对角化矩阵的应用本科
- 格式:doc
- 大小:985.21 KB
- 文档页数:21
附件:分类号O15商洛学院学士学位论文矩阵的可对角化及其应用作者单位数学与计算科学系指导老师刘晓民作者姓名陈毕专业﹑班级数学与应用数学专业07级1班提交时间二0一一年五月矩阵的可对角化及其应用陈毕(数学与计算科学系2007级1班)指导老师刘晓民摘要:矩阵可对角化问题是矩阵理论中的一个重要问题,可对角化矩阵作为一类特殊的矩阵,在理论上和应用上有着十分重要的意义。
本文对可对角化矩阵做出了全面的概括和分析,并利用高等代数和线性代数的有关理论给出了矩阵可对角化的若干条件,同时也讨论了化矩阵为对角形的求解方法,最后总结出可对角化矩阵在求方阵的高次幂﹑利用特征值求行列式的值﹑由特征值和特征向量反求矩阵﹑判断矩阵是否相似﹑向量空间﹑线性变换等方面的应用.关键词:对角化;特征值;特征向量;相似;线性变换Matrix diagonolization and its applicationChen Bi(Class 1,Grade 2007,The Depart of Math and Calculation Science)Advisor:Lecturer Liu Xiao MinAbstract: Matrix diagonolization problem is an important problem in matrix theory diagonolization matrix, as a kind of special matrix, in theory and application has the extremely vital significance. This paper has made diagonolization matrix analysis and generalization, and using higher algebra and linear algebra are given the relevant theory of matrix several conditions diagonolization, also discussed the matrix of the diagonal shape of solving method, and finally summarized; diagonolization matrix in high power, the policy of using eigenvalue beg determinant by characteristic value and value, feature vector reverse matrix, judgment matrix is similar, vector Spaces, the application of linear transformation, etc.Key words: The diagonalization; Eigenvalue; Feature vector; Similar; Linear transformation引言所谓矩阵可对角化指的是矩阵与对角阵相似,而说线性变换是可对角化的指的是这个线性变换在某一组基下是对角阵(或者说线性变换在一组基下的矩阵是可对角化的),同样可以把问题归到矩阵是否可对角化。
浅谈矩阵对角化及其应用(米亚兄)- 天津商业大学商学院【优秀资料】(可以直接使用,可编辑完整版实用资料,欢迎下载)浅谈矩阵对角化及其应用写在前面:结识高等代数已经快一年了,我们从最初的认识行列式,一直到到现在的欧几里得空间,逐一学习了线性方程组、矩阵、多项式、二次型、线性空间、线性变换,现在就浅谈一下自己对矩阵对角化及其应用的认识。
众所周知:n维向量空间V中的线性变换δ可否对角化的问题是高等代数中十分重要的内容,而δ可对角化的充要条件是δ关于V的矩阵A可对角化。
内容摘要:文章综述了矩阵可以对角化的条件,讨论了可对角化矩阵的基本性质和结论,给出了矩阵(特殊矩阵如是对称阵)对角化的基本方法,以及对应特征多项式的性质,最后讨论其在特征值、特征向量方面的应用。
关键词:矩阵对角化特征多项式特征值特征向量导言:文章由矩阵可对角化出发,说明矩阵可对角化的条件、讨论了可对角化矩阵的基本性质和结论,给出了矩阵(特殊矩阵如是对称阵)对角化的基本方法,以及对应特征多项式的性质,最后讨论其在特征值、特征向量方面的应用。
具体内容:1、矩阵可对角化的条件:1)设δ是n维线性空间的一个线性变换,δ的矩阵可以在某一组基下维对角矩阵的充分必要条件是δ有n 个线性无关的特征向量。
2)方块矩阵A被称为可对角化的,如果它相似于对角矩阵,就是说,如果存在一个可逆矩阵P使得P−1AP是对角矩阵。
3)设A 是数域F上的n阶矩阵,如果存在F上n阶可逆矩阵T,使得T1-AT=∧,那么,就说矩阵A 是可以对角化的。
可对角化矩阵的基本性质和结论:1)数域F上n阶矩阵A可以对角化的充要条件是A有n个线性无关的特征向量。
2)数域F上n阶矩阵A在F内有n个不同的特征根,那么A可以对角化。
3) 属于不同特阵值的特征特真向量是线性无关的。
4)如果在n 维空间V 中,线性变换δ的特征多项式在数域P 中有n 个不同的根,即δ有n 个不同的特征值,那么在某组基下的矩阵是对角形的。
XXX学校毕业论文(设计)对角化矩阵的应用学生姓名学院专业班级学号指导教师2015年 4 月 25 日毕业论文(设计)承诺书本人郑重承诺:1、本论文(设计)是在指导教师的指导下,查阅相关文献,进行分析研究,独立撰写而成的.2、本论文(设计)中,所有实验、数据和有关材料均是真实的.3、本论文(设计)中除引文和致谢的内容外,不包含其他人或机构已经撰写发表过的研究成果.4、本论文(设计)如有剽窃他人研究成果的情况,一切后果自负.学生(签名):2015 年4月25日对角化矩阵的应用摘要矩阵对角化问题是矩阵理论中一个关键性问题.本文借助矩阵可对角化条件,可对角化矩阵性质和矩阵对角化方法来研究可对角化矩阵一些应用,包括求方阵的高次幂,反求矩阵,判断矩阵是否相似,求特殊矩阵的特征值,在向量空间中证明矩阵相似于对角矩阵,运用线性变换把矩阵变为对角矩阵,求数列通项公式与极限,求行列式的值.【关键词】对角化;特征值;特征向量;矩阵相似;线性变换Application of diagonalization matrixAbstractMatrix diagonalization problem is the key issue in the matrix theory. In this paper, by using matrix diagonalization conditions, diagonalization matrix properties and matrix diagonalization method we study some applications of diagonalization matrix, including for high-order exponent of matrix, finding the inverse matrix, matrix to determine whether it is similar, the eigenvalue of special matrix, in the vector space that matrix similar to a diagonal matrix, using linear transformation matrix is a diagonal matrix, for the series of general term formula and limit, the determinant of value.[Key words] The diagonalization; Eigenvalue; Feature vector; Similar; Linear transformation目录引言 (1)1矩阵对角化 (1)1.1矩阵对角化的几个条件 (1)1.2对角化矩阵的性质 (3)1.3 矩阵对角化的方法 (5)2对角化矩阵的应用 (5)2.1求方阵的高次幂 (5)2.2反求矩阵 (6)2.3判断矩阵是否相似 (7)2.4求特殊矩阵的特征值 (7)2.5在向量空间中应用 (7)2.6在线性变换中应用 (7)2.7求数列通项公式与极限 (8)2.8求行列式的值 (11)2.9对角化矩阵在其他方面的应用 (12)参考文献 (14)致谢 (15)引 言现如今,我们所提到的矩阵对角化其实质指的就是矩阵和对角阵存在相似的地方,其中我们学过的线性变换也是可对角化的,其原理是指在某一组基的作用下这个线性变换可以变为对角阵(或者可以说是在某一组基的作用下这个线性变换的矩阵是可对角化的),当然刚刚提到的这个问题其实我们可以把它归类到矩阵是否可对角化的问题中去,因为其两者本身就是相辅相成的.当然本篇文章我们主要是研究和探索判定矩阵可对角化的诸多条件,以及我们如何去运用矩阵对角化的有关性质,来把将矩阵化为对角形的问题进行解决.与此同时,我们也在研究和探索中发现了它在其他方面一些重要的运用.1矩阵对角化我们所涉及的矩阵都是可以对角化的,其原理是指通过矩阵的一系列初等变换(指:行、列变换)后,就能够得到一个特殊的矩阵,其特殊性在于只有在其主对角线的数上不全为零,然而其他位置的数则是全部为零(那么这个特殊的矩阵就可以被我们称为对角阵),这一整个的变换过程就被我们称为矩阵的对角化.当然值得我们注意的是,我们所学过的矩阵并非都能对角化的,这个是有条件限制的.1.1矩阵对角化的几个条件引理]1[1 设n n P B A ⨯∈,,且,2A A =,2B B =BA AB =,则存在可逆矩阵P ,使B A ,可同时对角化.引理]2[2 如果n n n P diag P ⨯∈=),,,(21λλλ 的n 个对角元互不相同,矩阵n n P B ⨯∈,那么BP PB =当且仅当B 本身就是对角阵.因为任何一个幂等矩阵)(2A A A =一定相似于一个对角矩阵⎥⎦⎤⎢⎣⎡000rE ,所以任何一个对角矩阵都是能够进行谱分解的,即∑==n i i i A A 1λ,其中i λ是矩阵A 的特征值,矩阵i A 为幂等矩阵,那么是否任意有限个幂等矩阵的线性组合都可以对角化呢?有如下结论:定理]3[1 若,2211n n k k k A ∆++∆+∆=n k k k ,,,21 是n 个数,n ∆∆∆,,, 21是n 个幂矩阵,并且他们两两可替换,)(,j i i j j i ≠∆∆=∆∆,则矩阵A 可对角化.证明 若n ∆∆∆,,, 21是n 个幂矩阵,并且两两可换,则一定有一个可逆矩阵1P ,使得n ∆∆∆,,, 21,可同时对角化.n n n n P D P P D P 111111--=∆=∆,, )(1是对角矩阵,,n D D , P D k D k D k P P D k P P D k P P D k P k k k A n n n n n n )()()()(2211112211112211+++++++=∆++∆+∆=---- ,由是对角矩阵,,n D D 1知n n D k D k D k +++ 2211同样是对角矩阵,即矩阵A 为对角化的矩阵.定理]4[2 如果n n P A ⨯∈,21λλ,是它两个不相同的特征值,那么矩阵A 可对角化⇔一定有幂等矩阵∆,满足∆-+=)(121λλλE A .证明 必要性:如果A 是一个对角化的矩阵,那么就一定会有一个可逆的矩阵P ,满足∆=⎥⎦⎤⎢⎣⎡=-2211111E E AP P λλ 是一个对角阵.()()()121211121211111211000-----⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-+==P E P E P E P P E P P E P PAP A λλλλλλλλλ, 并且∆相似于2121212000∆=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡---P E P P E P P E P ,若∆为幂矩阵,则一定有一个幂矩阵∆满足∆-+=)(121λλλE A .充分性:若存在∆使得∆-+=)(121λλλE A ,因为∆是幂矩阵,所以一定会有一个T ,满足T E T ⎥⎦⎤⎢⎣⎡=∆-210, ()()T E E T T E E T T E T E A ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡-+=---2211112121121)0(0λλλλλλλλ, 因此,T E E T AT T ⎥⎦⎤⎢⎣⎡=--221111λλ, 即矩阵A 为可对角化的.定理]5[3 设矩阵n n P A ⨯∈存在n 个不同的特征值,则对于矩阵n n P B ⨯∈,BA AB =,当且仅当矩阵B A ,同时可以对角化.证明 必要性 若矩阵A 存在n 个特征值,且这些特征值是互不相同的数,则矩阵A 为对角化的矩阵.设AP P T 1-=,其中),,,(21n diag T λλλ =,则ABP P BP APP P BP P T 1111)(----==T BP P AP BPP P )(111---==,即T 与BP P 1-是可以进行交换的,因此得知BP P 1-是对角矩阵,且矩阵B 也是为对角化的矩阵.充分性 如果矩阵B A ,可以同时进行对角化,那么一定存在一个可逆阵P ,使得P D P A 11-=,P D P B 21-=(其中为21D D ,对阵),BA P D PP D P P D D P P D D P P D PP D P AB =====------11211212112111,因此我们可以通过上述的一系列条件,来求出A 的特征值,且这是两个相互不同的数.从而我们得出了矩阵对角化的成立的条件:如果∆=∆2这个条件成立,那么就认为矩阵A 可对角化,否则就认为矩阵A 不能可对角化,其中)(/)(21λλλ--=∆E A .1.2对角化矩阵的性质定理]6[4 设A 为数域P 上的一个n 阶的矩阵,且它为可对角化的,t λλλ,,,21 是A 的相互不同的特征根,则一定会有n 阶的t A A A ,,,21 满足(1)t t A A A A λλλ+++= 2211;(2)E E A A A t ,21=+++ 是单位矩阵;(3)i i A A =2;(4)j i A A j i ≠=,0,其中1-=T TB A i i . 证明 (1)如果A 可对角化,那么在数域P 上一定会存在一个可逆矩阵T ,并且它的阶数为n 阶,满足B AT T t =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-λλλ00211 , 其中i λ的重数为i s ,由于矩阵⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡++⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=110000111 t B λλ, 将它记为t t B B B λλλ+++ 2211,因此,)()()(1111122111----++=+++==T TB T TB T B B B T TBT A t t t t λλλλλ ,将其记为t t A A A λλλ+++ 2211,其中1-=T TB A i ,所以t t A A A A λλλ+++= 2211.(2)如果每个i B 为对角形的幂矩阵,那么E B B B t =+++ 21,E TET T TB T TB T TB A A A t t ==+++=+++----11121121 ,故E A A A t =+++ 21.(3)如果1-=T TB A i i ,那么i i i i i i i i i i A T TB T TB T B TB T TB T TB T TB T TB A ======-------112111112))((,故i i A A =2.(4)当j i ≠时, 0))((11111====-----T B TB T TB T TB T TB T TB A A j i j i j i j i ,0为零矩阵,故j i A A j i ≠=,0.例1 在数域P 上,若已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=6788152051115A 的三个特征根分别是3,2,1,则一定会有一个⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=211243132T ,满足B AT T =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-3000200011,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-1111342561T ,将矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=10030102001B , 记32132B B B ++,则,3211321132)32(A A A T B B B T TBT A ++=++==-- 其中1-=T TB A i i ,于是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=222222111,134412163912,2566151841012321A A A , 并且满足:(1)32132A A A A ++=;(2)E A A A =++321;(3))3,2,1(2==i A A i i ; (4)j i A A j i ≠=,0.可以通过一个比较具体的可对角化矩阵,很直观地反映上述所说的性质是成立的.1.3 矩阵对角化的方法1.3.1 运用矩阵初等变换的方法在数域P 上,一个n 维空间V ,研究和探讨它能否可以找到一组基,并且在此基的作用下,所有的矩阵都是对角化的矩阵;发现这种基存在时, 如何去探索它是一个线性代数学上相当重要的问题,可以利用矩阵的初等变换的方法来解决此问题.当发现矩阵A 不能够实现对角化的时候,同样可以经过相近的一系列变换后,化简出矩阵A ,并且能够判定它是否可以对角化.类似地,可有矩阵E Q Q Q T s s 111111-----= ,做如下的初等变换,则可以将矩阵A 化简为对角形矩阵B ,并且可以求得T 或由B 求A 的一系列特征值.1.3.2 求解齐次方程组的方法设矩阵A 是实对称矩阵,则求证交矩阵T 使得),,,(211n diag AT T λλλ =-的问题,一般的解法为:(1)求其特征值; (2)求其对应的特征向量;(3)写出矩阵T 及),,,(211n diag AT T λλλ =-.从而可以求出正交矩阵T ,可以避免了商的繁琐运算.定理]7[5 设A 是实对称矩阵,则有)1(21重,-n λλ,n αααβ,,,, 321对应于21λλ,,记)(1βL 由1β生成的一个空间,且)(32n L ααα,,, 由n ααα,,, 32生成的空间.2对角化矩阵的应用2.1求方阵的高次幂例2 设在数域P 上,有一个二维的线性空间V ,21ξξ,是这个线性空间V 的一组基,那么线性变换σ在21ξξ,这组基的作用下的矩阵⎥⎦⎤⎢⎣⎡-=0112A ,试通过上述给出的条件计算出矩阵k A .解 通过分析上述的条件,我们应该先计算线性变换σ在线性空间V 的另一组基21ηη,作用下的矩阵,令[][]⎥⎦⎤⎢⎣⎡--=2111,,2121ξξηη, 则⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡---10112111011211122111011221111, 易知⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡1011011k k, 再运用上面得出的几个关系⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡---10112111011221111, 即⎥⎦⎤⎢⎣⎡+--+=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-11111210121112111101121-1-101-121kk k k k k k.2.2反求矩阵例3 设有一个实对称矩阵A ,且它的阶数为3阶,已知11321==-=λλλ,,1λ对应于T P )1,1,0(1=,求解A .解 根据矩阵A 是3阶实对称矩阵的条件,我们可以推出矩阵A 可以对角化的结论,即得出矩阵A 是由三个线性无关的特征向量组成的结论,并且132==λλ对应于T X X X P ),,(321=,因为它和1P 正交,即003211=++=⋅X X X P P ,所以可以求出T T P P )1,1,0()0,0,1(32-==,,它们分别对应132==λλ.取 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==1000100011-01101010),,(321B P P P P ,, 则B AP P =-1,于是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==-010********21000121211000100011011010101PBP A . 2.3判断矩阵是否相似例4 请判断下述三个矩阵是否会相似⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=300020102,300120012,300020002321A A A . 解 我们可以很容易的得出三个矩阵321,,A A A 的特征值分别都是21=λ(二重),32=λ,其中矩阵1A 已经是对角阵,所以我们只需要进一步判断两个矩阵32,A A 是否都可以对角化.通过21=λ,0)2(2=-X A E ,可以推出T )0,0,1(1=α,因为21=λ,是一个二重的特征值,但是却只有一个特征向量与之所对应,那么我们可以推出矩阵2A 与矩阵1A 不相似的结论.通过21=λ,0)2(3=-X A E ,得出T T )0,1,0(,)0,0,1(21==ηη,通过32=λ,0)3(3=-X A E ,得出T )1,0,1(3=η,通过上述所推出的结论,我们可知矩阵3A 有三个线性无关的特征向量,即矩阵3A 与矩阵1A 这两个矩阵相似. 2.4求特殊矩阵的特征值例]8[5 设有一个实对称矩阵A ,并且它的阶数为n 阶,满足A A 22=,n r A r <=)(,求出A 的全部特征值.解 假设λ为矩阵A 的一个特征值,而我们令ξ为矩阵A 的特征向量,它对应于特征值λ,因为λξξ=A ,所以ξλλξξ22==A A ,又因为A A 22=,所以λξξξ222==A A ,即λλ22=,由此我们可以推出02或=λ,根据矩阵A 是实对称矩阵的这个条件,我们可以断定矩阵A 一定能够进行对角化,即⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=0022~ B A ,与r A r =)(,所以A 的秩数就是2的个数,以及A 有r 个2和)(r n -个0的特征值. 2.5在向量空间中应用例]9[6在n 维的V 空间中,有一个复矩阵,并且它的阶数为n 阶,还有一个复数α, 令{}{}0)(,)(21=-∈=∈-=βαβββαA E V W V A E W ,则矩阵A 相似于对角阵,并且{}021=⋂W W .证明 因为对于任意一个210W W X ⋂∈,则有βα)(0A E X -=和0)(0=-X A E α,所以0)(2=-βαA E .又因为发现矩阵A 相似于对角阵,所以我们可以推出0)(0=-X A E α与0)(2=-βαA E 两个的解空间是完全相同的,即{}021=⋂W W . 2.6在线性变换中应用例]10[7 设()1][>n X P n 是数域P 上的一个全体,且它是一个次数小于n 的多项式与零多项式,则请通过所学的进一步判断在n X P ][的任一组基下,矩阵通过微分变换τ能否变为对角形矩阵.证明 如果取()!1!211--n X X X n ,,,, , 那么矩阵可以表示为⎥⎦⎤⎢⎣⎡0001-n E ,所以有nA E λλ=-. 如果在某一组基的作用下,微分变换τ的矩阵B 为对角矩阵,由已知的矩阵B A ~可推出矩阵A 可对角化,那么就会存在一个可逆矩阵T 能够使得B AT T =-1,所以1-=TBT A .通过已知的微分变换τ的全为零,可以推出0=B ,0=A 这是不可能的,所以在n X P ][的任何一组基的作用下,微分变换τ的矩阵都不可能成为对角阵.2.7求数列通项公式与极限例]11[8 设两个数列{}{}n n q p ,都满足条件1,,21111==+=+=++q p q p q q p p n n n n n n ,则请求解nn n q p∞→lim .解 把已知条件中的几个递推关系组n n n n n n q p q q p p +=+=++11,2,通过化简改写成下面的列矩阵的形式:⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡++111111211121q p q p q p nn n n n ,由⎥⎦⎤⎢⎣⎡=1121A 和0=-A E λ,可以求出A 的21,2121-=+=λλ,并且21λλ,分别对应T T X X )1,2(,)1,2(21-==.取),(21X X X =,则⎥⎦⎤⎢⎣⎡-=-21212211X ,1210021-⎥⎦⎤⎢⎣⎡-+=X X A , 从而⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+-++=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡++++-++2)21()21(2)21()21(112100211111111n n n n nn n X X q p , 因此2)21()21(nn n p -++=,2)21()21(n n n q --+=, 并且2)21()21()21(2)21(2lim lim =--+-++=∞→∞→n n nn n nn n q p . 例9 已知),2,1(2,2),(,11111 =+=+=>==+++n ba b b a a b a n n n n n n βαβα这四个条件,请证明n n n n b a ∞→∞→lim lim 及存在并且相等,给出证明过程,同时请求出这两个的极限值. 证明 把已知条件中的递推关系组作进一步简化推出434,2211n n n n n n b a b b a a +=+=++,然后再改写为另一种矩阵的形式:⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡++11114341212143412121b a b a b a nn n n n ,由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=43412121A 和0=-A E λ,可以求出A 的14121==λλ,,并且21λλ,分别对应()()TTX X 11,1221,,=-=,取()⎥⎦⎤⎢⎣⎡-==1112,21X X X ,则 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-323131311X ,110041-⎥⎥⎦⎤⎢⎢⎣⎡=X X A , 因为⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡++1004111X b a n n ,⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⋅+⋅-+⋅-+⋅=⎥⎦⎤⎢⎣⎡-βα324131314131324231314231111n nn n b a X ,所以βα⋅⎪⎭⎫ ⎝⎛+⋅-+⋅⎪⎭⎫ ⎝⎛+⋅-=+3242313142311n n n a ,βα⋅⎪⎭⎫⎝⎛+⋅+⋅⎪⎭⎫ ⎝⎛+⋅-=+3242313142311n n n b ,即n n n n b a ∞→∞→=+=lim 3231lim βα. 例10 设有10=x ,e x =1,)1(11≥⋅=-+n x x x n n n 这三个条件,请求出n n x ∞→lim .解 从已知的三个条件可以推出),2,1(0 =>n x n ,以及)ln (ln 21ln 11-++=n n n x x x ,令n n x a ln =,则00=a ,11=a ,)1()(2111≥+=-+n a a a n n n ,所以 ⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡==⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡-+0111012121012121a a a a a a nn nn n , 由⎥⎥⎦⎤⎢⎢⎣⎡=012121A 和0=-A E λ,求得A 的21121-==λλ,,并且21λλ,分别对应TT X X )121(,)11(21,,-==.取),(21X X X =,令⎥⎥⎦⎤⎢⎢⎣⎡-=-11211321X,121001-⎥⎥⎦⎤⎢⎢⎣⎡-=X X A , 则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+-+n n nn n X X a a )21(1)21(1320121001111, 从而推出:))21(1(32nn a --=,即))21(1(32n e x n --=,32lim e x n n =∞→.例11 设11=x ,nn x x +=+111,求n n x ∞→lim .解 令1+=n n n a a x ,根据条件nn x x +=+111,将其简化为n n n a a a +=++12,然后再写成矩阵)2(0111011112111≥⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--+n a a a a a a n n n n n , 由⎥⎦⎤⎢⎣⎡=0111A 和0=-A E λ,求出A 的βλαλ=-==+=25125121,,且21λλ,分别对应的是T T X X )1(,)1(21,,βα==,取⎥⎦⎤⎢⎣⎡==11),(21βαX X X ,则100-⎥⎦⎤⎢⎣⎡=X X A βα, ⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡++++-+112211511100n n n n nn n X X a a βαβαβα, 即2151)()(1lim lim limlim 1122111-==--=--==++∞→++++∞→+∞→∞→ααββααββαβαn n n n n n n n n n n n n a a x . 2.8求行列式的值例]12[12 设有一个n 阶的行列式,化简并求出它的值.)0(sin cos 21001cos 2100000001cos 21000001cos 21000001cos 2≠=ααααααn D ,解 按照第一列展开的21cos 2---=n n n D D D ,可以写成矩阵的另外一种形式⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡---211011cos 2n n n n D D D D α, 记矩阵⎥⎦⎤⎢⎣⎡-=011cos 2αA ,则 )2(122211≥⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡----n D D A D D A D D n n n n n , 通过0=-A E λ,我们可以计算出矩阵A 的ia ia e e -==21λλ,,且21λλ,分别对应T ia T ia e X e X )1(,)1(21,,-==,取⎥⎦⎤⎢⎣⎡==-11),(21ia ia e e X X X ,则100--⎥⎦⎤⎢⎣⎡=X e e X A ia ia, 推出()()⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-----ααcos 21cos 40021221X e e X D D n ia n ia n n , 即)0(sin sin )1sin(≠+=αααn D n .例13 设有一个实对称矩阵A ,并且它的阶数是n 阶,满足条件A A =2,且r 为矩阵A 的秩,通过上述条件求出行列式A E -2的值.解 因为A A =2,X X A AX X 22λλ===,所以有0)-(2=X λλ.因为0≠X ,所以0)1-(=λλ,10或=λ.因为矩阵A 是一个n 阶的实对称矩阵,所以它相似于对角矩阵,又因为矩阵A 的秩为r ,所以一定会存在一个可逆矩阵P ,可以使得B E AP P r =⎥⎦⎤⎢⎣⎡=-0001,其中矩阵r E 表示的是r 阶单位矩阵,所以可以推出)(220022211r n E E B E PBP PP A E rn r -==-=-=----.2.9对角化矩阵在其他方面的应用例14 在某个城市的就业数据中显示,一共有30万人从事着不同的三种行业,分别是农业、工业、经商,假设在几年之间这个从业总人数都会保持不变,而且经过整个社会的普查显示:(1)在这个城市的30万人中,投身于农业的有15万人,工业的有9万人,经商的有6万人;(2)在投身于农业的人中,每年大概有%10的人转行去经商,%20的人转行去做工业;(3)在投身于工业的人中,每年大概有%20的人转行去干农业,%10的人转行去经商;(4)在投身于经商的人中,每年大概有%10的人转行去做工业,%10的人转行去干农业.现在请大概预测一下,在未来的一、二年以后,从事这三个行业的人数,以及经历多年以后,从事这三个行业的人员总数会有什么样的一个发展趋势.解 第i 年后还从事这三种行业的人员总数,我们会用一个3维的向量i X 去表示它,则T X )6,9,15(0=.如果想要求21X X ,,并且能够很精确地考察在∞→n 时,n X 的一个发展趋势,那么我们必须要引用一个3阶矩阵)(ij a A =,它的作用是用来体现从事这三种职业人员之间的转移情况.那我们就能够得出矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=8.01.01.01.07.02.01.02.07.0A ,通过矩阵的乘法法则,我们可以得出⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡===-2.79.99.12001AX X A X T ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡===04.823.1073.110212X A AX X , 所以01X A AX X n n n ==-,如果要继续进一步精确地分析n X ,那么必须要事先计算矩阵A 的n 次幂n A ,所以我们先可以将矩阵A 进行对角化,)5.0()7.0()1(8.01.01.01.07.02.01.02.07.0λλλλλλλ---=---=-E A ,所以能够得出特征值5.0,7.0,1321===λλλ,三个特征值分别代表其求出的所对应的三个特征向量321,,q q q ,于是令),,(321q q q Q =,则就会有矩阵1-=QBQ A ,从而推出1-=Q QB A n n ,0X A X n n =,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=5.07.01B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n nn B 5.07.01, 当∞→n 时,矩阵n B 将趋向于⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001,从而推出矩阵n A 将趋向于1001-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡Q Q , 因为矩阵n X 跟我们已经确定下来的常量*X 非常接近,所以可以得出1-n X 亦必趋于*X ,再通过1-=n n AX X 的转化,就能够准确得知*X 必需要满足条件**AX X =,进而可以推断出*X 是矩阵A 属于特征值11=λ的一个特征向量T T t t t t X ),,()111(*==,,,,303==++t t t t 10=t ,按照上面所讲述的规律转移,经过许多年以后,那么这三种职业的从业人数一定会趋于相等, 三者平均下来为10万人.参考文献[1] 北京大学教学系几何与代数教研室.高等代数(第二版)[M].北京:高等教育出版社,1988.[2] 胡显佑主编.线性代数挚习指导[M].天津:南开大学出版社,1997.[3] 刘九兰,张乃一,曲问薄主编.线性代数考研[M].天津:天津大学出版社,2000.5.[4] 谢国瑞主编.线性代数及应用[M].北京:高等教育出版社.1999.[5] 张学元主编.线性代数能力试题题解[M].武汉:华中理工大学出版社,2000.[6] 徐仲主编.线性代数典型题分析解集[M].西北工业大学出版社,1998,6.[7] 樊辉,钱吉林主编,代数学辞典[M].武汉:华中师范大学出艋社.1994,12.[8] 曹锡皓.高等代数[M].北京:北京师范大学出版社,1987.[9] 张远达.线性代数原理[M].上海:上海科学出版社,1981.[10] Kline Morris. Mathematical Thought from Ancient to Modern Times[M]. New York: OxfordUniversity Press, 1972.[11]Rebollo-Neira L,Fernandez Rubio J.On the Inverse Windowed Fourier transform[M].IEEET rankson Information Theory,1999.[12] Babaie-Zadeh,M. Jutten, C.,Mohimani, H. On the Error of Estimating the Sparsest Solution ofUnderdetermined Linear Systems[M].2011.致谢在开始准备着手写论文到最后定稿的整个过程中,指导教师XXX老师都是非常耐心和细心的引导我和帮助我,在此我向王老师表示由衷的感谢.王老师的严谨治学态度让我受益匪浅.在毕业论文写作的这段时间里,他时时刻刻关心着我的毕业论文的完成情况,并且经常给我指出毕业论文中的缺点与需要改正的地方,最后才能使得我可以顺利完成毕业论文.与此同时,我很感谢所有给过我帮助的老师、同学以及一起努力奋斗过的好朋友.第16 页共16页。
矩阵的对角化及其在高等数学中的应用矩阵是高等数学中的基础概念之一,它在解决线性方程组和矩阵变换问题中具有重要作用。
在实际问题中,矩阵常常需要进行对角化处理,以便更方便地求解问题。
本文将介绍矩阵的对角化及其在高等数学中的应用。
一、什么是矩阵的对角化对角化是指将一个矩阵变换为对角形式的过程,使得矩阵的主对角线上为非零元素,而其余元素均为零。
举个例子,一个2×2的矩阵A可以进行对角化,其对角化后的形式可以写成:> P^-1 * A * P = D其中P是一个可逆矩阵,D为对角矩阵。
对角矩阵只有主对角线上有非零元素,其他位置都为零。
通过对角化,矩阵变得更加简单,容易处理。
二、如何进行矩阵的对角化对于一个n×n的矩阵A,要进行对角化处理,需要满足以下条件:1.矩阵A必须有n个线性无关的特征向量,这些特征向量组成的矩阵可以写成P=[v1,v2,···,vn]。
2.对于对角矩阵D,其主对角线上的元素必须是矩阵A的n个特征值。
基于这些条件,可以得到矩阵A的对角化公式:> P^-1 * A * P = D其中P=[v1,v2,···,vn],D=[λ1,λ2,···,λn]为对角矩阵。
λ1、λ2···λn为A的特征值,v1、v2···vn为对应的特征向量。
三、高等数学中的应用在高等数学中,矩阵的对角化在求解一些实际问题中具有重要作用。
1. 矩阵的对角化在求解差分方程中的应用线性差分方程是数学中的一种经典问题。
对于一个n阶线性差分方程,其解法是先对其进行离散化处理,变成一个线性方程组。
接着,对该线性方程组进行矩阵形式的表示,就可以得到一个n×n矩阵。
通过矩阵的对角化,可以将线性方程组解放到主对角线上,从而得到差分方程的通解。
2. 矩阵的对角化在离散傅里叶变换中的应用离散傅里叶变换是一种将时域上信号变换为频域上信号的重要算法。
矩阵对角化及应用理学院 数学082 缪仁东 指导师:陈巧云摘 要:本文是关于矩阵对角化问题的初步研究,对矩阵对角化充要条件的归纳,总结,通过对实对称矩阵,循环矩阵,特殊矩阵对角化方法的计算和研究,让读者对矩阵对角化问题中求特征值、特征向量,求可逆矩阵,使对角化,提供了简便,快捷的求解途征.关键词:对角矩阵;矩阵对角化;实对称矩阵;特征值;特征向量.矩阵对角化是矩阵论的重要组成部分,在矩阵论中占有重要的作用,研究矩阵对角化问题很有实用价值,关于矩阵对角化问题的研究,这方面的资料和理论已经很多.但是他们研究的角度和方法只是某个方面的研究,没有进行系统的分类归纳和总结.因此,我就针对这方面进行系统的分类归纳和总结,对一些理论进行应用和举例,给出算法.特别给出了解题时方法的选择.1.矩阵对角化概念及其判定所有非主对角线元素全等于零的n 阶矩阵,称为对角矩阵或称为对角方阵.定义1.1 矩阵A 是数域P 上的一个n 级方阵. 如果存在一个P 上的n 级可逆矩阵X ,使1X AX - 为对角矩阵,则称矩阵A 可对角化.矩阵能否对角化与矩阵的特征值特征向量密切相关.定义 1.2 设A 是一个n 阶方阵,λ是一个数,如果方程组AX X λ= (1)存在非零解向量,则称λ为的A 一个特征值,相应的非零解向量X 称为属于特征值λ的特征向量.(1)式也可写成,()0E A X λ-= (2)这是n 个未知数n 个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式=0E A λ-, (3)即1112121222120n nn n nna a a a a a a a a λλλ------=---上式是以λ为未知数的一元n 次方程,称为方阵A 的特征方程. 其左端A E λ-是λ的n 次多项式,记作()f λ,称为方阵的特征多项式.111212122212()||n nA n n nna a a a a a f E A a a a λλλλλ------=-=---111n n n n a a a λλλ--=++++显然,A 的特征值就是特征方程的解.特征方程在复数范围内恒有解,其个数为方程的次数(重根按重数计算),因此,n 阶矩阵A 有n 个特征值.设n 阶矩阵()ij A a =的特征值为12,,n λλλ,由多项式的根与系数之间的关系,不难证明(ⅰ)121122n nn a a a λλλ+++=+++;(ⅱ)12n A λλλ=.若λ为A 的一个特征值,则λ一定是方程=0A E λ-的根, 因此又称特征根,若λ为方程=0A E λ-的i n 重根,则λ称为A 的i n 重特征根.方程 ()0A E X λ-=的每一个非零解向量都是相应于λ的特征向量,于是我们可以得到求矩阵A 的全部特征值和特征向量的方法如下: 第一步:计算A 的特征多项式E A λ-;第二步:求出特征方程=0E A λ-的全部根,即为A 的全部特征值;第三步:对于的每一个特征值λ,求出齐次线性方程组:()0E A X λ-= 的一个基础解系12,,,s ξξξ,则A 的属于特征值λ的全部特征向量是 1122s s k k k ξξξ+++(其中12,,,s k k k 是不全为零的任意实数).设P 是数域, Mn (P ) 是P 上n ×n 矩阵构成的线性空间, A ∈Mn (P ) , 1,2t ,,λλλ 为A 的t 个互不相同的特征值,高等代数第二版(北京大学数学系几何与代数教研室编)第四版(张和瑞、郝炳新编)课程中,我们学过了矩阵可对角化的若干充要条件如: (1) A 可对角化当且仅当A 有n 个线性无关的特征向量; (2) A 可对角化当且仅当特征子空间维数之和为n ; (3) A 可对角化当且仅当A 的初等因子是一次的; (4) A 可对角化当且仅当A 的最小多项式无重根我们知道线性变换A 的特征多项式为f (λ) ,它可分解成一次因式的乘积1212()()()()i r r r i f λλλλλλλ=---则V 可分解成不变子空间的直和其中i V = {ξ|iri 12-==s V V V V λ⊕⊕⊕(A E );ξ∈V}引理 1.1:设A, B 都是n 阶矩阵, 则秩( AB) ≥秩( A) + 秩( B) - n.定理 1.1:设A 是实数域F 上的一个n 阶矩阵, A 的特征根全在F 内, 若1λ, 2λ,...,K λ 是A 的全部不同的特征根, 其重数分别为1r , 2r ,... k r , 那么 (Ⅰ) 可对角化的充要条件是()i j i jE A r λ≠⎛⎫-= ⎪⎝⎭∏秩 j=1, 2,.......k(Ⅱ) 当( 1) 式成立时,()ii jE A λ≠-∏ 的列空间就是A 的属于特征根iλ的特征子子空间.证明: (Ⅰ) 设A 可对角化, 则存在可逆阵T, 使{}11122,,...,k K T AT diag E E E λλλ-=这里右边是分块对角矩阵, j E 为i r 阶单位阵, 于是有()()()11i i i i j i j i j E A T E A T E T AT λλλ--≠≠≠⎛⎫⎛⎫⎛⎫⎛⎫-=-=- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∏∏∏秩秩秩={}()122,,...,i K K i j E diag E E E λλλλ≠⎛⎫-⎪⎝⎭∏秩=()()(){}12,,...,,i j i j i j Ki j diag E E E λλλλλλ≠⎛⎫---⎪⎝⎭∏秩 =()0,0,...0,,0,0,...,0i j j j i jdiag E r λλ≠⎛⎫⎧⎫-= ⎪⎨⎬ ⎪⎩⎭⎝⎭∏秩 j=1,2, ......k.反之,若()()ijE A r λ-=∏秩i=1,2,.....k, 反复用引理可得()()()()()22i j i i i ji jE A E A K n n r k n λλ≠≠-≥---≥---∑∑∏秩r 秩 i j i jn r r ≠=-=∑ j=1,2,...,k.这里用到了齐次线性方程组()0i E A X λ-=的解空间的维数不大于i λ的重数不大于j r 这个结论.于是又()()iii j i jE A n r λ≠≠-=-∑∑秩从而()i iA n r λ-=-秩 i=1,2,......k. 这样的矩阵可以对角化.(Ⅱ)设( Ⅰ)式成立,则A 可对角化.故A 的最小多项式为()1kii x λ=-∏从而()10kii E A λ=-=∏ 即 ()()0i ii jE A E A λλ≠--=∏这就是说,列空间包含在i λ的特征子空间中,但是由(1), ()ii jE A λ≠-∏的列空间的维数是n,它正是j r 的特征子空间的维数,所以结论(Ⅱ) 成立.推论: 设A 为实数域F 上的n 阶矩阵,A 的特征根全为F 内,且1λ, 2λ 是A 的全部不同的特征根, 其维数分别为1r , 2r , 若秩()12E A r λ-=,秩()21E A r λ-=,则A 可以对角化,且()E A λ-的列向量组的极大无关组恰是属于2λ 的极大线性无关的特征向量组,2E A λ-的列向量组的极大无关组恰是属于1λ的极大无关的特征向量组.例1: 判断A=460350361⎛⎫⎪-- ⎪ ⎪-⎝⎭能否对角化,并求特征向量.解: 易知A 的特征根1λ =-2 , 2λ =1.1E A λ- =660350363--⎛⎫ ⎪ ⎪ ⎪--⎝⎭ 和2E A λ- =360360360--⎛⎫⎪⎪ ⎪⎝⎭的秩分别为2与1,故A 可对角化. 又因为可以选取001⎛⎫ ⎪ ⎪⎪⎝⎭和210-⎛⎫⎪⎪ ⎪⎝⎭为的列空间的一个基,111⎛⎫ ⎪- ⎪ ⎪-⎝⎭是属于1λ的特征向量.定理和推论把判断矩阵是否对角化的问题与求它的特征向量的问题联系起来,给出了一个不用解线性方程组而求得可对角化矩阵的特征向量的方法, 在矩阵的不同特征根较少时, 这个方法较方便.2.实对称矩阵对角化的计算方法我们知道任意实对称矩阵,总正交相似于一对角阵. 该对角阵的对角元即为实对称矩阵的特征值, 正交相似变换矩阵的各列构成相应的特征向量. 给定一实对称阵A ,如何求正交相似变换矩阵P ,使1T P AP PAP -=为对角阵. 理论上的解决方法为:首先利用特征方程: | λI - A | = 0 求出全部特征值,针对不同特征值求出相应的完全特征向量系,合在一起构成实对称阵A 的完全特征向量系. 再利用施密特正交化法得到 A 的规范化正交特征向量系. 以此作为列向量得到正交相似变换矩阵P , 1T PAP PAP -=为对角阵, 参见文献[5 ]. 此方法理论可行,但在具体操作时,由于要事先求出实对称阵A 的全部特征值,操作上有如下困难: (1) 特征方程: | λI- A | = 0 给出困难; (2) 特征方程求根困难(5 次以上的代数方程没有统一的求根公式) . 因此有必要寻求方法.定义2.1 (瑞雷商) 设A 为n 阶实对称阵,对于任一n 维非零列向量x ,称R ( x) =( A x , x)/( x , x) 为关于向量x 的瑞雷商.引理2.1 设A 为n 阶实对称阵, 1λ≥2λ≥......≥n λ 为A 的特征值.()()()()11/{0}/{0},,max ,min,,nnx R x R Ax x Ax x x x x x λλ∈∈== 定义2.2 设w 为n 维列向量,且T w w = 1 ,则n 阶矩阵H = I - 2Tww 称为Householder 阵.引理2.2 Householder 矩阵具有如下性质: (1) TH H =(2) T TH H HH I == ( H 是正交阵) .引理2.3 设x , y ∈nR , x ≠y , X Y =,则存在Householder 矩阵H, 使Hx = y. 其中()()22/TH I x y x y x y =----定理2.1 设A 是实对称矩阵,λ, x (2X= 1) 是A 的一个特征值和相应的特征向量,则存在P 为一个正交阵,使Px =1e = ()1,0,0 0. 且TPAP 的第一行和第一列的第一个元素为λ,其余元素均为零.证 设A 是实对称矩阵, 1λ≥ 2λ≥ ...≥ n λ为A 的特征值. 根据引理2.1 ,利用多元函数求极值的拉格朗日乘数法,可求得1λ 及相应的规范化特征向量1X . 不妨假设‖1X ‖ = 1 ,由引理2.3 ,存在1P 为一个正交阵,使11P X =1e =()1,0,0, 0.且TPAP 的第一行和第一列的第一个元素为1λ , 其余元素均为零. 设111100TP AP A λ⎛⎫=⎪⎝⎭, 为对称阵,故1A 也为对称阵,设2λ 及2X 为1A 最大特征值及相应的规范化特征向量,则根据引理2.3 ,存在2Q 为一个正交阵,使()2211,0,0, 0Q x e ==.且212T Q A Q 的第一行和第一列除2λ 外其余元素均为零. 令22100P Q ⎛⎫= ⎪⎝⎭,容易验证2P 亦为正交阵, 满足:1121122212200000000T TT P P AP P Q AQ A λλλ⎛⎫⎛⎫⎪==⎪ ⎪⎝⎭ ⎪⎝⎭依此类推, 存在正交阵1p ,2p , ⋯,1n p -, 使得1n p -...2p 1p 121...T T Tn Ap p p D -=,则T PAP =D,其中 D 为对角阵,令121P P P P n -=,则TPAP D =,P 即为将实对称阵对角化的正交相似变换矩阵.例2: 设矩阵210210582811A ⎛⎫⎪=- ⎪ ⎪-⎝⎭, 1λ≥2λ≥3λ为A 的特征值.按上面的算法进行对角化,求出正交矩阵P 及特征根和特征向量.解: (1)利用瑞雷商和多元函数求极值的拉格朗日乘数法,可求得1λ = 18 ,相应的特征向量为1122,,333Tx ⎛⎫=- ⎪⎝⎭(2) 计算正交矩1p =()()211112/Tp I x e x e x e =----=122333221333212333⎛⎫- ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪--- ⎪⎝⎭,满足()1111,0,0T p x e ==且111800090009TP AP ⎛⎫⎪=- ⎪ ⎪⎝⎭,至此已实现对角化. 借此可求得= 2λ=9 , 3λ = - 9. 相应的特征向量分别为2212,,333Tx ⎛⎫=--- ⎪⎝⎭,3221,,333Tx ⎛⎫=-- ⎪⎝⎭.3.循环矩阵对角化方法的研究在复数域 C 上,形如012110121230........................n n n a a a a a a a a A a a a a ---⎛⎫⎪⎪= ⎪⎪⎝⎭的矩阵,称关于元素列011,,...,n a a a -的循环矩阵.已知n 阶循环矩阵010 (00)01...0 (1)00...0K ⎛⎫⎪⎪= ⎪⎪⎝⎭,并令ii K K = (1,2,,)i n =,称121,,,....,n E K K K -为循环矩阵基本列(其中E = n K 为单位矩阵).循环矩阵基本列有如下特点: ①121,,,...,n E K K K -都是循环矩阵;②n i i K K += ,即n i iK K +=;③n 阶循环矩阵K 有n 个特征根: cossinm mx mxi n nλ=+ (0,1,,1)m n =-④关于元素列0121,,,...,n a a a a -的n 阶循环矩阵 A 可用循环矩阵基本列表示为210121...n n A a E a K a K a K --=++++,反之,能用循环矩阵基本列线性表示的矩阵,则一定是循环矩阵. 循环矩阵的性质性质1 同阶循环矩阵的和矩阵为循环矩阵. 性质2 同阶循环矩阵的乘积满足交换律.性质3 同阶循环矩阵的乘积为循环矩阵. 性质4 循环矩阵的逆矩阵为循环矩阵.n 阶矩阵A 关于多项式函数f (x) 生成的矩阵为f (A) ,A 的特征根与f (A) 的特征根有下面的结论:命题3.1 设f (x) 是一个n - 1 次多项式函数,若λ是矩阵A 的特征根,则 f (λ) 是矩阵f (A) 的特征根.命题3.2 设f (x) 是一个n - 1 次多项式函数,若矩阵A 相似于矩阵B , 则矩f (A) 相似于矩阵f (B) .考察n 阶循环矩阵K,K 的特征多项式为:()211,(n i njjnj E K ei πλλληη-=-=-=-==∏如果n 阶循环矩阵A 记为()210121...n A n A f K a E a K a K a K --==++++不难求得K 中与特征值j η相应的特征向量,记:()11...j j n x ηη-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦, ()()22......11j j j j j j j j kx x ηηηηηη⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦则由命题3.1得()()()()()jjj j A A Ax f K x f x η==,可以验证()()()()1111000,1,.11,1n n m kmkk k m xxm k mηη---==≠⎧==-=⎨=⎩∑∑.将这n 个两两正交的向量()j x 单位化,可得标准正交基()()()011,,...,n x x x -⎫⎬⎭,令矩阵()()()21011242(1)(1)2(1)(1)(1)111 (1)1...,,...,1..................1...n n n n n n n T x x ηηηηηηηηη-------⎛⎫ ⎪⎪⎫⎪==⎬⎪⎭⎪ ⎪⎝⎭则()()())0111',...n TT x x x --==命题 3.3 任意n 阶循环矩阵()A A f K = 在复数域 C 上都可对角化,即1T AT -=11[(0)(),...,()]n A A A diag f f f ηη-推论 n 阶循环矩阵A 可逆的充要条件是()0iA f η≠(i=0,1,...,n-1).例3:求四阶循环矩阵1234412334122341A ⎛⎫⎪⎪= ⎪⎪⎝⎭的特征根,并对角化.解: 令23()1234f x x x x =+++ 得 ()()A A f K =,0100001000011000K ⎛⎫⎪⎪= ⎪ ⎪⎝⎭由于2i nei πη==, 所以A 的特征根分别为:()()0A f η=10 , ()()1A f η=-2-2i, ()()2A f η=-2, ()()3A f η=-2+2i11111111111211i i T i i ⎛⎫ ⎪--- ⎪= ⎪-- ⎪---⎝⎭, 111111*********i i T i i -⎛⎫ ⎪--⎪= ⎪-- ⎪--⎝⎭4.特殊矩阵特殊对角化的研究前面对实对称矩阵循环矩阵的对角化问题作了研究,本部分主要讨论,当矩阵只有两个特征根时的对角化问题,方法简捷. 对于数域F 上的n 阶矩阵A ,若仅有的两个特征根都在F 内,并且可以对角化,不通过解线性方程组求特征向量,而用初等变换求出可逆矩阵T,使1T AT -为对角形矩阵.定理4.1 设数域F 上的n 阶矩阵A 可以对角化,其特征根为1λ,2λ,如果()10n s n n s B I A p I λ⨯⨯-⎛⎫-⎛⎫−−−−→ ⎪ ⎪ ⎪*⎝⎭⎝⎭初等变换P,B 为列满秩矩阵,那么(i) A 的属于1λ 的线性无关的特征向量为P 的n s -个列向量;A 的属于2λ的线性无关的特征向量为B 的s 个列向量.(ii) 令T = ( P ,B) ,则T 可逆,且有11122......T AT λλλλ-⎛⎫ ⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭其中1λ 有n s -个, 2λ有s 个.证 因为初等矩阵不改变矩阵的秩,且B 为列满秩,则()12s B I A λλ==-=秩秩的重数. (i )根据矩阵的初等变换和分块矩阵的运算性质,可得()())()(1,0n n s I A P B λ⨯--*=,从而()10I A P λ-= 因P 为列满秩矩阵,则P 的n s -个列向量为齐次线性方程组()10I A X λ-= 的基础解系,亦即P 的n s - 个列向量为A 的属于1λ的线性无关的特征向量. 又A 可以对角化,且2λ的重数为s ,则有可逆矩阵Q,使得11122......A Q Q λλλλ-⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭, 令1122......D λλλλ⎛⎫⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭,则有()()()()111212I A I A I Q DQ I Q DQ λλλλ----=--=()()1112QI D QQ I D Q λλ----=()()112Q I D I D Q λλ--- = 10Q OQ -=由于B 的列向量为1I A λ- 的列空间的基,则B 的s 个列向量为齐次线性方程组()10I A X λ-=的基础解系, B 的s 个列向量为A 的属于2λ的线性无关的特征向量.(ii) 因矩阵A 的属于不同特征根的特征向量线性无关,且特征向量的个数之和等于A 的阶数n ,于是, 令 )(,T P B = 即有1T AT D -=例4:令矩阵001010100A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求可逆矩阵T,使得1T AT -为对角形式.解: 方法一,先求A 的特征根()0101010A f λλλλ-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭= ()()211λλ-+则1λ = 1 (二重) , 2λ = - 1. 可见,此例为定理所述的情况.对矩阵1I A I λ-⎛⎫⎪⎝⎭作初等列变换,即11011000000001011000100101010010001001I A B I P λ-⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎪ ⎪---⎛⎫⎛⎫=→= ⎪ ⎪ ⎪ ⎪*⎝⎭⎝⎭ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭所以,由定理4.1 知,A 的属于2λ = - 1 的线性无关的特征向量为()11,0,1Ta =-;A 的属于1λ = 1 的线性无关的特征向量为()20,1,0Ta = , ()31,0,1Ta =令011100011T ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,则有1111T AT -⎛⎫⎪= ⎪ ⎪-⎝⎭. 这与[1 ]的结果一致.方法二 在矩阵()I A λ-中,亦可取21λ=-,这时1011000200201011000100101010010001001I A B I P ---⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪⎪ ⎪-----⎛⎫⎛⎫=→= ⎪ ⎪ ⎪ ⎪-*⎝⎭⎝⎭ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭则A 的属于1λ=1 的线性无关的特征向量为()11,0,1Ta =-- , ()20,2,0Ta =- ;A 的属于2λ=- 1 的线性无关的特征向量为()21,0,1Ta =-令101020101T --⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,则有1111T AT -⎛⎫ ⎪= ⎪ ⎪-⎝⎭.5.常规矩阵对角化方法的新探众所周知,对数域P 上一个n 阶矩阵A 是否存在一个可逆矩阵T ,使得1T AT -为对角形矩阵,当这种矩阵存在时,如何去寻求它.一般有关教材中都是先计算一个行列式,求出A 的特征值,再利用线性方程组和特征向量的有关理论及求法解决此问题的.在这里利用矩阵的初等变换解决此问题的,它比教材中的常规方法简单一些,因为不必解若干的齐次线性方程组,有时也不必计算行列式.5.1理论依据为说话方便,我们规定如果数域P 上,对n 阶矩阵存在一个可逆矩T ,使得1T AT -为对角形矩阵, 则称矩阵在数域P 上可对角化.当可对角化时, 我们说将A 对角化,即指求矩阵T ,使1T AT -为对角形矩阵.若矩阵n 在数域P 上可对角化, 则有P 上可逆矩阵T ,使得1T AT B-=为对角形矩阵.于是B 的主对角线上的元素,即为A 的全体特征值, 并且可表示:12,...S T Q Q Q = 其中i Q 为初等矩阵,i=1,2,...,s,于是,1111112......SS S B QQ Q AQ Q Q ----=,又1i Q -也是初等矩阵, 由初等矩阵与矩阵的初等变换的关系, 即知11Q AQ - , 相当于对A 施行了一次初等行变换与一次初等列变换.这里, 我们称此种初等变换为对A 施行了一次相似变换.显见, 可对A 施行一系列的相似变换化为B .又由, 12...S T EQ Q Q =(E 此处表单位矩阵)可如下进行初等变换, 则可将A 化为对角形矩阵B , 且可求得T :A AB E T ⎛⎫⎛⎫−−−−−−−→ ⎪ ⎪⎝⎭⎝⎭对施行一系列相似变换,对E 只施行其中的初等列变换. 当A 不可对角化时, 也可经相似变换化简A 后, 求得其特征值, 判定它可否对角化. 类似地, 可由111111...S S TQ Q Q E -----=,做如下初等变换则可将A 化为对角形矩阵B,且可求得T 或由B 求A 的特征值, 判定可否对角化:()()A AE B T −−−−−−−→对施行一系列相似变换,对E 只施行其中的初等行变换.并且在施行相似变换时, 不必施行一次行变换后接着施行一次列变换这样进行, 可施行若干次行或列变换后再施行若干次相应的列或行变换, 只要保持变换后, 最后所得矩阵与A相似即可.5.2 应用举例为叙述简便,这里用i r 表示i 第行,i c 表示第i 列,i j r kr +表示用数k 乘第j 行后再加到第i 行上,i j c kc +表示用数k 乘第j 列后再加到第i 列上.例5 求如下矩阵的特征值, 并判定它们可否对角化,若可则将其对角化:(1)511602311A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭, (2)1111111111111111B ⎛⎫⎪-- ⎪= ⎪-- ⎪--⎝⎭. 解:(1)由31511`602202r r A +-⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭ 13411402002c c C --⎛⎫⎪−−−→= ⎪ ⎪⎝⎭,知A 与C 相似. 易得,C 的特征值为2,2,2,且2E-C 的秩为2,所以C 不能对角化,从而知A 的特征值为2,2,2且A 不可以对角化.(2)由1,2,3,41111111111112200111120201111200210001000010001000010001000010000i r r i +=⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪--⎪ ⎪−−−−→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1,2,3,4i c c i -=−−−−−→ 1111,2,3,4,2,3,4441112111222202000200002000200002000210001000110011001010101010011001i i r r i c c i -=+=⎛⎫--⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪−−−−−→−−−−−→ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪- ⎪- ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭-⎝⎭20000200002000021111444311144413114441131444-⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪--- ⎪⎝⎭, 知B 可以对角化,B 的特征值为-2,2,2,2.令1111444311144413114441131444T ⎛⎫ ⎪⎪ ⎪--- ⎪=⎪ ⎪--- ⎪ ⎪ ---⎪⎝⎭, 则12000020000200002T AT --⎛⎫⎪⎪= ⎪⎪⎝⎭.当不易直接用相似变换化简判定时, 可先求出特征值, 再用相似变换.例6判定1200320000230043A -⎛⎫ ⎪-⎪= ⎪- ⎪-⎝⎭可否对角化,若可,则将其对角化. 解法1(教材中的方法)由120032000023043x x xE A x x ---=-- ()()()2461x x x =--+,知A 的特征值为4,6,-1,-1.解 齐次线性方程组()40E A X -=得一基础解系23100⎛⎫- ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭解 齐次线性方程组()60E A X -=得一基础解系00341⎛⎫ ⎪ ⎪⎪- ⎪ ⎪ ⎪⎝⎭解 齐次线性方程组()0E A X --=得一基础解系1100⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭,0011⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭于是可,A 可对角化,且取201031010*******01T ⎛⎫- ⎪⎪ ⎪=⎪- ⎪ ⎪ ⎪⎝⎭,则140060000100001T AT -⎛⎫⎪⎪= ⎪-⎪-⎝⎭.解法2由12003200002300431000010000100001-⎛⎫ ⎪- ⎪ ⎪- ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ 2143,r r r r --−−−−→ 12,3412004400002300661000010000100001c c c c ++-⎛⎫ ⎪- ⎪ ⎪- ⎪- ⎪−−−−→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭12000400001300061000110000100011--⎛⎫ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭123423,57r r r r --−−−−−→2100504003001700061000110000100011⎛⎫-- ⎪⎪⎪⎪-- ⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎝⎭214323,57c c c c --−−−−−→100004000010000621005310053001740017-⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭知,A 可对角化,且取.21005310053001740017T ⎛⎫- ⎪ ⎪⎪ ⎪= ⎪ ⎪- ⎪ ⎪ ⎪⎝⎭,11000040000100006T AT --⎛⎫⎪⎪= ⎪- ⎪⎝⎭两法比较, 法2比法1简便, 因不必计算行列式和解几个线性方程组.上述内容为本人对各类基本常见的矩阵类型的对角化计算方法,计算技巧的一些探讨,比较传统的计算方法、计算技巧,有一些优越性.计算简便,步骤简单具体,有较强的实用性.参考文献:[1] 张禾瑞 赫炳新 高等代数[M] 第四版 北京 :高等教育出版社 1998.166-410[3] 毛纲源 线性代数[M] 解题方法与技巧归纳 第二版 华中科技大学出版社 1997,7.213-241. [4] 丘维声 抽象代数[M] 北京 :高等教育出版社 2003.160-190.[5] 王萼芳 石生明 高等代数[M] 北京 :高等教育出版社 1987.176-254. [6] 王萼芳 高等代数教程[M] 北京清华大学 1996.91-184.[7] 张爱萍 循环矩阵的性质及其对角化[J] 广西师范自然科学报,2000,12.No.8.168-170. [8] 高吉全 矩阵特征根与特征向量的同步求解方法探讨[J] 数学通报,1991.12.No.7.23-26. [9] 郭亚梅.最小多项式与矩阵的对角化[J]河南机电高等专科学校学报.2006.No.4.106-108. [10]张正成 可对角化矩阵的应用[J] 科技资讯.2007.No.24.252-253.[11]张学元 线性代数能力试题解题[M] 武汉:华中理工大学出版社, 2000.34-37 [12]向人晶 矩阵可对角化的简单判定[J] 数学通报,2003,3.No.12.13-15.[13]靳廷昌有两个特征根矩阵对角化[J] 数学通报,1997,11.No.23.53-57.[14]李世余代数学的发展和展望[J] 广西大学学报.1985.No.1.146-148.[15]周立仁矩阵同时对角化的条件讨论[J] 湖南理工学院学报.2007.Vol.20.No.1.8-10.致谢本论文是在指导师陈巧云老师细心指导下完成.陈老师认真、负责、真诚的做人态度和作为教师对学生不倦教诲的精神,令我很受触动.同时,在论文的选题、修改、定稿都凝聚了陈老师的大量心血.陈老师尽心的指导与严格的监督,促使我最终完成了论文.值此论文完成之际,我谨向陈老师致以深深的敬意和感谢!On the martix diagonatization and application College of science Mathematics 082 Miao Rendong Director:Chen QiaoyunAbstract:This paper initially studied about matrit diagonatization concluding and summarizing about the necessary condition of matrix diagonalization,Through caclulation and research on read synmetrices matrices,cycle matrix,and special matrix diagonalizational ways it proride simple and fast ways of solution on the question of matrix diagonalization in the characteristic root,charateristic rector,and reversible matrix.Key words:diagonal matrix; matrix diagonalizationv; real symmetric matrix;eigenvalue; eigenvectors。
可对角化矩阵的应用两例【优秀资料】(可以直接使用,可编辑完整版实用资料,欢迎下载)可对角化矩阵的应用两例1 Fibonacci数列研究的矩阵方法在预备知识§3的例6中.我们已经证明了著名的Fibonacci数列0,1,1,2,3,5,8,13,…的通项公式,同学们自然会问,这个公式是如何发现的?下面利用矩阵特征值、对角化工具来回答这个问题,并求.这个数列的递推关系为,k=0,1,2, (1)初始条件为.令因为,所以. (2)取,则(2)式成为. (3) 由(3)式得出. (4) 于是,欲求Fibonacci数列的通项公式,只要计算,我们利用A的相似简化来计算.A的特征多项式为||=,它的两个根:,,是A的特征值.因此A可对角化.解齐次线性方程组得到它的一个基础解系.同理可得的一个基础解系是.令,则.于是(5) 从(4)式及初始条件得. (6) 比较(6)式两边的第2个分量得. (7) 这就是Fibonacci数列的通项公式.容易算出:. (8)以上极限的近似值0.618在最优化方法中有重要应用.一些实际问题常常可归结为求目标函数y=f(x)在区间[a,b]上的最大值(或最小值),其中y=f(x)的解析表达式并不知道.假定y=f(x)在[a,b]上只有一个极值点(否则可将区间[a,b]划分),这时称y=f(x)是单峰函数.为了求单峰函数y=f(x) 在[a,b]上的最大值点,可以在区间[a,b]的若干点上做试验求出函数值,再比较函数值的大小.如何选取这些试验点,使得所做试验次数比较少,又能迅速找出最大值点?可采用如下的优选方法:第一个试点t1=a+0.618(b-a),第二个试验点=a+0.382(b-a),即是点t1关于区间[a,b]中点的对称点,比较与,若>,则由于y=f(x)是单峰函数,其最大值点不可能出现在区间[a,]里,从而可以去掉[a,],剩下区间[,b].第三个试验点t2=+0.618(b-),第四个试验点=+0.382(b-).比较f(t2)与f(),如果f(t2)<f(),则去掉区间[t2,b],剩下区间[,t2].依次进行下去,当剩下的区间长度比指定的正数 小时,就取剩下区间的中点作为所要求的点,称它为最优点(与真正的最大值点很接近的点).上述方法称为0.618法,也称为黄金分割法.它的优点是可以迅速缩短搜索区间,以便找出最优点.2 某地区居民色盲遗传情况的研究每一个人都有46个染色体.染色体是成对的,有22对是常染色体,一对是性染色体.男性的一对性染色体是(X,Y);女性的一对性染色体是(X,X).基因位于染色体上,因此基因也是成对的.在一对染色体的某一点位上的一对基因称为两个等位基因.显性的基因用A表示,隐性的基因用a表示.色盲基因是隐性的,且只位于X染色体上.一个女性居民若她的一对性染色体的某一点位P上的两个等位基因是X a X A(包括X A X a这一情形,以下同)或X a X a,则她患色盲,其中X a表示色盲基因.若她的点位P上的两个等位基因是X A X A,则她不患色盲.设N个女性居民中有N1个人的点位P上的两个等位基因是X A X A,N2个人的点位P上的两个等位基因是X A X a,N3个人点位P上的两个等位基因是X a X a.则这N个女性居民中色盲基因的频率为. (9)令,,. (10)则r,2s,t为这N个女性居民中点位P上的等位基因分别为X A X A,X A X a,X a X a的人所占的比例,这些比例记成(r,2s,t).显然有r+2s+t=1.用这些记号,则这N个女性居民中色盲基因的频率为s+t.类似地,一个男性居民若他的一对性染色体的某一点位P上的两个等位基因是X a Y,则他患色盲;若他的点位P上的两个等位基因是X A Y,则他不患色盲.设M个男性居民中有M1个人的点位P上的两个等位基因是X A Y,M2个人的点位P上的两个等位基因是X a Y,则这M个男性居民中色盲基因的频率为.令p=,q=. (11)则这M个男性居民中色盲基因的频率为q.这里p,q为这M个男性居民中点位P上的等位基因分别为X A Y,X a Y的人所占的比例,这些比例记成(p,q).显然有p+q=1.由此可见,男性居民的色盲基因频率等于男性色盲者的比例q.现在设某地区第一代男性居民中,点位P上的等位基因分别为X A Y,X a Y的人所占的比例为(p,q);女性居民中点位P上的等位基因分别为X A X A,X A X a,X a X a的人所占的比例为(r,2s,t) .则第一代男性居民,女性居民的色盲基因频率分别为q,s+t.我们来求该地区第二代男性居民,女性居民的色盲基因频率.这里假设第一代男性居民与女性居民的结合是随机的.设第二代男性居民共有L人,其中具有等位基因X A Y的人,由于他的基因X A来自母亲,而第一代女性居民中,基因X A的频率为. (12)因此具有等位基因X A Y的人的数目为L(r+s).同理,具有等位基因X a Y的人的数目为L(s+t).因此第二代男性居民中色盲基因的频率(它等于男性色盲者的比例)为. (13)由此看出,第二代男性居民中色盲基因的频率等于第一代女性居民中色盲基因的频率.设第二代女性居民共有W人,其中具有等位基因X A X A的人的数目为Wp(r+s),具有等位基因X A X a的人的数目为W[p(s+t)+(r+s)q],具有等位基因X a X a的人的数目为Wq(s+t).由此得出,第二代女性居民色盲基因的频率为. (14)由(14)式看出,第二代女性居民中色盲基因的频率等于第一代男性居民和女性居民的色盲基因频率的算术平均值.我们用,分别表示该地区第i代男性居民和女性居民的色盲基因频率,由上述知道. (15)其中i=2,3,….若知道了b1,c1,我们来求b n,c n.从(15)式得. (16) 把(16)式右端的系数矩阵记作B.从(16)式容易得出. (17)由此可见,求b n,c n归结为求出B n-1.为此我们来化简B,求其特征多项式,得B的特征值1,-.由此看出,B可对角化:解齐次线性方程组(I2-B)X=0,得到它的一个基础解系:;解齐次线性方程组(-I2-B)X=0,得到它的一个基础解系:.令,则.于是. (18) 因此. (19) 由(19)式得. (20)这说明,尽管第一代男性居民、女性居民的色盲基因频率可能不相同,但是经过好几代(每一代都是随机结合)之后,两个性别的居民的色盲基因频率将接近相等.(本文摘自庄瓦金编著的《高等代数教程》, 国际华文出版社)第四节 实对称矩阵的对角化一个n 阶矩阵A 具备什么条件才能对角化?这是一个比较复杂的问题. 本节我们仅对A 为实对称矩阵的情况进行讨论. 实对称矩阵具有许多一般矩阵所没有的特殊性质.内容分布图示★ 实对称矩阵的性质 ( 1 ) ★ 实对称矩阵的性质 ( 2 ) ★ 对称矩阵对角化的方法★ 例1 ★ 例2 ★ 例3★ 例4★ 内容小结 ★ 课堂练习★ 习题4-4 ★ 返回内容要点:定理1 实对称矩阵的特征值都为实数.注: 对实对称矩阵A ,因其特征值i λ为实数, 故方程组0)(=-X E A i λ是实系数方程组, 由0||=-E A i λ知它必有实的基础解系, 所以A 的特征向量可以取实向量.定理2 设21,λλ是对称矩阵A 的两个特征值, 21,p p 是对应的特征向量. 若21λλ≠, 则1p 与2p 正交.定理 3 设A 为n 阶实对称矩阵,λ是A 的特征方程的k 重根,则矩阵E A λ-的秩k n E A r -=-)(λ,从而对应特征值λ恰有k 个线性无关的特征向量.定理4 设A 为n 阶实对称矩阵, 则必有正交矩阵P ,使 Λ=-AP P 1,其中Λ是以A 的n 个特征值为对角元素的对角矩阵.与上节将一般矩阵对角化的方法类似,根据上述结论,可求正交变换矩阵P 将实对称矩阵A 对角化的步骤为:(1) 求出A 的全部特征值s λλλ,,,21 ;(2) 对每一个特征值i λ, 由0)(=-X A E i λ求出基础解系(特征向量); (3) 将基础解系(特征向量)正交化;再单位化;(4) 以这些单位向量作为列向量构成一个正交矩阵P ,使 Λ=-AP P 1.注:P 中列向量的次序与矩阵Λ对角线上的特征值的次序相对应.例题选讲:例1 (讲义例1) 设实对称矩阵,320222021⎪⎪⎪⎭⎫ ⎝⎛----=A 求正交矩阵P , 使AP P 1-为对角矩阵.例2 (讲义例2) 设有对称矩阵,310130004⎪⎪⎪⎭⎫ ⎝⎛=A 试求出正交矩阵P , 使AP P 1-为对角阵.例 3 (讲义例3) 已知⎪⎪⎪⎭⎫⎝⎛=a a A 2020002(其中0>a )有一特征值为1, 求正交矩阵P 使得AP P 1-为对角矩阵.例4 (讲义例4) 设⎪⎪⎭⎫ ⎝⎛--=2112A , 求.nA课堂练习1.设实对称矩阵,020212022⎪⎪⎪⎭⎫ ⎝⎛----=A 试求出正交矩阵P , 使AP P 1-为对角阵.2.设n 阶实对称矩阵A 满足A A =2,且A 的秩为r , 试求行列式|2|A E -的值.学院2021届本科毕业论文(设计)矩阵的对角化及其应用学生姓名:学号:专业:数学与应用数学指导老师:A Graduation Thesis (Project)Submitted to School of Science, Hubei University for NationalitiesIn Partial Fulfillment of the Requiring for BS DegreeIn the Year of 2021Diagonalization of the Matrix and its ApplicationsStudent Name Student No.:Specialty:Supervisor: Date of Thesis Defense: Date of Bookbinding:摘要矩阵在大学数学中是一个重要工具,在很多方面应用矩阵能简化描述性语言,而且也更容易理解,比如说线性方程组、二次方程等.矩阵相似是一个等价关系,利用相似可以把矩阵进行分类,其中与对角矩阵相似的一类矩阵尤为重要,这类矩阵有很好的性质,方便我们解决其它的问题.本文从矩阵的对角化的诸多充要条件及充分条件着手,探讨数域上任意一个n阶矩阵的对角化问题,给出判定方法,研究判定方法间的相互关系,以及某些特殊矩阵的对角化,还给出如幂等矩阵、对合矩阵、幂幺矩阵对角化的应用.关键词:对角矩阵,实对称矩阵,幂等矩阵,对合矩阵,特征值,特征向量,最小多项式IAbstractThe matrix is an important tool in college mathematics, and can simplify the description language based on the application of matrix in many ways. So it is easier to understand in many fields, for example, linear equations, quadratic equations. In many characteristics, the matrix similarity is an very important aspect. We know that the matrix similarity is an equivalence relation by which we can classify matrix, the diagonal matrix is very important. This kind of matrix has good properties, and it is convenient for us to solve other problems, such as the application of similar matrix in linear space. In this paper, we first discuss many necessary and sufficient conditions of diagonalization of matrix and then give some applications of special matrix diagonalization.Key words: diagonal matrix,real symmetric matrix,idempotent matrix,involutory matrix,the eigenvaule,the feature vector,minimal polynomialII目录摘要 (I)Abstract (II)绪言 (1)课题背景 (1)目的和意义 (1)国内外概况 (1)预备知识 (2)相关概念 (2)矩阵的对角化 (4)特殊矩阵的对角化 (14)矩阵对角化的应用 (22)总结……………………………………………………………………………………… 24 致谢………………………………………………………………………………………25 参考文献 (26)独创声明 (28)III1 绪言本课题研究与矩阵的对角化相关的问题,从对角化的判定展开论述,结合其它学术期刊的结论加上自己的体会,希望能让读者更好的理解矩阵及其对角化的妙处.1.1 课题背景在由北京大学数学系几何与代数教研室前代数小组编、王萼芳与石生明修订、高等教育出版社出版的《高等代数》一书中,我们为了方便线性方程组的运算引入了矩阵的概念.在线性方程组的讨论中我们看到,线性方程组的系数矩阵和增广矩阵反应出线性方程组的一些重要性质,并且解方程组的过程也表现为变换这些矩阵的过程.除线性方程组之外,还有大量的各种各样的问题也提出矩阵的概念,并且这些问题的研究常常反应为有关矩阵的某些方面的研究,甚至于有些性质完全不同的、表面上完全没有联系的问题,归结为矩阵问题以后却是相同的.在二次型中我们用矩阵研究二次型的性质,引入了矩阵合同、正定、负定、半正定、半负定等概念及其判别方法.在向量空间中用矩阵研究线性变换的性质,引入矩阵相似的概念,这是一种等价关系,利用它我们把矩阵分类,其中与对角矩阵相似的矩阵引起的我们的注意,由此我们对线性变换归类,利用简单的矩阵研究复杂的,方便我们看待问题,进而又引入对角型矩阵、λ矩阵及若尔当标准型.本文主要由矩阵定义和向量空间研究矩阵的对角化,从不同角度揭示矩阵对角化的判定及其性质,还给出特殊矩阵的对角化及其相应的应用.1.2 课题研究的目的和意义课题研究的意义:(1) 研究矩阵对角化的判定定理及应用,为其它学术研究提供便捷的工具;(2) 比较全面的介绍矩阵的对角化,方便读者的整体理解和应用;1.3 国内外概况实数域、复数域等数域上的矩阵的对角化研究已经很成熟,涉及特征值、最小多项式、线性变换方面的对角化证明也已完善,四元素体上矩阵的广义对角化也有小有成就,矩阵对角化与群环域的结合方面的研究也有所突破.实对称矩阵、正交矩阵、分块儿矩阵的对角化已完善,矩阵的应用也渐渐出现在更多的学科和科研当中.矩阵的同时对角化、同时次对角化,以及对角化与秩的恒等式等方面的研究基本完善. 12 预备知识给出本文内容所涉及的一些定义,方便对后面定理证明的理解.定义1 常以Pm⨯n表示数域P上m⨯n矩阵的全体,用E表示单位矩阵.定义2n阶方阵A与B是相似的,如果我们可以找到一个n阶非奇异的方阵矩阵T∈Pn⨯n,使得B=T-1AT或者A=T-1BT.根据定义我们容易知道相似为矩阵间的一个等价关系:①反身性:A=E-1AE;②对称性:若A相似于B,则B相似于A;③传递性:如果A相似于B,B相似于C,那么A相似于C.定义3n阶方阵A与B是合同的,如果我们可以找到一个n阶非奇异方阵T∈Pn⨯n,使得B =TTAT或者A=TTBT.根据定义我们容易知道合同也为矩阵间的一个等价联系:①反身性:A=ETAE;②对称性:由B=TTAT即有A=(T-1)TBT-1;③传递性:由A1=T1AT1和A2=T2TA1 T2有A2=(T1T2)TA(T1T2).⎛b10 0b2 定义4 式为 00⎝⋯⋯⎫⎪⎪⎪的m阶方阵叫对角矩阵,这里bi是数⎪⋯bm⎪⎭000T(i=1,2,⋯⋯m).定义5 方阵A∈Pn⨯n,若A=T-1BT,T非奇异,B是对角阵,则称A可相似对角化. 定义6 方阵A∈Pn⨯n,若A=TTBT,T非奇异,B是对角阵,则称A可合同对角化. 定义7 矩阵的初等变换:⑴互换矩阵的第i行(列)于j行(列);⑵用非零数c∈P乘以矩阵第i行(列);⑶把矩阵第j行的t倍加到第i行.定义 8 由单位矩阵经过一次初等行(列)变换所得的矩阵称为初等矩阵. 共有三 2种初等矩阵:①单位矩阵经过初等变换⑴得P(i,j)且P(i,j)-1=P(i,j);②单位矩阵经过初等变换⑵得P(i(t))且P(i(t))-1=P(i(1/t);③单位矩阵经过初等变换⑶得P(i,j(t))且P(i,j(t))-1=P(i,j(-t)).定义9 设方阵B∈Pn⨯n,若B2=E,就称B为对合矩阵.定义10 设方阵A∈Pn⨯n,若Am=A,就称A为幂幺矩阵.定义 11 设方阵C∈Pn⨯n,若C2=C,就称C为幂等矩阵.定义 12设方阵A∈Pn⨯n,λ∈P,若存在向量,满足Al=λX,我们就称λ是A的特征值,X 是A属于特征值λ的特征向量.定义13A∈Pn⨯n,定义mA(λ)为矩阵A的最小多项式,mA(λ)的一个根为A而且比其他以A为根的多项式的次数都低,mA(λ)首项系数是1.33 矩阵的对角化本章介绍数域P上n阶方阵阵的对角化问题.先给出矩阵对角化几个一般的充要、充分条件及其证明.引理1 如果μ1,…,μk是矩阵Q的不同的特征值,而αi1,…,αiri是属于特征值λi的线性无关的特征向量,i=1,2…,k,那么α11,…,α1r,…,αk1,…,αkr也线性无1k关.证明:假设t11α11+t12α12+…+t1r1α1r1+…+tk1αk1+…+tkrkαkrk=0,令ti1αi1+…tij∈P ,+tikiαiki=ηi,则Qηi=λiηi(i=1,2...,k),且 η1+η2+...+ηk=0 (1)分别用E,Q,Q2,…,Qk-1左乘以(1)两端,再由引理4得:Qmηi=λiηi,(m=1,2...k-1 ;i=1,...,t),由此有ηk=0,⎧η1+η2+...⎪λη+λη+...λη=0,Kk⎪1122⎪222⎨λ1η1+λ2η2+...λKηk=0,⎪...................................⎪k-1k-1k-1⎪λη+λη+...λ1122kηk=0.⎩该线性方程组的系数矩阵为111⎫⎛1⎪λλ λ 2k⎪D= 1,D为范德蒙行列式,又由λi(i=1,2...k)互异有D≠0. ⎪ k-1⎪k-1k-1⎪λλ2 λk⎭⎝1根据克拉默法则就有ηi=0,即ti1αi1+…+tikiαiki=0,再由αi1,...,αiri线性无关得:ti1=ti2=...=tiki=0(i=1,2...k) ,故α11,...,α1r1...,αiri...,αkrk线性无关.推论1 属于不同特征值的特征向量是线性无关的. 定理1Q∈Pn⨯n与对角阵相似⇔Q有n个特征向量,它们是线性无关的.证明:Q可以对角化⇔存在可逆矩阵T=(T1,T2,…,Tn)使得40⎫0⎫⎛λ1⎛λ1 ⎪⎪λλ ⎪⎪22T-1QT= QT=T,即⎪⎪⇒⎪⎪ 0⎪ λn⎭λn⎪⎝⎝0⎭(QT1,QT2,…,QTn)=(λT1,λT2,…,λTn).因此Q可以对角化⇔存在Ti(i=1,2…,n)∈P使得QTi=λiTi,也即Q有n个线性无关的特征向量.根据这个定理判定一个方阵是否可以对角化,必须从求解这个矩阵的特征多项式入手,虽然很直接,但考虑其计算量很大,加之特征值与特征向量只能分开求解,下面会介绍更简便的方法.推论2如过方阵Q∈Pn⨯n有n个不同的特征值,那么该矩阵可对角化.证明:由Q有n个不同的特征值及引理1的推论有Q有n个线性无关的特征向量,再由定理1即有Q可以对角化.注意:该推论为对角化的充分条件.定理2 μ1,μ2,...,μt(互不相同)是B∈Pn⨯n的特征值,μi∈P(i=1,2,...,t),B可对角化⇔∑r(μiE-B)=(t-1)n (r表示矩阵的秩).i=1t证明:(μiE-B)X=0的基础解系的一组基向量的个数为:n-r(μiE-B),我们可以得到关于μi的线性无关的特征向量的个数是n-r(μiE-B)(i=1,2,...,t),再由引理1推出矩阵B有∑(n-r(μiE-B))个线性无关的特征向量.i=1t根据定理1就有:n阶方阵B可对角化⇔B有n个线性无关的特征向量⇔⇔∑(n-r(μE-B))=n, ii=1tt∑r(μE-B)=(t-1)n. ii=1定理3 Q∈Pn⨯n与对角矩阵相似的充要条件:λi∈P(i=1,2...,t)且n-(λiE-Q)=ri(ri表示λi的代数重数).证明:设λi的线性无关的特征向量为βi1,βi2,...,βiri,由引理1有:5β11,β12,...,β1r,...,βir,...,βtr线性无关. 1it若r1+r2+...+rt=n,那么Q就有n个线性无关的特征向量⇔Q可以对角化.若Q与对角矩阵相似,则Q的属于不同特征值的特征向量总数一定为n.否则根据定理1就可以推出λ1,λ2,...,λt线性相关,矛盾.相较于定理1,定理3的优点在于判定一个矩阵是否可以对角化着点于特征向量的重数,方便了许多,也易于计算.下面利用定理1结合矩阵的秩给出矩阵可对角化的另一判别方法.引理2 设n阶方阵A,B∈Pn⨯n,则有r(A+B)≤r(A)+r(B).证明:先证rank[A,B]≤rank(A)+rank(B)……(2). 根据矩阵秩的定义有r[A,B]≤n⨯2n阶矩阵[A,B]的线性无关的行数≤方阵A的线性无关的行数+方阵B的线性无关的行数≤r(A)+r(B).⎡E⎤对方阵矩阵B+A=[B,A]⎢⎥,由(2)式有r(B+A)≤r[A,B],所以⎣E⎦r(A+B)≤r(A)+r(B).引理3 对于n阶方阵C,D有r(AB)≥r(A)+r(B)-n.⎛CO⎫⎛CT⎫证明:先证r(C)+r(D)=r OD⎪⎪≤rOD⎪⎪……(3),其中T为任意n阶方阵.⎝⎭⎝⎭显然当C,D中有一个为O时结论成立;另设r(C)=p,r(D)=q,则C有p阶子式M1≠0,D有q阶子式M2≠0.⎛CT⎫于是 OD⎪⎪有p+q阶子式⎝⎭M1*=M1M2≠0, OM2⎛CT⎫因此r OD⎪⎪≥p+q=r(C)+r(D). ⎝⎭要证r(AB)≥r(A)+r(B)-n,只需证明:运用分块矩阵的初等变换有:6 r(AB)+n≥r(A)+r(B)⎛En O⎝O⎫⎛En⎪→ AB⎪⎭⎝AO⎫⎛En⎪→ AB⎪⎭⎝A-B⎫⎛-BEn⎫⎪→ ⎪ O⎪,O⎪A⎭⎝⎭有初等变换不改变矩阵的秩以及式(3)有:⎛-BEn⎫⎪ r(AB)+n=r ≥r(A)+r(B). O⎪A⎭⎝⎛Ep另证:令r(A)=p,则存在可逆矩阵C,D使得CAD= O⎝OO⎫-1O⎫-1⎛⎪D ⎪,若令C ⎪⎪O⎭⎝OEn-p⎭=H,则r(H)=n-p以及A+H=C-1D-1.又因为任意矩阵左乘以与其行数相等的非奇异方阵或者右乘以与其列数相等的非奇异方阵不改变这个矩阵的秩,因此r(B)=r(C-1D-1B)=r(AB)+r(HB)≤r(AB)+r(H)≤r(AB)+n-p.引理3的一般形式:(Syl希尔维斯特不等式)设A,B,C∈Pn⨯n分别为i⨯j,j⨯k,k ⨯t矩阵,则r(ABC)≥r(AB)+r(BC)-r(B).证明:要证r(ABC)≥r(AB)+r(BC)-r(B)只需证明r(ABC)+r(B)≥r(A B)+r(BC),因为分块矩阵的初等变换不会改变矩阵的秩,而O⎫⎛EA⎫⎛ABCO⎫⎛EO⎫⎛OE⎫⎛AB ⎪⎪⎪⎪ = OE⎪ O⎪ -CE⎪ EO⎪ B-BC⎪⎪,B⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭也即AB⎫⎛ABO⎫⎛ABCO⎫⎛ABCAB⎫⎛O ⎪⎪⎪⎪, →→→ O⎪⎪⎪⎪B⎭⎝OB⎭⎝-BCB⎭⎝B-BC⎭⎝再有定理(3)就得O⎫⎛ABCO⎫⎛AB⎪⎪rank =rank≥rank(AB)+rank(BC). O⎪⎪B⎭⎝⎝B-BC⎭推论3设B1,B2,...,Bt为数域P上的n阶方阵,则r(B1)+r(B2)+...+r(Bt)≤(t-1)n+r(B1B2...Bt).定理4 设n阶方阵Q∈Pn⨯n,μ1≠μ2,且(μ1E-Q)(μ2E-Q)=0,则Q可对角化. 7证明:由μ1≠μ2,(μ1E-Q)(μ2E-Q)=0有矩阵Q的特征值为μ1或μ2,根据引理2,引理3得:r(μ1E-Q)+r(μ2E-Q)=n,从而Q的特征向量(线性无关)共有n-r(μ1E-Q)+n-r(μ2E-Q)=n个.由定理1即得矩阵Q可对角化.定理4' 设n阶方阵Q∈Pn⨯n,μ1,μ2,...,μt两两互不相等,若(μ1E-Q)(μ2E-Q)⋯(μt-1E-Q)(μtE-Q)=0则Q与对角阵相似.r(μ1E-Q)+r(μ2E-Q)+...+r(μtE-Q)≤(t-1)n,从而方阵Q的线性无关的特征向量的个数为n-r(μ1E-Q)+n-r(μ2E-Q)+...+n-r(μtE-Q)=tn-(r(μ1E-Q)+r(μ2E-Q)+...+r(μtE-Q))≥tn-(t-1)n=n.又因为r(Q)≤n,故方阵Q的线性无关的特征向量的个数为n,由此矩阵Q可对角化. 推论4在定理4的前提条件下我们可以得到如下结论:r(μ1E-Q)+r(μ2E-Q)+...+r(μtE-Q)=(t-1)n.定理4是判定矩阵相似与对角矩阵的充要条件,若矩阵阶数较高,计算量依然很大,特征值仍然需要计算,下面给出类似于定理4的充要条件.定理5设μ1,μ2,...,μt(互不相同)是Q∈Pn⨯n的的特征值,重数分别为s1,s2,...,st且s1+s2+ ...+st=n,Q可对角化⇔∏(μE-Q)=0. ii=1t证明:先证明必要性⎛μ1 Q与V= ⎝μ2⎫⎪⎪⎪相似,则存在非奇异矩阵T满足⎪μT⎪⎭8⎛ μ1E1⎫Q=TVT-1=T μ⎪2E2⎪⎪T-1,⎝μ⎪tEt⎪⎭其中Ei(i=1,2,...t)为si阶单位矩阵,于是(μiE-Q)=T(μiE-V)T-1⎛ (μi-μ1)E1⎫=T (μi-μ2)E⎪2⎪-1⎪T,⎪⎝(μi-μt)Et⎪⎭从而有∏tt(μ-1iE-Q)=∏T(μiE-V)Ti=1i=1⎛⎫∏(μi-μ1)E1⎪i=T ∏⎪(μi-μ2)E2⎪i⎪T-1.⎪⎝∏(μi-μ⎪t)Eti⎪⎭由于∏(μi-μj)Ej=0(j=1,2,...,t),因此i∏(μiE-Q)=0. i再证充分性:对于n阶矩阵Q,存在可逆矩阵T,使得⎛ J1⎫Q=TJT-1 J⎪=T 2⎪⎪T-1,⎝J⎪t⎪⎭Ji(i=1,2,...,t)是Jordan块,若Jj=μjEj(j=1,2,...t),Q就可以对角化,而(μiE-Q)=T(μiE-J)T-1⎛ (μi-J1)E1⎫=T (μJ⎪i-2)E2⎪⎪T-1,⎪⎝(μi-Jt)Et⎪⎭9⎛∏(μi-J1)E1 i (μE-Q)=T∏i i ⎝i∏(μii-J2)E2⎫⎪⎪⎪T-1. ⎪⎪(μi-Jt)Et⎪∏⎪i⎭所以,若(μiE-Q)=0,则因T可逆有∏(μiEi-Jj)=0(j=1,2,...,t),又因为当i≠j时,(μi≠μj)≠0,(μiEj-Jj)可逆,所以(μjEj-Jj)=0,即μjEj=Jj(j=1,2,...,t). 引理4X∈Pn⨯n,∂1,∂2…∂m...是X的关于特征值λ的特征向量,我们有∑ki∂ii=1m(ki,i=1,2,...,m不全为0,ki∈P)也是X的关于λ的特征向量.证明:已知X∂i=λ∂i,则kiX∂i=kiλ∂i,也即Xki∂i=λki∂i,因此X∑ki∂i=λ∑ki∂i,i=1i=1mm又ki不全为0,因此∑ki∂i≠0,由特征向量的定义有∑ki∂i是矩阵X的属于特i=1mmi=1征值λ得特征向量.定理6μ1,μ2,...,μt(互不相同)是n阶矩阵Q的所有特征值,它们的代数重数依次是s1,s2,...,st ,则方阵Q与对角矩阵相似⇔r(Aj)=sj(j=1,2,...,t),Aj=∏(μiE-Q).i≠j证明:先证必要性.Q可对角化⇒存在可逆矩阵T使得Q=Tdiag(μ1,μ2,...,μt)T-1,从而Aj=∏(μiE-Q)i≠j⎛∏(μi-μ1)E1 i≠j =T ⎝∏(μi≠ji-μ2)E2⎫⎪⎪⎪-1⎪T ⎪(μi-μt)Et⎪∏⎪i≠j⎭10⎛O1 =T ⎝∏(μi≠ji-μj)Ej⎫⎪⎪⎪-1⎪T,⎪⎪Ot⎪⎭其中Oj为sj阶0矩阵,Ej为sj阶单位矩阵((j=1,2,...,t). 因T可逆,且μi≠μj,所以有r(Aj)=r(∏(μi-μj)Ej)=r(Ej)=sj(j=1,2,...,t).i≠j再证充分性:用反证法.假设方阵Q不与对角矩阵相似,由几何重数≤代数重数得:至少存在一个整数q,使得r(μqE-Q)>n-sq,于是当j≠q时,由引理3有sj=r(∏(μiE-Q))≥∑r(μiE-Q)-(t-2)n>∑(n-sj)-(t-2)ni≠j=(t-1)n-(t-2)n-∑sii≠j=n-(n-sj)=sj.矛盾,假设不成立,故Q与对角矩阵相似.定理7μ1,μ2,...,μt(互不相同)是n级方阵Q∈Pn⨯n的所有特征根,若对任意m∈Z+满足r(μi E-Q)m=r(μiE-Q),则矩阵Q与对角矩阵相似.证明:设μ1,μ2,...,μt的重数分别为s1,s2,...,st,由Cayley-Hamilton第三版,高等教育出版社)得:定理(高等代数(μ1E-Q)s1(μ2E-Q)s2...(μtE-Q)st=O,再有引理3的推论就有r(μ1E-Q)s1+r(μ2E-Q)s2+...+r(μtE-Q)st≤(t-1)n+r((μ1E-Q)s1...(μtE-Q)st)=(t-1)n.11对任意正整数m,有r(μiE-Q)m=r(μiE-Q),因此r(μ1E-Q)+r(μ2E-Q)+...+r(μtE-Q)≤(t-1)n.从而有方阵Q的线性无关的特征向量的个数为n-r(μ1E-Q)+n-r(μ2E-Q)+...+n-r(μtE-Q) =tn-[r(μ1E-Q)+r(μ2E-Q)+...r(μtE-Q)]≥tn-(t-1)n=n.又r(Q)≤n,从而Q的线性无关的特征向量的个数小于或等于n,因此Q共有n个线性无关的特征向量,再根据定理1就有矩阵Q与对角矩阵相似.接下来介绍最小多项式在矩阵对角化中的应用.定理8 n阶方阵Q与对角矩阵相似⇔矩阵Q的最小多项式mQ(μ)无重根.证明:先证必要性.Q和对角阵相似⇒存在非奇异矩阵T∈Pn⨯n,满足⎛μ1Q=TVT-1=T⎝⎫⎪⎪-1T,⎪⎪μn⎪⎭从而有T-1QmT=Vm,令μ1,μ2,...,μt(t≤n)是方阵Q的互不相同的特征值,记f(μ)=(μ-μ1)(μ-μ2)..μ.(-μt) =μt+s1μt-1+...+st-1μ+st. 因为T-1f(Q)T=T-1(Qt+s1Qt-1+..+.st-1Q+stE)T=T-1QtT+s1T-1Qt-1T+...+st-1T-1QT+stT-1ET=Vt+s1Vt-1+...+st-1V+stE=f(V).又 f(V)=Vt+s1Vt-1+...+st-1V+stE⎛μ1t= ⎝tμ2⎫⎛s1μ1t-1⎪⎪ + ⎪⎪ t⎪ μn⎭⎝t-1s1μ2⎫⎛st⎪⎪ +...+⎪⎪ t-1⎪ s1μn⎭⎝st⎫⎪⎪⎪⎪st⎪⎭12⎛μ1t+s1μ1t-1+...+sk = ⎝⎛f(μ1) = ⎝f(μ2) tt-1μ2+s1μ2+...+sk⎫⎪⎪⎪⎪tt-1μn+s1μn+...+sk⎪⎭⎫⎪⎪⎪=0.⎪f(μn)⎪⎭所以f(Q)=0,于是mQ(μ)f(μ),然而f(μ)无重根,故mQ(μ)无重根.再证充分性:mQ(μ)的互不相同的根是μ1,μ2,...,μt,由mQ(μ)无重根就有:mQ(μ)=(μ-μ1)(μ-μ2)...(μ-μt-1)(μ-μt),于是mQ(Q)=(μ1E-Q)(μ2E-Q)...(μtE-Q)=0.令r(μiE-Q)=qi,则μi的特征子空间的维数为n-qi,因此Q总共有(n-q1)+(n-q2)+..+.(n -qt)=s个线性无关的特征向量,且s≤n. 又因为q1+q2+...+qt≤(t-1)n,故s=(n-q1)+(n-q2)+...+(n-qt)≥n.从而s=n,也即矩阵Q有n个线性无关的特征向量,由定理1就得Q可以对角化.134某些特殊矩阵的对角化4.1 实对称矩阵的对角化问题实对称矩阵这种矩阵很特别,在诸多方面的到运用,如常用来研究对称变换,对线性变换进行分类.而研究对称矩阵的对角化,是进行分类的初步.引理5 ]每一个n阶复矩阵都存在一个上三角矩阵与其相似,并且上三角矩阵主对角线上的元素为复矩阵的特征值.对任意A∈Cn⨯n,可逆矩阵T,使得*⎫⎛λ1 ⎪λ2 ⎪T-1AT= ,其中λ1,λ2,...,λn是矩阵A的特征值. ⎪⎪ λn⎪⎝⎭引理6 实对称矩阵的特征值为实数.证明:设λ0实对称矩阵A的一个特征值,则存在非零向量⎛x1⎫⎪ x⎪η= 2⎪,⎪ x⎪⎝n⎭满足 Aη=λ0η.令⎛1⎫⎪⎪= 2⎪,i称为xi的共轭复数(i=1,2,...n),则=0. ⎪⎪⎝n⎭观察下面式子'(Aη)=A'η=(A)'η=(Aη)'η,上式左边等于λ0'η,右边等于0η,故0'η=λ0'η,又'η=1x1+...+nxn≠0,14故λ0=0,即λ0是一个实数.引理7 设M,N为n⨯n实方阵,我们有如下结论:M,N在实数域上相似⇔M,N在复数域C上相似.证明:必要性显然,下面证明充分性.M,N在复数域上相似⇒∃n级可逆复矩阵,使得M=P-1NP.令P=A+iD,A ,D∈Rn⨯n,则(A+iD)M=N(A+iD)⇒AM=NA,DM=ND.所以对任意λ属于R都有(A+λD)=N(A+λD) (4)记h(x)=A+λD(实数系多项式),因为h(i)=A+iD=P≠0,所以h(x)≠0.因此,A+λD有有限个实数根,则存在η属于R,使得A+ηD≠0.由(4)式得M=(A+ηD)-1N(A+ηD), 也即M,N在实数域上相似.定理9⑴n级实对称矩阵A的特称根全是实数⇔存在正交矩阵T,满足T-1AT=T'AT=D,D 是上三角矩阵.⑵A正交且特征值全是实数⇒A是对称矩阵.证明:先证明必要性,根据引理5有,存在可逆矩阵P,使得*⎫⎛λ1 ⎪λ ⎪2P-1AP= ⎪. ⎪ λn⎪⎝⎭再根据引理7,矩阵如果在复数域上相似则一定在实数域上相似,因此可以令P=Q T为实矩阵,Q乃正交矩阵,T是上三角矩阵且主对角上元素全是实数,于是就有*⎫⎛λ1 ⎪λ2 ⎪Q-1AQ=T(P-1AP)T-1= ⎪⎪ λn⎪⎝⎭由T是上三角矩阵知他的逆T-1也是上三角矩阵,再由上三角矩阵之积仍然是上三角矩阵知Q-1AQ为上三角矩阵.再证充分性:A为n阶实矩阵,且存在正交矩阵Q使得Q-1AQ=Q'AQ为上三角矩阵,即15*⎫⎛λ1 ⎪λ ⎪2Q-1AQ= =Q'AQ,⎪⎪ λn⎪⎝⎭由此易知λ1,λ2,...,λn为实数且为A的特征根.⑵由⑴容易得到Q-1AQ=Q'AQ=D为上三角矩阵(Q是正交矩阵),又正交矩阵的积为正交矩阵,从而D为正交矩阵.因而D'=D-1,但是D-1是上三角矩阵,而D'为下三角矩阵,故D必为对角矩阵.从而A'=(QDQ')'=QD'Q'=QDQ'=A,也即A为对称矩阵.引理8 设A是对称变换,V1是A-子空间,则V1的正交补也是A-子空间. 定理10对任意n级实对称矩阵A,存在n阶正交矩阵T,使得T'AT=T-1AT为对角矩阵.证明定义A是与A对应的对称变换,只要证A有一组标准正交基(n个向量组成).下面用数学归纳法进行证明.当n=1时结论明显成立.假设对n-1结论成立.对n维欧氏向量空间Rn,β1为线性变换A的一个特征向量,对应的特征值是λ1.将β1单位化,并记为α1,再作α1的生成向量空间L(α1)的正交补,记为V1,由引理8有V1是对称变换A的不变子空间,他的维数为n-1,显然A限制在V1上仍然是对称变换A1,根据假设A1有特征向量α2,α3,...,αn做成V1的标准正交基,从而α1,... ,αn使Rn的标准正交基,又是A的n个特征向量.根据归纳假设定理得证.例4.1 已知⎛011-1⎫⎪10-11 ⎪A= , 1-101⎪⎪ -1110⎪⎝⎭求正交矩阵T使得T-1AT为对角矩阵.解:第一步,求矩阵A的特征值. 由16-1-11-1μ1-1 μE-A=μ-11μ-11-1-1μ0μ-1μ-11-μ2=0μ-10μ-100μ-1μ-11-1-1μ11-1-μ=-(μ-1)3101011=(μ-1)3(μ+3)由此有1(3重),-3为A的特征值.第二步,求特征值1对应的特征向量. 将μ=1带入下式⎧⎪μx1-x2-x3+x4=0,⎪⎨-x1+μx2+x3-x4=0,⎪-x1+x2+μx (5)3-x4=0,⎪⎩x1-x2-x3+μx4=0.得基础解系为μ1=(1,1,0,0),μ2=(1,0,1,0),μ3=(-1,0,0,1)..将基础解系正交化,得β1=(1,1,0,0),β12=(,-122,1,0),β1113=(-3,3,3,1)..再将上式单位化,有17η1=(11,,0,0), 22η2=(η3=(-112,-,,0), 6661113,,,). .上式为属于特征值1(三重)的三个标准正交特征向量.同理可求得特征值-3的标准正交特征向量为η4=(1/2,-1/2,-1/2,1/2).特征向量η1,η2,η3,η4构成R4的一组标准交基,所求正交矩阵',η2',η3',η4'), T=(η1此时⎛1⎫⎪ 1⎪T-1AT= ⎪. 1 ⎪ -3⎪⎝⎭4.2幂等矩阵⎛Er定理11幂等矩阵A与对角矩阵 O⎝O⎫⎪相似. ⎪O⎭证明:根据A2=A有,矩阵A的最小多项式mA(λ)整除λ2-λ.因λ2-λ=0无重根,由引理5 就有mA(λ)无重根,再由定理8就得矩阵A可对角化.4.3对合矩阵定理12对合矩阵A可对角化.证明:A2=E⇒mA(λ)λ2-1,易知λ2-1=0无重根,根据引理5得mA(λ)无重根,再根据定理8,A能够对角化.18。
高考数学知识点解析矩阵的相似对角化与应用高考数学知识点解析:矩阵的相似对角化与应用在高考数学中,矩阵的相似对角化是一个较为重要的知识点,它不仅在数学理论中有着深刻的意义,而且在实际应用中也具有广泛的用途。
本文将对矩阵的相似对角化进行详细的解析,并探讨其在高考数学中的常见应用。
一、矩阵相似对角化的基本概念首先,我们来了解一下什么是矩阵的相似。
设 A、B 是两个 n 阶矩阵,如果存在可逆矩阵 P,使得\(P^{-1}AP = B\),则称矩阵 A 与矩阵 B 相似。
而矩阵的相似对角化,就是指对于一个 n 阶矩阵 A,如果存在一个可逆矩阵 P 和一个对角矩阵\(Λ\)(对角线上的元素为矩阵 A 的特征值),使得\(P^{-1}AP =Λ\),则称矩阵 A 可相似对角化。
为了实现矩阵的相似对角化,我们需要求出矩阵的特征值和特征向量。
特征值\(λ\)满足方程\(|A λE| = 0\)(其中 E 为单位矩阵),而对应的特征向量\(x\)满足\(Ax =λx\)。
二、求矩阵特征值和特征向量的方法对于一个 n 阶矩阵 A,计算其特征值的具体步骤如下:首先,写出矩阵\(A λE\)的行列式,然后求解方程\(|AλE| = 0\),得到的解即为矩阵 A 的特征值\(λ\)。
求出特征值后,将每个特征值代入方程\((A λE)x = 0\),通过解线性方程组来求得对应的特征向量。
这里需要注意的是,对于一个特征值,可能存在多个线性无关的特征向量。
三、矩阵可相似对角化的条件一个 n 阶矩阵 A 可相似对角化的充要条件是:矩阵 A 有 n 个线性无关的特征向量。
如果矩阵 A 的特征值互不相同,那么一定可以相似对角化。
但如果存在重特征值,就需要判断其对应的线性无关的特征向量的个数。
例如,对于一个 2 阶矩阵,如果有两个不同的特征值,那么它一定可以相似对角化;如果只有一个特征值,且对应的特征向量只有一个,那么就不能相似对角化。
矩阵的对角化学生姓名:马莉莹 指导老师:朱广俊数学科学学院,2008级,数学与应用数学(师范)我们知道属于特征值i λ的特征向量i X 满足()0i i A I X λ-=,1,2,,,i n = 即它们满足如下条件:,1,2,,.i i i AX X i n λ== 其中 (4-9) 若将矩阵A 的特征向量i X 作为列向量所组成的n 阶方阵记为X ,则等式(4-9)可以表示为AX X =Λ (4-10) 其中Λ是一个对角矩阵,且主对角线上的元素为A 特征值;即,12000000n λλλ⎛⎫ ⎪ ⎪Λ= ⎪ ⎪⎝⎭(4-11) 已经证明了属于不同特征值的特征向量是线性无关的(定理4-1).所以,当i λ互不相同时,矩阵X 是非奇异的.当在等式 (4-10)两边同时乘以1X -,可得到1X AX -=Λ (4-12) 因此,通过特征向量所组成的矩阵和它的逆,我们能将特征值互异的矩阵A 变成一个主对角线上的元素为其特征值的对角矩阵.等式(4-12)所表示的变换称为矩阵A 的对角变换.如果矩阵A 的特征值不是互异的,那么A 未必可对角化.例如,矩阵3103A ⎛⎫= ⎪⎝⎭不能如(4-12)那样对角化.对于等式(4-12)中的矩阵A ,称为与对角矩阵相似.一般地,对任意两个同阶方阵A 和B ,如果存在一个非奇异的矩阵C ,使得1C AC B -=,则称方阵A 和B 是相似的,称由A 到B 的变换为相似变换.特别地,若矩阵B 是一个对角矩阵,且主对角线上的元素均是A 的特征值,则称矩阵B 是矩阵A 的标准形.除了主对角线上的元素的顺序外,该标准形是唯一的.在等式(4-12)中,我们称由矩阵A 的特征向量i X 构成的矩阵X 为矩阵A 的模态矩阵.矩阵的特征向量乘以任意非零常数后仍是该矩阵的特征向量.因此,矩阵A 的模态矩阵并非是唯一的.例1 试判断矩阵6221A ⎛⎫= ⎪-⎝⎭和8631B ⎛⎫= ⎪--⎝⎭是否是相似的. 解:若A 和B 相似,则存在一个2阶的可逆矩阵C 使得1C AC B -=;即AC CB =.令0.a b C ad bc c d ⎛⎫=-≠ ⎪⎝⎭且则 6286=-2131a b a b c d c d ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪⎪--⎝⎭⎝⎭⎝⎭⎝⎭6262836.22836a c a d a b a b a c b d c d c d ++--⎛⎫⎛⎫= ⎪ ⎪-+-+--⎝⎭⎝⎭利用矩阵相等可得下面的齐次线性方程组2320273067202620a b c a c d a b d b c d --=⎧⎪+-=⎪⎨--=⎪⎪+-=⎩37,26,2,2a t s b t s c s d t =-=-==,其中s t 和是任意实数,为该齐次线性方程组的解.因此,存在一个可逆矩阵372622t s t s C s t --⎛⎫= ⎪⎝⎭,其中s t 和是任意实数. 由0C ≠可得22618120t st s -+≠()()6120,t s t s --≠ 2.t s t s ≠≠且因此矩阵A 和B 是相似的.令0, 1.s t == 则1113233,,02102C C -⎛⎫- ⎪⎛⎫== ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭且有11162328633.210231102C AC B -⎛⎫- ⎪⎛⎫⎛⎫⎛⎫=== ⎪ ⎪⎪ ⎪--- ⎪⎝⎭⎝⎭⎝⎭ ⎪⎝⎭故A 与B 相似.例2 证明相似矩阵具有相同的行列式和相同的特征值.解:设A 和B 是相似矩阵,则存在一个与A 和B 同阶的可逆矩阵C ,使得1C AC B -=.由性质矩阵乘积的行列式等于行列式之积,可得111B C A C C C AC C A I A A---=====则()()111A I C A I CC AC C IC B I λλλλ----=-=-=-即A 和B 有相同的特征多项式,由此易知:矩阵A 和B 有相同的特征方程和特征值.值得注意的是:例2的逆命题不成立.例如矩阵10120101A B ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭和有相同的特征值12==1λλ且A B =,但对于任意2阶可逆矩阵1C C AC I -=有,但.I B ≠,所以矩阵A 和B 不是相似的.例3 证明对所有自然数n 有n n i i i A X X λ=.解: 可用数学归纳法来证明该等式:由(4-9) 知 i i i AX X λ= i i i AX X λ=假设对任意正整数k 有k k i i i A X X λ=.由(4-9)得11k k k k i i i i i i i A X A X AX X λλλ++===即对所有自然数n 有n n i i i A X X λ= (4-13)若A 是具有n 个不同实特征值的n 阶实对称矩阵,则与n 个不同实特征值对应的特征向量是相互正交的(定理4-5).若将每一个特征向量通过适当的乘法进行正规化,则由其作为列向量组成的矩阵是一个正交矩阵.我们称用正交模态矩阵作用的变换为正交变换;即矩阵A 的正交变换为变换T C AC ,其中C 是一个正交矩阵.若一个n 阶实对称矩阵有多个特征值,则我们总能得到n 个彼此正交的单位向量.我们也能得到与其它特征向量正交的r 个线性无关的特征向量是一个r 重特征值对应的特征向量.此外,可取这些特征向量两两正交.我们假定实对称矩阵的这些性质均是成立的,而它的有关证明则将留在更有深度的线性代数文本中去讨论.定理4-6 每一个实对称矩阵均可通过正交变换化为标准型.定理4-6有时也称为主轴定理.我们将在本章的后段部分讨论该定理在解析几何中的应用.例4 设3113A ⎛⎫= ⎪⎝⎭.试求将矩阵A 变换为标准形的正交矩阵.解:A 的特征方程是2680λλ-+=;由此可得A 的特征值12λ=,24λ=.与特征值12λ=对应的特征向量为11.22T-⎛⎫ ⎪⎝⎭ 与特征值24λ=对应的特征向量为11.22T ⎛⎫ ⎪⎝⎭因此将矩阵A 变换为标准形的正交矩阵为 1122;1122⎛⎫⎪ ⎪- ⎪ ⎪⎝⎭即 111131202222111311042222-⎛⎫⎛⎫ ⎪ ⎪⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭⎝⎭。
XXX学校毕业论文(设计)对角化矩阵的应用学生姓名学院专业班级学号指导教师2015年 4 月 25 日毕业论文(设计)承诺书本人郑重承诺:1、本论文(设计)是在指导教师的指导下,查阅相关文献,进行分析研究,独立撰写而成的.2、本论文(设计)中,所有实验、数据和有关材料均是真实的.3、本论文(设计)中除引文和致谢的内容外,不包含其他人或机构已经撰写发表过的研究成果.4、本论文(设计)如有剽窃他人研究成果的情况,一切后果自负.学生(签名):2015 年4月25日对角化矩阵的应用摘要矩阵对角化问题是矩阵理论中一个关键性问题.本文借助矩阵可对角化条件,可对角化矩阵性质和矩阵对角化方法来研究可对角化矩阵一些应用,包括求方阵的高次幂,反求矩阵,判断矩阵是否相似,求特殊矩阵的特征值,在向量空间中证明矩阵相似于对角矩阵,运用线性变换把矩阵变为对角矩阵,求数列通项公式与极限,求行列式的值.【关键词】对角化;特征值;特征向量;矩阵相似;线性变换Application of diagonalization matrixAbstractMatrix diagonalization problem is the key issue in the matrix theory. In this paper, by using matrix diagonalization conditions, diagonalization matrix properties and matrix diagonalization method we study some applications of diagonalization matrix, including for high-order exponent of matrix, finding the inverse matrix, matrix to determine whether it is similar, the eigenvalue of special matrix, in the vector space that matrix similar to a diagonal matrix, using linear transformation matrix is a diagonal matrix, for the series of general term formula and limit, the determinant of value.[Key words] The diagonalization; Eigenvalue; Feature vector; Similar; Linear transformation目录引言 (1)1矩阵对角化 (1)1.1矩阵对角化的几个条件 (1)1.2对角化矩阵的性质 (3)1.3 矩阵对角化的方法 (5)2对角化矩阵的应用 (5)2.1求方阵的高次幂 (5)2.2反求矩阵 (6)2.3判断矩阵是否相似 (7)2.4求特殊矩阵的特征值 (7)2.5在向量空间中应用 (7)2.6在线性变换中应用 (7)2.7求数列通项公式与极限 (8)2.8求行列式的值 (11)2.9对角化矩阵在其他方面的应用 (12)参考文献 (14)致谢 (15)引 言现如今,我们所提到的矩阵对角化其实质指的就是矩阵和对角阵存在相似的地方,其中我们学过的线性变换也是可对角化的,其原理是指在某一组基的作用下这个线性变换可以变为对角阵(或者可以说是在某一组基的作用下这个线性变换的矩阵是可对角化的),当然刚刚提到的这个问题其实我们可以把它归类到矩阵是否可对角化的问题中去,因为其两者本身就是相辅相成的.当然本篇文章我们主要是研究和探索判定矩阵可对角化的诸多条件,以及我们如何去运用矩阵对角化的有关性质,来把将矩阵化为对角形的问题进行解决.与此同时,我们也在研究和探索中发现了它在其他方面一些重要的运用.1矩阵对角化我们所涉及的矩阵都是可以对角化的,其原理是指通过矩阵的一系列初等变换(指:行、列变换)后,就能够得到一个特殊的矩阵,其特殊性在于只有在其主对角线的数上不全为零,然而其他位置的数则是全部为零(那么这个特殊的矩阵就可以被我们称为对角阵),这一整个的变换过程就被我们称为矩阵的对角化.当然值得我们注意的是,我们所学过的矩阵并非都能对角化的,这个是有条件限制的.1.1矩阵对角化的几个条件引理]1[1 设n n P B A ⨯∈,,且,2A A =,2B B =BA AB =,则存在可逆矩阵P ,使B A ,可同时对角化.引理]2[2 如果n n n P diag P ⨯∈=),,,(21λλλ 的n 个对角元互不相同,矩阵n n P B ⨯∈,那么BP PB =当且仅当B 本身就是对角阵.因为任何一个幂等矩阵)(2A A A =一定相似于一个对角矩阵⎥⎦⎤⎢⎣⎡000rE ,所以任何一个对角矩阵都是能够进行谱分解的,即∑==n i i i A A 1λ,其中i λ是矩阵A 的特征值,矩阵i A 为幂等矩阵,那么是否任意有限个幂等矩阵的线性组合都可以对角化呢?有如下结论:定理]3[1 若,2211n n k k k A ∆++∆+∆=n k k k ,,,21 是n 个数,n ∆∆∆,,, 21是n 个幂矩阵,并且他们两两可替换,)(,j i i j j i ≠∆∆=∆∆,则矩阵A 可对角化.证明 若n ∆∆∆,,, 21是n 个幂矩阵,并且两两可换,则一定有一个可逆矩阵1P ,使得n ∆∆∆,,, 21,可同时对角化.n n n n P D P P D P 111111--=∆=∆,, )(1是对角矩阵,,n D D , P D k D k D k P P D k P P D k P P D k P k k k A n n n n n n )()()()(2211112211112211+++++++=∆++∆+∆=---- ,由是对角矩阵,,n D D 1知n n D k D k D k +++ 2211同样是对角矩阵,即矩阵A 为对角化的矩阵.定理]4[2 如果n n P A ⨯∈,21λλ,是它两个不相同的特征值,那么矩阵A 可对角化⇔一定有幂等矩阵∆,满足∆-+=)(121λλλE A .证明 必要性:如果A 是一个对角化的矩阵,那么就一定会有一个可逆的矩阵P ,满足∆=⎥⎦⎤⎢⎣⎡=-2211111E E AP P λλ 是一个对角阵.()()()121211121211111211000-----⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-+==P E P E P E P P E P P E P PAP A λλλλλλλλλ, 并且∆相似于2121212000∆=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡---P E P P E P P E P ,若∆为幂矩阵,则一定有一个幂矩阵∆满足∆-+=)(121λλλE A .充分性:若存在∆使得∆-+=)(121λλλE A ,因为∆是幂矩阵,所以一定会有一个T ,满足T E T ⎥⎦⎤⎢⎣⎡=∆-210, ()()T E E T T E E T T E T E A ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡-+=---2211112121121)0(0λλλλλλλλ, 因此,T E E T AT T ⎥⎦⎤⎢⎣⎡=--221111λλ, 即矩阵A 为可对角化的.定理]5[3 设矩阵n n P A ⨯∈存在n 个不同的特征值,则对于矩阵n n P B ⨯∈,BA AB =,当且仅当矩阵B A ,同时可以对角化.证明 必要性 若矩阵A 存在n 个特征值,且这些特征值是互不相同的数,则矩阵A 为对角化的矩阵.设AP P T 1-=,其中),,,(21n diag T λλλ =,则ABP P BP APP P BP P T 1111)(----==T BP P AP BPP P )(111---==,即T 与BP P 1-是可以进行交换的,因此得知BP P 1-是对角矩阵,且矩阵B 也是为对角化的矩阵.充分性 如果矩阵B A ,可以同时进行对角化,那么一定存在一个可逆阵P ,使得P D P A 11-=,P D P B 21-=(其中为21D D ,对阵),BA P D PP D P P D D P P D D P P D PP D P AB =====------11211212112111,因此我们可以通过上述的一系列条件,来求出A 的特征值,且这是两个相互不同的数.从而我们得出了矩阵对角化的成立的条件:如果∆=∆2这个条件成立,那么就认为矩阵A 可对角化,否则就认为矩阵A 不能可对角化,其中)(/)(21λλλ--=∆E A .1.2对角化矩阵的性质定理]6[4 设A 为数域P 上的一个n 阶的矩阵,且它为可对角化的,t λλλ,,,21 是A 的相互不同的特征根,则一定会有n 阶的t A A A ,,,21 满足(1)t t A A A A λλλ+++= 2211;(2)E E A A A t ,21=+++ 是单位矩阵;(3)i i A A =2;(4)j i A A j i ≠=,0,其中1-=T TB A i i . 证明 (1)如果A 可对角化,那么在数域P 上一定会存在一个可逆矩阵T ,并且它的阶数为n 阶,满足B AT T t =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-λλλ00211 , 其中i λ的重数为i s ,由于矩阵⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡++⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=110000111 t B λλ, 将它记为t t B B B λλλ+++ 2211,因此,)()()(1111122111----++=+++==T TB T TB T B B B T TBT A t t t t λλλλλ ,将其记为t t A A A λλλ+++ 2211,其中1-=T TB A i ,所以t t A A A A λλλ+++= 2211.(2)如果每个i B 为对角形的幂矩阵,那么E B B B t =+++ 21,E TET T TB T TB T TB A A A t t ==+++=+++----11121121 ,故E A A A t =+++ 21.(3)如果1-=T TB A i i ,那么i i i i i i i i i i A T TB T TB T B TB T TB T TB T TB T TB A ======-------112111112))((,故i i A A =2.(4)当j i ≠时, 0))((11111====-----T B TB T TB T TB T TB T TB A A j i j i j i j i ,0为零矩阵,故j i A A j i ≠=,0.例1 在数域P 上,若已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=6788152051115A 的三个特征根分别是3,2,1,则一定会有一个⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=211243132T ,满足B AT T =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-3000200011,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-1111342561T ,将矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=10030102001B , 记32132B B B ++,则,3211321132)32(A A A T B B B T TBT A ++=++==-- 其中1-=T TB A i i ,于是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=222222111,134412163912,2566151841012321A A A , 并且满足:(1)32132A A A A ++=;(2)E A A A =++321;(3))3,2,1(2==i A A i i ; (4)j i A A j i ≠=,0.可以通过一个比较具体的可对角化矩阵,很直观地反映上述所说的性质是成立的.1.3 矩阵对角化的方法1.3.1 运用矩阵初等变换的方法在数域P 上,一个n 维空间V ,研究和探讨它能否可以找到一组基,并且在此基的作用下,所有的矩阵都是对角化的矩阵;发现这种基存在时, 如何去探索它是一个线性代数学上相当重要的问题,可以利用矩阵的初等变换的方法来解决此问题.当发现矩阵A 不能够实现对角化的时候,同样可以经过相近的一系列变换后,化简出矩阵A ,并且能够判定它是否可以对角化.类似地,可有矩阵E Q Q Q T s s 111111-----= ,做如下的初等变换,则可以将矩阵A 化简为对角形矩阵B ,并且可以求得T 或由B 求A 的一系列特征值.1.3.2 求解齐次方程组的方法设矩阵A 是实对称矩阵,则求证交矩阵T 使得),,,(211n diag AT T λλλ =-的问题,一般的解法为:(1)求其特征值; (2)求其对应的特征向量;(3)写出矩阵T 及),,,(211n diag AT T λλλ =-.从而可以求出正交矩阵T ,可以避免了商的繁琐运算.定理]7[5 设A 是实对称矩阵,则有)1(21重,-n λλ,n αααβ,,,, 321对应于21λλ,,记)(1βL 由1β生成的一个空间,且)(32n L ααα,,, 由n ααα,,, 32生成的空间.2对角化矩阵的应用2.1求方阵的高次幂例2 设在数域P 上,有一个二维的线性空间V ,21ξξ,是这个线性空间V 的一组基,那么线性变换σ在21ξξ,这组基的作用下的矩阵⎥⎦⎤⎢⎣⎡-=0112A ,试通过上述给出的条件计算出矩阵k A .解 通过分析上述的条件,我们应该先计算线性变换σ在线性空间V 的另一组基21ηη,作用下的矩阵,令[][]⎥⎦⎤⎢⎣⎡--=2111,,2121ξξηη, 则⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡---10112111011211122111011221111, 易知⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡1011011k k, 再运用上面得出的几个关系⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡---10112111011221111, 即⎥⎦⎤⎢⎣⎡+--+=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-11111210121112111101121-1-101-121kk k k k k k.2.2反求矩阵例3 设有一个实对称矩阵A ,且它的阶数为3阶,已知11321==-=λλλ,,1λ对应于T P )1,1,0(1=,求解A .解 根据矩阵A 是3阶实对称矩阵的条件,我们可以推出矩阵A 可以对角化的结论,即得出矩阵A 是由三个线性无关的特征向量组成的结论,并且132==λλ对应于T X X X P ),,(321=,因为它和1P 正交,即003211=++=⋅X X X P P ,所以可以求出T T P P )1,1,0()0,0,1(32-==,,它们分别对应132==λλ.取 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==1000100011-01101010),,(321B P P P P ,, 则B AP P =-1,于是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==-010********21000121211000100011011010101PBP A . 2.3判断矩阵是否相似例4 请判断下述三个矩阵是否会相似⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=300020102,300120012,300020002321A A A . 解 我们可以很容易的得出三个矩阵321,,A A A 的特征值分别都是21=λ(二重),32=λ,其中矩阵1A 已经是对角阵,所以我们只需要进一步判断两个矩阵32,A A 是否都可以对角化.通过21=λ,0)2(2=-X A E ,可以推出T )0,0,1(1=α,因为21=λ,是一个二重的特征值,但是却只有一个特征向量与之所对应,那么我们可以推出矩阵2A 与矩阵1A 不相似的结论.通过21=λ,0)2(3=-X A E ,得出T T )0,1,0(,)0,0,1(21==ηη,通过32=λ,0)3(3=-X A E ,得出T )1,0,1(3=η,通过上述所推出的结论,我们可知矩阵3A 有三个线性无关的特征向量,即矩阵3A 与矩阵1A 这两个矩阵相似. 2.4求特殊矩阵的特征值例]8[5 设有一个实对称矩阵A ,并且它的阶数为n 阶,满足A A 22=,n r A r <=)(,求出A 的全部特征值.解 假设λ为矩阵A 的一个特征值,而我们令ξ为矩阵A 的特征向量,它对应于特征值λ,因为λξξ=A ,所以ξλλξξ22==A A ,又因为A A 22=,所以λξξξ222==A A ,即λλ22=,由此我们可以推出02或=λ,根据矩阵A 是实对称矩阵的这个条件,我们可以断定矩阵A 一定能够进行对角化,即⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=0022~ B A ,与r A r =)(,所以A 的秩数就是2的个数,以及A 有r 个2和)(r n -个0的特征值. 2.5在向量空间中应用例]9[6在n 维的V 空间中,有一个复矩阵,并且它的阶数为n 阶,还有一个复数α, 令{}{}0)(,)(21=-∈=∈-=βαβββαA E V W V A E W ,则矩阵A 相似于对角阵,并且{}021=⋂W W .证明 因为对于任意一个210W W X ⋂∈,则有βα)(0A E X -=和0)(0=-X A E α,所以0)(2=-βαA E .又因为发现矩阵A 相似于对角阵,所以我们可以推出0)(0=-X A E α与0)(2=-βαA E 两个的解空间是完全相同的,即{}021=⋂W W . 2.6在线性变换中应用例]10[7 设()1][>n X P n 是数域P 上的一个全体,且它是一个次数小于n 的多项式与零多项式,则请通过所学的进一步判断在n X P ][的任一组基下,矩阵通过微分变换τ能否变为对角形矩阵.证明 如果取()!1!211--n X X X n ,,,, , 那么矩阵可以表示为⎥⎦⎤⎢⎣⎡0001-n E ,所以有nA E λλ=-. 如果在某一组基的作用下,微分变换τ的矩阵B 为对角矩阵,由已知的矩阵B A ~可推出矩阵A 可对角化,那么就会存在一个可逆矩阵T 能够使得B AT T =-1,所以1-=TBT A .通过已知的微分变换τ的全为零,可以推出0=B ,0=A 这是不可能的,所以在n X P ][的任何一组基的作用下,微分变换τ的矩阵都不可能成为对角阵.2.7求数列通项公式与极限例]11[8 设两个数列{}{}n n q p ,都满足条件1,,21111==+=+=++q p q p q q p p n n n n n n ,则请求解nn n q p∞→lim .解 把已知条件中的几个递推关系组n n n n n n q p q q p p +=+=++11,2,通过化简改写成下面的列矩阵的形式:⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡++111111211121q p q p q p nn n n n ,由⎥⎦⎤⎢⎣⎡=1121A 和0=-A E λ,可以求出A 的21,2121-=+=λλ,并且21λλ,分别对应T T X X )1,2(,)1,2(21-==.取),(21X X X =,则⎥⎦⎤⎢⎣⎡-=-21212211X ,1210021-⎥⎦⎤⎢⎣⎡-+=X X A , 从而⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+-++=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡++++-++2)21()21(2)21()21(112100211111111n n n n nn n X X q p , 因此2)21()21(nn n p -++=,2)21()21(n n n q --+=, 并且2)21()21()21(2)21(2lim lim =--+-++=∞→∞→n n nn n nn n q p . 例9 已知),2,1(2,2),(,11111 =+=+=>==+++n ba b b a a b a n n n n n n βαβα这四个条件,请证明n n n n b a ∞→∞→lim lim 及存在并且相等,给出证明过程,同时请求出这两个的极限值. 证明 把已知条件中的递推关系组作进一步简化推出434,2211n n n n n n b a b b a a +=+=++,然后再改写为另一种矩阵的形式:⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡++11114341212143412121b a b a b a nn n n n ,由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=43412121A 和0=-A E λ,可以求出A 的14121==λλ,,并且21λλ,分别对应()()TTX X 11,1221,,=-=,取()⎥⎦⎤⎢⎣⎡-==1112,21X X X ,则 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-323131311X ,110041-⎥⎥⎦⎤⎢⎢⎣⎡=X X A , 因为⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡++1004111X b a n n ,⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⋅+⋅-+⋅-+⋅=⎥⎦⎤⎢⎣⎡-βα324131314131324231314231111n nn n b a X ,所以βα⋅⎪⎭⎫ ⎝⎛+⋅-+⋅⎪⎭⎫ ⎝⎛+⋅-=+3242313142311n n n a ,βα⋅⎪⎭⎫⎝⎛+⋅+⋅⎪⎭⎫ ⎝⎛+⋅-=+3242313142311n n n b ,即n n n n b a ∞→∞→=+=lim 3231lim βα. 例10 设有10=x ,e x =1,)1(11≥⋅=-+n x x x n n n 这三个条件,请求出n n x ∞→lim .解 从已知的三个条件可以推出),2,1(0 =>n x n ,以及)ln (ln 21ln 11-++=n n n x x x ,令n n x a ln =,则00=a ,11=a ,)1()(2111≥+=-+n a a a n n n ,所以 ⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡==⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡-+0111012121012121a a a a a a nn nn n , 由⎥⎥⎦⎤⎢⎢⎣⎡=012121A 和0=-A E λ,求得A 的21121-==λλ,,并且21λλ,分别对应TT X X )121(,)11(21,,-==.取),(21X X X =,令⎥⎥⎦⎤⎢⎢⎣⎡-=-11211321X,121001-⎥⎥⎦⎤⎢⎢⎣⎡-=X X A , 则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+-+n n nn n X X a a )21(1)21(1320121001111, 从而推出:))21(1(32nn a --=,即))21(1(32n e x n --=,32lim e x n n =∞→.例11 设11=x ,nn x x +=+111,求n n x ∞→lim .解 令1+=n n n a a x ,根据条件nn x x +=+111,将其简化为n n n a a a +=++12,然后再写成矩阵)2(0111011112111≥⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--+n a a a a a a n n n n n , 由⎥⎦⎤⎢⎣⎡=0111A 和0=-A E λ,求出A 的βλαλ=-==+=25125121,,且21λλ,分别对应的是T T X X )1(,)1(21,,βα==,取⎥⎦⎤⎢⎣⎡==11),(21βαX X X ,则100-⎥⎦⎤⎢⎣⎡=X X A βα, ⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡++++-+112211511100n n n n nn n X X a a βαβαβα, 即2151)()(1lim lim limlim 1122111-==--=--==++∞→++++∞→+∞→∞→ααββααββαβαn n n n n n n n n n n n n a a x . 2.8求行列式的值例]12[12 设有一个n 阶的行列式,化简并求出它的值.)0(sin cos 21001cos 2100000001cos 21000001cos 21000001cos 2≠=ααααααn D ,解 按照第一列展开的21cos 2---=n n n D D D ,可以写成矩阵的另外一种形式⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡---211011cos 2n n n n D D D D α, 记矩阵⎥⎦⎤⎢⎣⎡-=011cos 2αA ,则 )2(122211≥⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡----n D D A D D A D D n n n n n , 通过0=-A E λ,我们可以计算出矩阵A 的ia ia e e -==21λλ,,且21λλ,分别对应T ia T ia e X e X )1(,)1(21,,-==,取⎥⎦⎤⎢⎣⎡==-11),(21ia ia e e X X X ,则100--⎥⎦⎤⎢⎣⎡=X e e X A ia ia, 推出()()⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-----ααcos 21cos 40021221X e e X D D n ia n ia n n , 即)0(sin sin )1sin(≠+=αααn D n .例13 设有一个实对称矩阵A ,并且它的阶数是n 阶,满足条件A A =2,且r 为矩阵A 的秩,通过上述条件求出行列式A E -2的值.解 因为A A =2,X X A AX X 22λλ===,所以有0)-(2=X λλ.因为0≠X ,所以0)1-(=λλ,10或=λ.因为矩阵A 是一个n 阶的实对称矩阵,所以它相似于对角矩阵,又因为矩阵A 的秩为r ,所以一定会存在一个可逆矩阵P ,可以使得B E AP P r =⎥⎦⎤⎢⎣⎡=-0001,其中矩阵r E 表示的是r 阶单位矩阵,所以可以推出)(220022211r n E E B E PBP PP A E rn r -==-=-=----.2.9对角化矩阵在其他方面的应用例14 在某个城市的就业数据中显示,一共有30万人从事着不同的三种行业,分别是农业、工业、经商,假设在几年之间这个从业总人数都会保持不变,而且经过整个社会的普查显示:(1)在这个城市的30万人中,投身于农业的有15万人,工业的有9万人,经商的有6万人;(2)在投身于农业的人中,每年大概有%10的人转行去经商,%20的人转行去做工业;(3)在投身于工业的人中,每年大概有%20的人转行去干农业,%10的人转行去经商;(4)在投身于经商的人中,每年大概有%10的人转行去做工业,%10的人转行去干农业.现在请大概预测一下,在未来的一、二年以后,从事这三个行业的人数,以及经历多年以后,从事这三个行业的人员总数会有什么样的一个发展趋势.解 第i 年后还从事这三种行业的人员总数,我们会用一个3维的向量i X 去表示它,则T X )6,9,15(0=.如果想要求21X X ,,并且能够很精确地考察在∞→n 时,n X 的一个发展趋势,那么我们必须要引用一个3阶矩阵)(ij a A =,它的作用是用来体现从事这三种职业人员之间的转移情况.那我们就能够得出矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=8.01.01.01.07.02.01.02.07.0A ,通过矩阵的乘法法则,我们可以得出⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡===-2.79.99.12001AX X A X T ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡===04.823.1073.110212X A AX X , 所以01X A AX X n n n ==-,如果要继续进一步精确地分析n X ,那么必须要事先计算矩阵A 的n 次幂n A ,所以我们先可以将矩阵A 进行对角化,)5.0()7.0()1(8.01.01.01.07.02.01.02.07.0λλλλλλλ---=---=-E A ,所以能够得出特征值5.0,7.0,1321===λλλ,三个特征值分别代表其求出的所对应的三个特征向量321,,q q q ,于是令),,(321q q q Q =,则就会有矩阵1-=QBQ A ,从而推出1-=Q QB A n n ,0X A X n n =,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=5.07.01B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n nn B 5.07.01, 当∞→n 时,矩阵n B 将趋向于⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001,从而推出矩阵n A 将趋向于1001-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡Q Q , 因为矩阵n X 跟我们已经确定下来的常量*X 非常接近,所以可以得出1-n X 亦必趋于*X ,再通过1-=n n AX X 的转化,就能够准确得知*X 必需要满足条件**AX X =,进而可以推断出*X 是矩阵A 属于特征值11=λ的一个特征向量T T t t t t X ),,()111(*==,,,,303==++t t t t 10=t ,按照上面所讲述的规律转移,经过许多年以后,那么这三种职业的从业人数一定会趋于相等, 三者平均下来为10万人.参考文献[1] 北京大学教学系几何与代数教研室.高等代数(第二版)[M].北京:高等教育出版社,1988.[2] 胡显佑主编.线性代数挚习指导[M].天津:南开大学出版社,1997.[3] 刘九兰,张乃一,曲问薄主编.线性代数考研[M].天津:天津大学出版社,2000.5.[4] 谢国瑞主编.线性代数及应用[M].北京:高等教育出版社.1999.[5] 张学元主编.线性代数能力试题题解[M].武汉:华中理工大学出版社,2000.[6] 徐仲主编.线性代数典型题分析解集[M].西北工业大学出版社,1998,6.[7] 樊辉,钱吉林主编,代数学辞典[M].武汉:华中师范大学出艋社.1994,12.[8] 曹锡皓.高等代数[M].北京:北京师范大学出版社,1987.[9] 张远达.线性代数原理[M].上海:上海科学出版社,1981.[10] Kline Morris. Mathematical Thought from Ancient to Modern Times[M]. New York: OxfordUniversity Press, 1972.[11]Rebollo-Neira L,Fernandez Rubio J.On the Inverse Windowed Fourier transform[M].IEEET rankson Information Theory,1999.[12] Babaie-Zadeh,M. Jutten, C.,Mohimani, H. On the Error of Estimating the Sparsest Solution ofUnderdetermined Linear Systems[M].2011.致谢在开始准备着手写论文到最后定稿的整个过程中,指导教师XXX老师都是非常耐心和细心的引导我和帮助我,在此我向王老师表示由衷的感谢.王老师的严谨治学态度让我受益匪浅.在毕业论文写作的这段时间里,他时时刻刻关心着我的毕业论文的完成情况,并且经常给我指出毕业论文中的缺点与需要改正的地方,最后才能使得我可以顺利完成毕业论文.与此同时,我很感谢所有给过我帮助的老师、同学以及一起努力奋斗过的好朋友.第16 页共16页。