .W.,H ao T.N.,et a l ..In ternati onal Journal ofPhar m aceu ti cs [J],2007,345(1/2):116 124[15] Yu L .,Chang G.T.,Zh ang H.,et a l ..Jou r n al of Po l y m er S ci en ce PartA:Poly m er Che m istry[J],2007,45(6):1122 1133Synthesis ,Characterization and Protei n Drug Release ofTe mperature -Sensitive PCL-PEG-PCL H ydrogelM I A O Bo -Long ,MA Gu-i Le,i SONG Cun-X ian*(Ch i nese A cade my of M edical Sciences&Pek ing Un i on M edical C olle ge ,Instit u te ofB io m edical E n g ineer i ng,T ianjin 300192,Ch i na)Abst ract The effect o f PEG and PCL co m position of ther m osensitive PCL -PEG-PCL hydr ogels on So -l ge l transition te m perat u re and release rate o f bov i n e serum al b u m i n (BSA )w ere i n vesti g ated .A series of ther m o -sensitive PCL -PEG -PCL triblock copoly m ers w ith different PEG and PCL block leng ths w ere synthesized vi a ring -open i n g po ly m erizati o n of -CL using PEG1500/PEG1000as the i n itiator and Sn(Oct)2as the catalys.t Their co m position ,str ucture ,and m olecular w eigh tw ere characterized via 1H NMR and GPC techniques .The So-l gel transiti o n te m perature w as deter m i n ed w it h the test tube inverti n g m ethod .TE M,1H NMR,and fl u o rescence probe technique w ere e m ployed to identify fo r m ation of m ice lles of the tri b lock copo l y m ers in a -queous solution .BSA w as used as a m odel pr o te i n drug .H ydroge ls o f these PCL -PEG-PCL tr i b lock copo l y -m ers l o aded w ith BSA w ere prepared for in vitro release st u dy ,and BSA concentration in t h e released sa m ple w as deter m i n ed w ith m icro BC A m ethod .The effect of PCL and PEG block lengths on So-l gel transiti o n te m per -ature and release rate of BS A w as a lso discussed .The results obta i n ed i n d icated that t h e So-l gel transiti o n te m -perature of copo ly m ers w as related to block l e ngths o fPCL and PEG ,increasing the PCL length at a fi x ed PEG centra l b l o ck led to a lo w er transition te m perature at a g iven copo l y m er concentrati o n ,w hile w ith the enhance -m ent o f the PEG leng th at a si m ilar hydr ophobic PCL length,the transiti o n te m perature i n creases .And the pro tein re lease rate w as i n dependent o f the hydrophob ic PCL leng th ,w hereas the longer PEG length ,the lo w er pro tein release rate .K eywords PCL -PEG -PCL copo ly m er ;Te mperature -sensitive ;H ydroge;l So-l gel transiti o n te m perature ;Con tro lled re lease of pr o te i n dr ug(Ed .:H,J ,Z)2513 N o .12 苗博龙等:温敏性PCL -PEG-PCL 水凝胶的合成、表征及蛋白药物释放。
纳米医学已经被用于各种癌症治疗,包括肿瘤靶向药物传递、热疗以及光动力治疗。
PLGA材料是一种常用的纳米药物载体。
在《PLGA-b-PEG纳米载药平台系列介绍之一:PLGA-b-PEG共聚物的起源,合成及物化性能》中,主要介绍了PLGA及PLGA-b-PEG共聚物的合成及物化性能,制备PLGA-b-PEG纳米载体的常用方法以及PLGA纳米载体及PLGA-b-PEG纳米载体的优缺点。
本篇将对PLGA及PLGA-b-PEG纳米载体在癌症治疗中的应用作进一步介绍。
首先介绍肿瘤靶向药物治疗的几种靶向形式(被动靶向、主动靶向、磁靶向),然后介绍PLGA及PLGA-b-PEG纳米载药系统在磁热疗、光动力和光热治疗、基因治疗中所体现出来的优势。
药物靶向治疗通常来说,癌症治疗将涉及到系统性地全身给药或者是口服吸收给药,这两种方式都会因为肿瘤外药物累积对健康组织造成损害,产生严重的副作用。
非靶向累积的副作用限制了可给药物的剂量,并不能达到很好的治疗效果,而肿瘤靶向治疗的研究正是为了克服这一限制而产生的新策略。
被动靶向治疗肿瘤聚集纳米载体首先是通过实体瘤的高通透性和滞留效应(ERP)效应。
正常组织中的微血管内皮间隙致密、结构完整,大分子和脂质颗粒不易透过血管壁,而实体瘤组织中血管丰富、血管壁间隙较宽、结构完整性差,淋巴回流缺失,造成大分子类物质和脂质颗粒具有选择性高通透性和滞留性,这种现象被称作肿瘤增强的渗透和滞留效应,简称EPR效应。
PLGA纳米粒子具有稳定性好及较长的血管循环时间的特点,特别适用于肿瘤的被动靶向治疗。
PLGA包裹的化疗药物,例如阿霉素、紫杉醇、顺铂、姜黄素等,均是采用这种被动靶向治疗策略,以增加抗肿瘤活性,延长循环时间以及避免药物与血液的接触来提高药物的稳定性。
例如,PEG化PLAG纳米粒子载阿霉素的半衰期比自由的药物要高3.7倍。
在药物被动靶向治疗中,嗜菌吞噬效应会缩短药物在血液中循环时间,而PEG化的PLGA纳米粒子由于PEG的隐蔽效应,阻止了嗜菌吞噬效应对纳米粒子的作用从而延长循环时间。
纳米粒载药系统的制备及其性能的研究生物制药1201 颜飞飞U201212613摘要:载药纳米微粒是纳米技术与现代医药学结合的产物, 是一种新型的药物输送载体。
它缓释药物、延长药物作用时间, 透过生物屏障靶向输送药物, 建立新的给药途径等等, 在药物控释方面显示出其他输送体系无法比拟的优势。
近年来载药纳米微粒在临床各个领域的应用基础研究势头强劲, 并取得了可喜的成绩。
本文综述了载药纳米微粒在临床各领域应用的研究成果, 并对其发展应用前景进行展望。
一.纳米载药系统的特点1.提高药物的靶向性和缓释性载药纳米粒可作为异物而被巨噬细胞吞噬,到达网状内皮系统分布集中的肝、脾等靶部位和连接有配基、抗体、酶底物所在的靶部位。
到达靶部位的载药纳米粒,可由载体材料的种类或配比不同而具有不同的释药速率。
通过调整载体材料种类或配比,可控制药物的释放速率,从而制备出具有靶向性和缓释特性的载药纳米粒。
如肿瘤血管对纳米粒有较高的通透性,因此可用纳米载体携带药物靶向作用于肿瘤组织。
2.改变药物的给药途径纳米载药系统可以改变药物的给药途径,使药物的给药途径和给药方式多样化。
利用聚合物纳米颗粒作为药物载体包裹药物,可以保护肽类、蛋白质或反义核酸等药物不被酶解或水解,使药物可以口服,并可减少用药剂量和次数。
3.增加药物的吸收,提高药物的生物利用度,延长药物作用的时间纳米粒高度分散,表面积巨大,这有利于增加药物与吸收部位生物膜接触面积,纳米粒的特殊表面性能使其在小肠中的滞留时间大大延长,药物负载于纳米载体上可形成较高的局部浓度,明显增加和提高药物的吸收与生物利用度。
而对于眼部疾病的治疗,一般滴眼剂药物代谢快、需反复多次给药,且增加并发症发生的几率,而纳米载药系统的长效作用有效地解决这一难题。
4.增加生物膜的通透性与一般药物的跨膜转运机制不同,纳米粒可以通过内吞等机制进入细胞,因此载药纳米粒可以增加药物对生物膜的透过性,有利于药物透皮吸收与细胞内药效发挥,使其通过某些生理屏障( 如血脑屏障) ,到达重要的靶位点,从而治疗某些特殊部位的病变。
第 49 卷第 4 期2023年 7 月吉林大学学报(医学版)Journal of Jilin University(Medicine Edition)Vol.49 No.4Jul.2023DOI:10.13481/j.1671‐587X.20230430曲安奈德和霉酚酸酯纳米粒子的制备及其生物学特性评价丛云毅, 李光宇(吉林大学第二医院眼科中心,吉林长春130041)[摘要]目的目的:探讨治疗甲状腺相关眼病(TAO)药物曲安奈德(TA)和霉酚酸酯(MMF)聚乙二醇-聚乳酸羟基乙酸(PEG-PLGA)纳米粒子的最佳制备工艺及体外释放性能,评价其经眶周注射治疗TAO的安全性。
方法:以PEG-PLGA共聚物为原料,采用乳化法分别制备TA纳米粒子(TA NPs组)和MMF纳米粒子(MMF NPs组),以包封率为评价指标进行工艺优化。
采用透射电子显微镜观察纳米粒子形态表现,采用Zetasizer粒径电位分析仪检测各组纳米粒子的粒径和电位。
在体外眶周组织模拟液中,采用紫外分光光度法检测各组纳米粒子的释放性质,计算药物释放率,结合临床用药规则对药物的整体释放性质进行分析。
人视网膜色素上皮hRPE-19细胞分为空白对照组、不同浓度TA组、不同浓度MMF组、不同浓度TA NPs组和不同浓度MMF NPs组,采用MTT法检测各组细胞活性,评价制剂的安全性。
结果结果:制备载有TA和MMF的纳米粒子(TA NPs和MMF NPs),包封率分别为47.66%和16.52%,平均粒径约为600 nm,其电位均符合眶周注射的基本要求。
透射电子显微镜下观察,TA NPs和MMF NPs表观圆整,均一化程度较高。
体外释放体系检测TA NPs 和MMF NPs的释放特性均符合临床上TAO治疗药物的给药特性,均可持续释放3周以上,其初始释放率不高,体外释放曲线较为平稳。
MTT法检测,不同浓度TA组、MMF组、TA NPs组和MMF NPs组在较低浓度下无明显的细胞抑制;较高浓度下,与相同浓度TA组比较,40、80和160 nmol·L-1 TA NPs组细胞活性明显升高(P<0.01);与相同浓度MMF组比较,50、100和200 nmol·L-1 MMF NPs组细胞活性明显升高(P<0.01)。
不同结构PEG-PCL共聚物纳米粒的制备及质量评价作者:李环刘晓乐王萌熙杨亚星尚青史永利来源:《河北科技大学学报》2019年第03期摘要:为了比较聚乙二醇-聚己内酯(PEG-PCL)不同结构共聚物纳米粒的性质,采用开环聚合反应制备PCL-PEG-PCL和mPEG-b-PCL共聚物,通过FT-IR,1H-NMR和GPC进行结构确证,利用分子自组装技术分别形成了“蘑菇”结构和“刷”结构载姜黄素(CUR)纳米粒共聚物,对其性质进行了研究。
结果表明:CUR以无定型态存在于纳米粒中,纳米粒形貌为球形核壳结构且分布均匀;受共聚物结构的影响,“蘑菇”结构纳米粒具有较小的平均粒径(105.71±3.20)nm、较高的载药量和包封率;PCL-PEG-PCL纳米粒表面形成了致密的PEG 层,能有效防止蛋白质吸附,在体内具有良好的稳定性;“刷”结构纳米粒具有较低的临界胶束浓度(CMC)和良好的缓释性能,对HepG-2细胞增殖有较高的抑制作用。
因此,研究载药纳米粒可为药物递送系统的选择以及不同结构纳米粒的临床应用提供参考。
关键词:高分子合成化学;聚乙二醇-聚己内酯;两亲性共聚物;自组装;纳米粒;CUR中圖分类号:TQ311文献标志码:ALI Huan,LIU Xiaole,WANG Mengxi,et al.Preparation of PEG-PCL copolymernanoparticles with different structures and their quality evaluation[J].Journal of Hebei University ofScience and Technology,2019,40(3):215-225.Preparation of PEG-PCL copolymer nanoparticles with differentstructures and their quality evaluationLI Huan1, LIU Xiaole1, WANG Mengxi1, YANG Yaxing2, SHANG Qing1, SHI Yongli2(1.School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China; 2. College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003,China)Abstract:In order to compare the properties of polyethylene glycol-polycaprolactone(PEG-PCL)with different structures, the PCL-PEG-PCL and mPEG-b-PCL copolymers are obtained by ring-opening polymerization method and characterized by FT-IR, 1H-NMR and GPC. The curcumin-loaded nanoparticles of "mushroom" and "brush" are prepared via self-assembly method,and the properties of the two structural nanoparticles are studied. The results show that CUR is encapsulated into the nanoparticles with an amorphous state; the nanoparticles show a smooth surface with core-shell structures and good dispersibility. ;Influenced by the structure of the copolymer, the "mushroom" nanoparticles have a smaller average particle size of (105.71±3.20)nm, a higher drug loading and encapsulation efficiency. Since the surface of the PCL-PEG-PCL nanoparticles forms a dense PEG-layer, protein resistance studies show that the "mushroom" nanoparticles are good in vivo stability. "Brush" nanoparticles have a lower CMC date and better sustained release properties, and have a higher inhibitory effect on HepG-2 cancer cell proliferation. The study of drug-loaded nanoparticles can provide reference for drug delivery system selection and clinical application of nanoparticles with different structures.Keywords:polymer synthesis chemistry; PEG-PCL; amphiphilic copolymer; self-assembly; nanoparticle; CUR聚己内酯(PCL)是CAROTHERS小组在1930年合成的最早的聚合物之一,具有良好的生物相容性、对疏水性物质的渗透性和一定的微生物降解能力,目前已获得美国FDA批准生产[1-3]。
但PCL在体内的生物降解速率较慢,致使其在药物递送方面的应用受到限制。
通过对PCL进行改性,添加亲水性嵌段制备成两亲性共聚物,可获得更多的可降解材料,使PCL 得到了有效应用。
例如:两嵌段PCL共聚物制备方面,DEBONE等[4]以开环聚合法合成了3种不同嵌段比的mPEG-co-PCL共聚物。
研究表明,随着疏水链的增加,共聚物直径由78.82 nm增大到141.8 nm,16 h后甲氨蝶呤释放行为受PCL降解过程的影响,PCL含量越高释放越慢。
三嵌段PCL共聚物制备方面,HU等[5]制备了不同质量比的PCL-PEG-PCL共聚物,分别形成聚合物胶束和聚合物囊泡。
研究结果表明,随着PCL嵌段长度的增加,共聚物粒径增大,载药量也随之增加,并且都对EMT-6细胞有较高的摄取率。
河北科技大学学报2019年第3期李环,等:不同结构PEG-PCL共聚物纳米粒的制备及质量评价从文献来看,PCL改性只有关于两嵌段共聚物(如mPEG-co-PCL)或三嵌段共聚物(如PCL-PEG-PCL)不同亲水-疏水嵌段比的研究,尚未见同时对PCL改性的两嵌段和三嵌段共聚物之间进行比较的报道[6-14]。
不同结构的共聚物会形成不同形态的纳米粒,从而影响其制剂学性质。
笔者利用开环聚合法制备三嵌段共聚物PCL-PEG-PCL和两嵌段共聚物mPEG-b-PCL,采用分子自组装方法制备了具有“蘑菇”结构和“刷”结构的纳米粒,研究了具有不同结构的PCL共聚物纳米粒对理化性质、体外释放、抗蛋白吸附和细胞毒性等方面的影响。
1实验部分1.1主要原料及试剂姜黄素(AR级,北京奥科鼎盛生物技术有限公司提供);聚乙二醇单甲醚、聚乙二醇、辛化亚锡(AR级,萨恩化学技术有限公司提供);ε-己内酯(AR级,阿拉丁生化科技股份有限公司提供);二氯甲烷(AR级,天津市北辰方正试剂厂提供);四氢呋喃(AR级,国药集团化学试剂有限公司提供);乙醚(AR级,天津市科密欧化学试剂有限公司提供);HepG-2肝癌细胞、L929鼠肾上皮细胞(天津市医药科学研究所提供)。
1.2嵌段共聚物PCL-PEG-PCL和mPEG-b-PCL的合成PCL-PEG-PCL的合成路线如图1 a)所示。
在反应管中加入4.0 g聚乙二醇(PEG,相对分子质量为4 000,1 mmol)和8.0 mL(72 mmol)的ε-己内酯。
采用雪茄枪加热熔融,待自然冷却至室温后加入117 μL的辛化亚锡(Sn(Oct)2),密封反应管。
用液氮除氧,抽真空,充氮气,反复操作3次后,将反应管置于140 ℃油浴加热6 h。
将粗产物用3 mL二氯甲烷溶解,经冰乙醚沉淀,抽滤,得到白色固体。
放入真空干燥箱常温干燥24 h,得到9.19 g的PCL-PEG-PCL固体,收率为75.3%。
mPEG-b-PCL的合成路线如图1 b)所示。
在反应管中加入4.0 g聚乙二醇單甲醚(mPEG,相对分子质量为4 000,1 mmol)和4.0 mL(36 mmol)的ε-己内酯。
其余操作同上述方法,得到6.43 g的mPEG-b-PCL固体,收率为79.4%。
1.3PCL-PEG-PCL和mPEG-b-PCL的表征1.3.1FT-IR采用STS-135型红外光谱仪(美国Perkin Elmer)进行红外扫描,范围为400~4 000 cm-1,对特征峰进行分析,判断是否为预期产品。
1.3.21H-NMR采用Bruker Avance AV400核磁共振波谱仪,氘代氯仿(CDCl3)为溶剂,四甲基硅烷(TMS)作内标,进行氢谱检测。
PCL-PEG-PCL单体物质的量比由PEG单元3.69×10-6(f)特征峰和PCL单元4.18×10-6(a)特征峰的积分来计算,PEG和PCL的聚合度(DP)及共聚物的Mn可按式(1)计算:DPPEG=Mn.PEG/44,DPPCL=DPPEG×(A(a)m/A(f)n),Mn.PCL-PEG-PCL=Mn.PEG+DPPCL×114。
(1)式中:A(a)为a特征峰的积分面积,m为相应氢个数;A (f)为f特征峰的积分面积,n为相应氢个数;114为PCL重复单元的摩尔质量。
mPEG-b-PCL单体物质的量比由PEG单元3.53×10-6(a+b)特征峰和PCL单元4.02×10-6(g)特征峰的积分来计算,PEG和PCL的聚合度及共聚物的Mn也按式(1)计算。