2017-2018学年高中数学苏教版选修4-4:4.4 4.4.3 参数方程的应用
- 格式:ppt
- 大小:1.79 MB
- 文档页数:37
4.1.2极坐标系[对应学生用书P5]1.极坐标系的概念(1)极坐标系:在平面上取一个定点O,自点O引一条射线Ox,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系.其中,点O称为极点,射线Ox称为极轴.(2)极坐标:设M是平面上任一点,ρ表示OM的长度,θ表示以射线Ox为始边,射线OM为终边所成的角.那么,每一个有序实数对(ρ,θ)确定一个点的位置.其中,ρ称为点M的极径,θ称为点M的极角,有序数对(ρ,θ)称为点M的极坐标.(3)在极坐标系中,如果极径ρ允许取负值,极角θ也可以取任意角,那么M(ρ,θ)的极坐标也可以表示为(ρ,θ+2kπ)或(-ρ,θ+(2k+1)π)(k∈Z).2.极坐标与直角坐标互化[对应学生用书P5][例1] 写出图中各点的极坐标,其中θ∈[0,2π).[思路点拨] 分析每一点对应的ρ与θ,写出极坐标.[精解详析] 由点A 在极坐标系中的位置知,它的极径为4,极角为0,所以它的极坐标为A (4,0),同理,得B ⎝⎛⎭⎫2, π4,C ⎝⎛⎭⎫3,π2,D ⎝⎛⎭⎫1,5π6,E (4,π),F ⎝⎛⎭⎫6,4π3,G ⎝⎛⎭⎫5,5π3,而极点O 的坐标为(0,θ),θ∈[0,2π).1.写点的极坐标要注意顺序:极径ρ在前,极角θ在后,不能把顺序颠倒了. 2.点的极坐标是不惟一的,但若限制ρ≥0,θ∈[0,2π),则除极点外,点的极坐标是惟一确定的.1.试画出满足下列条件的点,并说明它们有何特殊的位置关系: A ⎝⎛⎭⎫5,3π4;B ⎝⎛⎭⎫-5,3π4;C ⎝⎛⎭⎫5,-3π4;D ⎝⎛⎭⎫-5,-3π4. 解:所求各点如图所示.由图可以看出,点B 与点A ,点C 与点D 都关于极点对称;点C 与点A ,点B 与点D 都关于极轴对称;点D 与点A ,点B 与点C 都关于直线θ=π2(ρ∈R )对称.2.在极坐标系中,如果A ⎝⎛⎭⎫2,π4,B ⎝⎛⎭⎫2,5π4为等边三角形ABC 的两个顶点,求顶点C 的极坐标.解:设C 点的极坐标为(ρ,θ)(0≤θ<2π,ρ>0),如图. 则ρ=23,θ=π4+π2=3π4,或θ=5π4+π2=7π4.∴C 点的极坐标为⎝⎛⎭⎫23,7π4或⎝⎛⎭⎫23,3π4.[例2] 在极坐标系中,点A 的极坐标是⎝⎭⎫3,π6,求 (1)点A 关于极轴的对称点的极坐标; (2)点A 关于极点的对称点的极坐标;(3)点A 关于直线θ=π2的对称点的极坐标.(规定ρ>0,θ∈[0,2π))[思路点拨] 结合极坐标系及对称知识,确定对称点的极坐标. [精解详析] (1)设点A 关于极轴的对称点为A 1(ρ1,θ1),则ρ1=OA 1=OA =3,θ1=2π-π6=11π6.∴点A 关于极轴的对称点的极坐标为⎝⎛⎭⎫3,11π6. (2)设点A 关于极点的对称点为A 2(ρ2,θ2),则ρ2=OA 2=OA =3, θ2=π+π6=7π6.∴点A 关于极点的对称点的极坐标为(3,7π6).(3)设点A 关于直线θ=π2的对称点为A 3(ρ3,θ3),则ρ3=OA 3=OA =3, θ3=π-π6=5π6.∴点A 关于直线θ=π2的对称点的极坐标为⎝⎛⎭⎫3,5π61.解决极坐标下的对称问题要注意以下三点:(1)利用数形结合思想;(2)在对称的过程中极径的长度始终没有变化,主要在于极角的变化;(3)极径ρ≥0,极角θ是以x 轴正方向为始边,按照逆时针方向旋转得到的.2.记住以下结论:点(ρ,θ)关于极轴的对称点是(ρ,-θ),或(ρ,2π-θ);关于极点的对称点是(ρ,π+θ);关于过极点且垂直于极轴的直线的对称点是(ρ,π-θ).3.在极坐标系中,求点A (2,-π3)关于极轴所在的直线的对称的点的极坐标.解:结合极坐标系知A 关于极轴所在的直线对称点为⎝⎛⎭⎫2,2k π+π3或⎝⎛⎭⎫-2,(2k +1)π+π3(k ∈Z ).4.求点A ⎝⎛⎭⎫5,3π4关于下列直线对称的点的一个坐标: (1)θ=π2;(2)θ=π6.解:(1)点A 关于θ=π2的对称点的一个坐标为⎝⎛⎭⎫5,π4. (2)点A 关于θ=π6对称的点的一个坐标为⎝⎛⎭⎫5,-5π12.[例3] (1)把下列各点的极坐标化为直角坐标:A ⎝⎛⎭⎫3,-π4,B ⎝⎛⎭⎫2,-2π3,C ⎝⎛⎭⎫32,-π,D ⎝⎛⎭⎫4,-π2; (2)把下列各点的直角坐标化为极坐标:A ()3,-3,B ⎝⎛⎭⎫0,53,C (-2,23),其中极径ρ≥0,极角θ∈[0,2π).[思路点拨] 直接利用直角坐标和极坐标的互化公式进行转化即可. [精解详析] (1)根据x =ρcos θ,y =ρsin θ得各点的直角坐标分别为:A ⎝⎛⎭⎫322,-322,B (-1,-3),C ⎝⎛⎭⎫-32,0,D (0,-4). (2)根据ρ2=x 2+y 2,tan θ=y x得各点的极坐标分别为:A ⎝⎛⎭⎫23,11π6,B ⎝⎛⎭⎫53,π2,C ⎝⎛⎭⎫4,2π3.将极坐标化为直角坐标,只需利用公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,已知点的直角坐标求极坐标时,关键是确定θ的值,此时要注意点在坐标系中的位置及θ的范围.5.把下列极坐标化为直角坐标: (1)A ⎝⎛⎭⎫3,2π3;(2)B ⎝⎛⎭⎫4,-3π4; (3)C ⎝⎛⎭⎫-6,17π3;(4)D ⎝⎛⎭⎫5,π2. 解:(1)x =3cos 2π3=-32,y =3sin 2π3=332,故点A 的直角坐标为A ⎝⎛⎭⎫-32,332.(2)x =4cos ⎝⎛⎭⎫-3π4=-22,y =4sin ⎝⎛⎭⎫-3π4=-22,故点B 的直角坐标为B (-22,-22).(3)x =-6cos 17π3=-3,y =-6sin 17π3=33,故点C 的直角坐标为C (-3,33).(4)x =5cos π2=0,y =5sin π2=5,故点D 的直角坐标为D (0,5).6.写出下列直角坐标系中的点的一个极坐标:(1)P (3,3);(2)Q (0,-5);(3)R (26,-22);(4)O (0,0). 解:(1)ρ=32+(3)2=23,tan θ=33,且点P 在第一象限,故点P 的一个极坐标为⎝⎛⎭⎫23,π6.(2)ρ=5,θ=3π2,故点Q 的一个极坐标为⎝⎛⎭⎫5,3π2. (3)ρ=(26)2+(-22)2=42,tan θ=-33,且点R 在第四象限,故点R 的一个极坐标为⎝⎛⎭⎫42,11π6. (4)ρ=0,θ可为任意值,故点O 的极坐标为O (0,θ).1.写出下图中点A ,B ,C ,D ,E ,F ,G 的一个极坐标.解:A ⎝⎛⎭⎫6,53π,B ⎝⎛⎭⎫8,π6,C ⎝⎛⎭⎫5,π2,D ⎝⎛⎭⎫5,7π6,E ⎝⎛⎭⎫8,4π3,F (8,0),G ⎝⎛⎭⎫4,11π6. 2.已知点A ,B ,C ,D 的极坐标分别为A ⎝⎛⎭⎫122,5π4,B ⎝⎛⎭⎫42,3π4,C (5,0),D ⎝⎛⎭⎫52,π2. 求证:直线AB ⊥CD .证明:各点的直角坐标为A (-12,-12),B (-4,4),C (5,0),D ⎝⎛⎭⎫0,52. 由于k AB =4+12-4+12=2,k CD =52-00-5=-12,k AB ·k CD =-1,故AB ⊥CD .3.求在极坐标系中点M ⎝⎛⎭⎫14,-π6关于θ=π4的对称点N 的一个极坐标. 解:如图设N (ρ,θ)(ρ≥0,0≤θ<2π). 则ρ=OM ,θ-π4=π4+π6,即ρ=14,θ=2π3.∴N 的一个极坐标为⎝⎛⎭⎫14,2π3.4.已知A ,B 的极坐标分别为⎝⎛⎭⎫23,5π6,⎝⎛⎭⎫2,π3,求线段AB 的中点的一个极坐标. 解:A ,B 两点的直角坐标分别为(-3,3),(1,3). 线段AB 的中点的直角坐标为(-1,3).[对应学生用书P7]则ρ=2,tan θ=-3,0≤θ<π.所以线段AB 的中点的一个极坐标为⎝⎛⎭⎫2,2π3. 5.在极坐标系中,根据下列条件,求△ABC 的面积. (1)A ⎝⎛⎭⎫6,π6,B ⎝⎛⎭⎫4,π3,C ⎝⎛⎭⎫2,11π6; (2)A ⎝⎛⎭⎫6,13π12,B ⎝⎛⎭⎫4,π3,C ⎝⎛⎭⎫2,11π6. 解:(1)S △ABC =S △OAB +S △OAC -S △OBC =12×6×4sin π6+12×6×2sin π3-12×4×2sin π2=2+3 3.(2)S △ABC =S △OAB +S △OBC +S △OCA =12×6×4sin 3π4+12×4×2sin π2+12×6×2sin 3π4=4+9 2.6.已知两点的极坐标A ⎝⎛⎭⎫3,π2,B ⎝⎛⎭⎫3,π6,求线段AB 的长度及直线AB 的倾斜角. 解:根据极坐标的定义可得AO =BO =3,∠AOB =π3,即△AOB 为等边三角形,所以AB =AO =BO =3,∠ACO =π6(O 为极点,C 为直线AB 与极轴的交点),则直线AB 的倾斜角为5π6.7.在极轴上求与点A ⎝⎛⎭⎫42,π4的距离为5的点M 的直角坐标. 解:设M (r,0),则M 的直角坐标为(r,0). 因为A ⎝⎛⎭⎫42,π4,则A 的直角坐标为(4,4), 所以(4-r )2+16=5,即r 2-8r +7=0.解得r =1或r =7. 所以点M 的坐标为(1,0)或(7,0).8.在极坐标系中,若等边△ABC 的两个顶点的坐标是A ⎝⎛⎭⎫4,π4,B ⎝⎛⎭⎫4,5π4,求顶点C 的坐标.解:如图,由A ,B 两点坐标得A ,B 两点关于极点O 对称,即O 是AB 的中点.因为AB =8,△ABC 为正三角形,所以OC =43,∠AOC =π2,C对应的极角θ=π4+π2=3π4或θ=2π-π4=7π4,所以点C 的极坐标为⎝⎛⎭⎫43,3π4或⎝⎛⎭⎫43,7π4.。
参数方程的应用教学目标:1、能利用圆与椭圆的参数方程求变量的最值和范围问题;2、合理使用直线的参数方程解决有关弦长和距离等长度问题;教学重难点让学生通过参与解题过程的探索,进一步领会参数思想,体会参数方程的优越性一、课前热身1参数方程sin cos sin 2x y θθθ=-⎧⎨=⎩(θ为参数)化成普通方程是____________ 2直线l 经过(1,1)-且斜率为2,则l 的参数方程是____________3若实数,x y 满足2220x y y +-=,则2x y -的最大值是______________二、复习回顾常用曲线的参数方程的某些形式:1、直线的参数方程:过定点000(,)P x y 且倾斜角为α的直线的参数方程:⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数) 参数t 的几何意义是指有向线段222()()(0)x a y b r r -+-=>cos sin x a r y b r θθ=+⎧⎨=+⎩θ22221(0,0)x y a b a b +=>>⎩⎨⎧==θθsin cos b y a x θ22221(0,0)x y a b a b -=>>1212a x t t a y t t ⎧⎛⎫=+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪=- ⎪⎪⎝⎭⎩t 22(0)y px p =>222x pt y pt ⎧=⎨=⎩t 是椭圆22221(0)x y a b a b +=>>上在第一象限内的一点,(,0)A a 和(0,)B b 是椭圆的两个顶点,O 为原点,求四边形MAOB 的面积的最大值变式训练1:已知点M 是椭圆221169x y +=上任意一点, A 、B 是直线70x y +-=与两坐标轴交点,求MAB ∆面积的最小值例2、直线24x ty t=+⎧⎨=-⎩与曲线24y x=交于两个不同的点,P Q,已知(2,4)A,求(1)PQ的长;(2)AP AQ的值;(3)AP AQ+的值;变式训练2:经过点M作直线l,交曲线2cos:2sinxCyαα=⎧⎨=⎩(α为参数)于,A B两点,若,,MA AB MB成等比数列,求直线l的方程四、课堂小结1利用椭圆与圆的参数方程将最值问题转化为三角函数的最值问题;的几何意义解决弦长和距离等长度问题五、作业布置《步步高》73页——75页。
直线的参数方程〔教学设计〕教学目标:知识与技能:1 联系数轴、向量等知识,推导出直线的参数方程,并进行简单应用,体会直线参数方程在解决问题中的作用.2通过直线参数方程的推导与应用,培养综合运用所学知识分析问题和解决问题的能力,进一步体会运动与变化、数形结合、转化、类比等数学思想.过程与方法:能根据直线的几何条件,写出直线的参数方程及参数的意义情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。
通过建立直线参数方程的过程教学重点:联系数轴、向量等知识,写出直线的参数方程.教学难点:通过向量法,建立参数〔数轴上的点坐标〕与点在直角坐标系中的坐标之间的联系.教学过程:一、复习回忆:1直线的方向向量的概念.2在平面直角坐标系中,确定一条直线的几何条件是什么?3一条直线的倾斜角和所过的一个定点,请写出直线的方程.4如何建立直线的参数方程?二、师生互动,新课讲解1.回忆数轴,引出向量数轴是怎样建立的?数轴上点的坐标的几何意义是什么?教师提问后,让学生思考并答复下列问题.教师引导学生明确:如果数轴原点为O,数1所对应的点为A,数轴上点M 的坐标为,那么:①为数轴的单位方向向量,方向与数轴的正方向一致,且;②当与方向一致时〔即的方向与数轴正方向一致时〕,;当与方向相反时〔即的方向与数轴正方向相反时〕,;当M与O重合时,;③【设计意图】回忆数轴概念,通过向量共线定理理解数轴上的数的几何意义,为选择参数做准备.2类比分析,异曲同工问题:〔1〕类比数轴概念,平面直角坐标系中的任意一条直线能否认义成数轴?〔2〕把直线当成数轴后,直线上任意一点就有两种坐标.怎样选取单位长度和方向才有利于建立这两种坐标之间的关系?教师提出问题后,引导学生思考并得出以下结论:选取直线上的定点为原点,与直线平行且方向向上的倾斜角不为0时或向右〔的倾斜角为0时〕的单位向量确定直线的正方向,同时在直线上确定进行度量的单位长度,这时直线就变成了数轴.于是,直线上的点就有了两种坐标〔一维坐标和二维坐标〕.在规定数轴的单位长度和方向时,与平面直角坐标系的单位长度和方向保持一致,有利于建立两种坐标之间的联系.【设计意图】使学生明确平面直角坐标系中的任意直线都可以在规定了原点、单位长度、正方向后成为数轴,为建立直线参数方程作准备.3 选好参数,柳暗花明问题〔1〕:当点M在直线上运动时,点M满足怎样的几何条件?让学生充分思考后,教师引导学生得出结论:将直线当成数轴后,直线上点M运动就等价于向量变化,但无论向量怎样变化,都有.因此点M在数轴上的坐标决定了点M的位置,从而可以选择作为参数来获取直线的参数方程.【设计意图】明确参数.问题〔2〕:如何确定直线的单位方向向量?教师启发学生:如果所有单位向量起点相同,那么终点的集合就是一个圆.为了研究问题方便,可以把起点放在原点,这样所有单位向量的终点的集合就是一个单位圆.因此在单位圆中来确定直线的单位方向向量.教师引导学生确定单位方向向量,在此根底上启发学生得出,从而明确直线的方向向量可以由倾斜角来确定.当时,,所以直线的单位方向向量的方向总是向上.【设计意图】综合运用所学知识,获取直线的方向向量,培养学生探索精神,体会数形结合思想.4 等价转化,深入探究问题:如果点,M的坐标分别为,怎样用参数表示?教师启发学生回忆向量的坐标表示,待学生通过独立思考并写出参数方程后再全班交流.过程如下:因为,〔〕,,,所以存在实数,使得,即.于是,,即,.因此,经过定点,倾斜角为的直线的参数方程为〔为参数〕.教师提出如下问题让学生加强认识:①直线的参数方程中哪些是变量?哪些是常量?②参数的取值范围是什么?③参数的几何意义是什么?总结如下:①,是常量,是变量;②;③由于,且,得到,因此表示直线上的动点M到定点的距离.当的方向与数轴〔直线〕正方向相同时,;当的方向与数轴〔直线〕正方向相反时,;当时,点M与点重合.【设计意图】把向量转化为坐标,获得了直线的参数方程,在此根底上分析直线参数方程的特点,体会参数的几何意义.三、运用知识,培养能力1直线为参数上有B,C两点,它们对应的参数值分别为-2,4,那么线段BC的中点M对应的参数值是____________________2过点P -2,0且倾斜角为的直线截椭圆所得的弦长为_______________°.在学生解决完后,教师投影展示学生的解答过程,予以纠正、完善.然后进行比拟:在解决直线上线段长度问题时多了一种解决方法.【设计意图】通过此题训练,使学生进一步体会直线的参数方程,并能利用参数解决有关线段长度问题,培养学生从不同角度分析问题和解决问题能力以及动手能力.三、课堂小结,稳固反思:〔1〕直线参数方程求法;〔2〕直线参数方程的特点;〔3〕根据条件和图形的几何性质,注意参数的意义。
同步测控我夯基,我达标1.已知动圆x 2+y 2-2axcosθ-2bysinθ=0(a 、b 是正常数,且a≠b ,θ为参数,θ∈[0,2π)),则圆心的轨迹是( )A .直线B .圆C .抛物线的一部分D .椭圆 解析:把圆的方程化为标准方程:(x-acosθ)2+(y-bsinθ)2=a 2cos 2θ+b 2sin 2θ,其圆心坐标为(acosθ,bsinθ),于是动圆圆心的轨迹方程为⎩⎨⎧==.sin ,cos θθb y a x 消去参数θ,可得2222b y a x +=1,轨迹为椭圆. 答案:D2.直线⎪⎪⎩⎪⎪⎨⎧+-=+=t y t x 2333,211(t 为参数)和圆x 2+y 2=16交于A 、B 两点,则AB 的中点坐标为( )A .(3,-3)B .(-3,3)C .(3,-3)D .(3,-3) 解析:(1+21t)2+(-33+23t)2=16,得t 2-8t+12=0.∴t 1+t 2=8,221t t +=4,中点为⎪⎪⎩⎪⎪⎨⎧⨯+-=⨯+=,42333,4211y x 即⎩⎨⎧-==.3,3y x 答案:D3.过点(1,1),倾斜角为135°的直线截椭圆1422=+y x 所得的弦长为( ) A.522 B.524 C.2 D.523 解析:由题意,可设直线的参数方程为⎩⎨⎧+=-=,1,1t y t x 代入椭圆方程中,整理得到5t 2+6t +1=0,|t 1-t 2|=54514)56(4)(221221=⨯--=-+t t t t ,故所求弦长为2|t 1-t 2|=524. 答案:B4.抛物线x 2-2y-2mx+m 2+2=6m 的顶点的轨迹方程是_______________.解析:抛物线方程可化为(x-m)2=2(y+3m-1),设其顶点坐标为(x,y),则满足⎩⎨⎧+-==,13,m y m x 消去参数m ,可得y=-3x+1,即3x+y -1=0. 答案:3x+y -1=0 5.求椭圆1162522=+y x 的内接矩形的最大面积. 思路分析:恰当选择参变量,把椭圆内接矩形面积用参数表示出来,再利用函数的性质求解.解法一:椭圆的参数方程为⎩⎨⎧==t y t x sin 4,cos 5(参数t ∈[0,2π)),设第一象限内椭圆上一点M(x,y),由椭圆的对称性,知内接矩形的面积为S=4xy=4×5cost×4sint=40sin2t .当t=4π时,面积S 取得最大值40.此时x=5cos 4π=225,y=4sin 4π=22. 因此,矩形在第一象限的顶点为(252,22)时,内接矩形的面积最大为40. 解法二:设点M(x,y)是椭圆上第一象限内的点,则162522y x +=1,且x >0,y >0,即1=(5x )2+(4y )2≥2×5x ×4y , ∴xy≤10,当且仅当45y x =时取等号.由椭圆的对称性知内接矩形的面积为S=4xy≤40,也就是内接矩形的面积的最大值为40.6.求椭圆1812522=+y x 上的点到直线3x+4y -64=0的最大、最小距离. 思路分析:利用参数方程,将圆锥曲线上的点的坐标设为参数形式,这样减少曲线上点的坐标所含变量的个数,将二元函数的问题转化为一元函数的问题.解:将椭圆普通方程化为参数方程⎩⎨⎧==θθsin 9,cos 5y x (0≤θ<2π),则椭圆上任一点P 的坐标可设为P(5cosθ,9sinθ),于是点到直线3x+4y -64=0的距离为5|64sin 94cos 53|-⨯+⨯=θθd 5|64)sin(39|-+=ϕθ,其中tanφ=125, ∴d max =5103,此时sin(θ+φ)=-1;d min =5,此时sin(θ+φ)=1. 7.如图,已知点P 是圆x 2+y 2=16上的一个动点,点A 是x 轴上的定点,坐标为(12,0),当点P 在圆上运动时,线段PA 的中点M 的轨迹是什么?思路分析:由于点M 为线段PA 的中点,点A 的坐标已知,点P 在已知圆上,故而点P 的坐标可以用参数θ表示,所以点M 的坐标也就可以表示了,由此便可以求出线段PA 的中点M 的轨迹方程,进而知道其轨迹.解:设点M 的坐标为(x,y).由于圆的参数方程为⎩⎨⎧==θθsin 4,cos 4y x (参数θ∈[0,2π)),故可设点P 的坐标为(4cosθ,4sinθ).由线段中点的坐标公式,得点M 的轨迹参数方程为⎩⎨⎧=+=θθsin 2,cos 26y x (参数θ∈[0,2π)). ∴线段PA 的中点的轨迹是以点(6,0)为圆心、2为半径的圆.我综合,我发展8.已知A 、B 分别是椭圆193622=+y x 的右顶点和上顶点,动点C 在该椭圆上运动,求△ABC 的重心G 的轨迹方程.思路分析:△ABC 的重心G 取决于△ABC 的三个顶点的坐标,为此需要把动点C 的坐标表示出来,可考虑用参数方程的形式.解:由题意知A (6,0)、B(0,3).由于动点C 在椭圆上运动,故可设动点C 的坐标为(6cosθ,3sinθ),点G 的坐标设为(x,y),由三角形重心的坐标公式可得⎪⎪⎩⎪⎪⎨⎧++=++=,3sin 330,3cos 606θθy x 即⎩⎨⎧+=+=.sin 1,cos 22θθy x 消去参数θ得到4)2(2-x +(y-1)2=1. 9.过点P(210,0)作倾斜角为α的直线与曲线x 2+12y 2=1交于点M 、N ,求|PM|·|PN|的最大值及相应的α的值.思路分析:设出直线的参数方程,把|PM|·|PN|表示成α的函数.解:设直线为⎪⎩⎪⎨⎧=+=ααsin ,cos 210t y t x (t 为参数),代入曲线x 2+12y 2=1中,整理得 (1+11sin 2α)t 2+(10cosα)t+23=0, 于是|PM|·|PN|=|t 1t 2|=α2sin 11123+. 所以当sin 2α=0,即α=0时,|PM|·|PN|的最大值为23,此时α=0. 10.已知点P(x,y)是圆x 2+y 2=2y 上的动点,(1)求2x+y 的取值范围;(2)若x+y+a≥0恒成立,求实数a 的取值范围.思路分析:因为所求问题中涉及到圆x 2+y 2=2y 上动点P 的坐标x 与y 的关系,而二者的关系可用参数θ表示出来,故可设出圆的参数方程,从而把(1)求2x+y 取值范围的问题转化为求关于θ的函数的值域问题;对于(2)x+y+a≥0恒成立a≥-(x+y)恒成立a≥max{-(x+y)}. 解:(1)x 2+y 2=2y 化为标准方程为x 2+(y-1)2=1.设圆的参数方程为⎩⎨⎧+==θθsin 1,cos y x (参数θ∈[0,2π)), 则2x+y=2cosθ+sinθ+1=5sin(θ+φ)+1,其中tanφ=2.∵-1≤sin(θ+φ)≤1,∴-5+1≤5sin(θ+φ)+1≤5+1.∴2x+y 的取值范围为[-5+1,5+1].(2)x+y+a≥0恒成立a≥-(x+y)恒成立a≥max{-(x+y)}.而-(x+y)=-(cosθ+sinθ)-1=-2sin(θ+4π)-1, ∵-1≤sin(θ+4π)≤1, ∴-2-1≤-2sin(θ+4π)-1≤2-1, 即-(x+y)的最大值为2-1.由a≥-(x+y)恒成立,可知a≥2-1.11.已知点A (1,2),过点(5,-2)的直线与抛物线y 2=4x 交于另外两点B 、C ,试探讨△ABC 的形状.思路分析:直线与圆锥曲线的相交问题常常设出交点坐标,利用整体代入法解决问题. 解:由抛物线的参数方程,可设B(t 2,2t),C(s 2,2s),s≠t,s≠1,t≠1,则直线BC 的斜率为t s t s t s +2=--2222, 方程为y-2t=ts +2(x-t 2). 因直线BC 过点(5,-2),代入上式,并整理得到(s+1)(t +1)=-4. 因为k AB ·k AC =1222--t t ·1222--s s =)1)(1(4++t s =-1,所以AB ⊥AC ,从而△ABC 是直角三角形. 12.直线l :y=2x+b 与椭圆12322=+y x 交于A 、B 两点,当b 变化时,求线段AB 中点M 的轨迹.解:设AB 中点M(x 0,y 0),直线l 的方程为⎩⎨⎧+=+=θθsin ,cos 00t y y t x x (tanθ=2,t 为参数).代入椭圆方程,有2)sin (3)cos (2020θθt y t x +++=1,可得 (2cos 2θ+3sin 2θ)t 2+2(2x 0cosθ+3y 0sinθ)t+220x +320y -6=0.设A 、B 对应的参数值分别为t 1、t 2,则有t 1+t 2=0.又∵t 1+t 2=θθθθ2200sin 3cos 2)sin 3cos 2(2++y x ∴2x 0cosθ+3y 0sinθ=0.又∵tanθ=2,∴2x 0+6y 0=0,即x+3y =0.∴M 点的轨迹是直线x+3y =0在椭圆2322y x +=1内部的一条线段. 13.已知椭圆方程为12222=+by a x ,椭圆长轴的左、右顶点分别为A 1、A 2,P 是椭圆上任一点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,且A 1Q 与A 2Q 的交点为Q ,求点Q 的轨迹方程.解:设椭圆的参数方程为⎩⎨⎧==θθsin ,cos b y a x (θ为参数,且0≤θ<2π),则P 点坐标为(acosθ,bsinθ),由题意知cosθ≠1,sinθ≠0.∵P Ak 1=αθθ+cos sin a b ,P A k 2=a a b -θθcos sin , ∴Q A k 1=P A k 11-=θθsin )1(cos b a +-,Q A k 2=PA k 21-=θθsin )1(cos b a --. ∴A 1Q 的方程为y=)(sin )1(cos a x b a ++-θθ, ① A 2Q 的方程为y=θθsin )1(cos b a --(x-a). ② ①×②得y 2=)()(sin )1(cos 222222222a x ba a xb a --=--θθ. 化简整理得24222b ay a x +=1即为所求的轨迹方程. 我创新,我超越14.当s 和t 取遍所有实数时,(s+5-3|cost|)2+(s-2|sint|)2所能达到的最小值是多少?思路分析:观察所求式的结构,可以把它看作点(s +5,s )与点(3|cost|,2|sint|)的距离的平方,而这两个点的轨迹都可以用参数方程的形式写出来.故本题可考虑数形结合,并利用参数方程求解.解:已知式可看作是点A (s +5,s )到点B (3|cost|,2|sint|)的距离的平方,由点A (s+5,s )得⎩⎨⎧=+=.,5s y s x 消去参数s 得直线l :x-y -5=0.由点B(3|cost|,2|sint|),得⎩⎨⎧==.|sin |2|,cos |3t y t x 消去参数t ,得曲线C :4922y x +=1(x≥0,y≥0).作l 和C 的图象如图,可知 |AB|min 2=(22)1(1|53|-+-)2=2.。
选修4-4⎪⎪⎪坐标系与参数方程 第一节 坐 标 系突破点(一) 平面直角坐标系下图形的伸缩变换基础联通 抓主干知识的“源”与“流”设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.考点贯通 抓高考命题的“形”与“神”平面直角坐标系下图形的伸缩变换[典例] 求椭圆x 24+y 2=1,经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=y 后的曲线方程.[解] 由⎩⎪⎨⎪⎧x ′=12x ,y ′=y得到⎩⎪⎨⎪⎧x =2x ′,y =y ′.①将①代入x 24+y 2=1,得4x ′24+y ′2=1,即x ′2+y ′2=1.因此椭圆x 24+y 2=1经伸缩变换后得到的曲线方程是x 2+y 2=1.[方法技巧]应用伸缩变换公式时的两个注意点(1)曲线的伸缩变换是通过曲线上任意一点的坐标的伸缩变换实现的,解题时一定要区分变换前的点P 的坐标(x ,y )与变换后的点P ′的坐标(X ,Y ),再利用伸缩变换公式本节主要包括2个知识点: 1.平面直角坐标系下图形的伸缩变换; 2.极坐标系.⎩⎪⎨⎪⎧X =ax (a >0),Y =by (b >0)建立联系. (2)已知变换后的曲线方程f (x ,y )=0,一般都要改写为方程f (X ,Y )=0,再利用换元法确定伸缩变换公式.能力练通 抓应用体验的“得”与“失”1.在同一平面直角坐标系中,已知伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y .求点A ⎝⎛⎭⎫13,-2经过φ变换所得的点A ′的坐标.解:设A ′(x ′,y ′),由伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,得到⎩⎪⎨⎪⎧x ′=3x ,y ′=12y ,由于点A 的坐标为⎝⎛⎭⎫13,-2,于是x ′=3×13=1,y ′=12×(-2)=-1,所以A ′(1,-1)为所求.2.求直线l :y =6x 经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y变换后所得到的直线l ′的方程.解:设直线l ′上任意一点P ′(x ′,y ′), 由题意,将⎩⎪⎨⎪⎧x =13x ′,y =2y ′代入y =6x 得2y ′=6×⎝⎛⎭⎫13x ′, 所以y ′=x ′,即直线l ′的方程为y =x .3.求双曲线C :x 2-y 264=1经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y 变换后所得曲线C ′的焦点坐标.解:设曲线C ′上任意一点P ′(x ′,y ′), 由题意,将⎩⎪⎨⎪⎧x =13x ′,y =2y ′代入x 2-y 264=1得x ′29-4y ′264=1,化简得x ′29-y ′216=1,即x 29-y 216=1为曲线C ′的方程,可见经变换后的曲线仍是双曲线, 则所求焦点坐标为F 1(-5,0),F 2(5,0).4.将圆x 2+y 2=1变换为椭圆x 29+y 24=1的一个伸缩变换公式为φ:⎩⎪⎨⎪⎧X =ax (a >0),Y =by (b >0),求a ,b 的值.解:由⎩⎪⎨⎪⎧X =ax ,Y =by知⎩⎨⎧x =1a X ,y =1b Y ,代入x 2+y 2=1中得X 2a 2+Y 2b2=1,所以a 2=9,b 2=4,即a =3,b =2.突破点(二) 极坐标系基础联通 抓主干知识的“源”与“流” 1.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,点O 叫做极点,自极点O 引一条射线Ox ,Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标一般地,没有特殊说明时,我们认为ρ≥0,θ可取任意实数. (3)点与极坐标的关系一般地,极坐标(ρ,θ)与(ρ,θ+2k π)(k ∈Z)表示同一个点,特别地,极点O 的坐标为(0,θ)(θ∈R),和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用唯一的极坐标(ρ,θ) 表示;同时,极坐标(ρ,θ)表示的点也是唯一确定的.2.极坐标与直角坐标的互化点M直角坐标(x ,y )极坐标(ρ,θ) 互化公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ ⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x (x ≠0)考点贯通 抓高考命题的“形”与“神”极坐标与直角坐标的互化1.极坐标方程化为直角坐标方程的步骤 第一步判断极坐标的极点与直角坐标系的原点是否重合,且极轴与x 轴正半轴是否重合,若上述两个都重合,则极坐标方程与直角坐标方程可以互化第二步通过极坐标方程的两边同乘ρ或同时平方构造ρcos θ,ρsin θ,ρ2的形式,一定要注意变形过程中方程要保持同解,不要出现增解或漏解第三步根据极坐标方程与直角坐标方程的互化公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ及ρ2=x 2+y 2将极坐标方程转化为直角坐标方程2.直角坐标方程化为极坐标方程或直角坐标系中的点的坐标化为极坐标(1)直角坐标方程化为极坐标方程较为简单,只需将直角坐标方程中的x ,y 分别用ρcos θ,ρsin θ代替即可得到相应极坐标方程.(2)求直角坐标系中的点(x ,y )对应的极坐标的一般步骤:第一步,根据直角坐标系中两点间的距离公式计算该点与坐标原点的距离,即计算ρ; 第二步,根据角θ的正切值tan θ=yx (x ≠0)求出角θ(若正切值不存在,则该点在y 轴上),问题即解.[例1] 在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝⎛⎭⎫θ-π4=22. (1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标. [解] (1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,圆O 的直角坐标方程为:x 2+y 2=x +y ,即x 2+y 2-x -y =0,直线l :ρsin ⎝⎛⎭⎫θ-π4=22,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为:y -x =1,即x -y +1=0.(2)由⎩⎪⎨⎪⎧ x 2+y 2-x -y =0,x -y +1=0得⎩⎪⎨⎪⎧x =0,y =1,则直线l 与圆O 公共点的一个极坐标为⎝⎛⎭⎫1,π2. [方法技巧]1.应用互化公式的三个前提条件 (1)取直角坐标系的原点为极点. (2)以x 轴的正半轴为极轴.(3)两种坐标系规定相同的长度单位. 2.直角坐标化为极坐标时的两个注意点(1)根据终边相同的角的意义,角θ的表示方法具有周期性,故点M 的极坐标(ρ,θ)的形式不唯一,即一个点的极坐标有无穷多个.当限定ρ≥0,θ∈[0,2π)时,除极点外,点M 的极坐标是唯一的.(2)当把点的直角坐标化为极坐标时,求极角θ应注意判断点M 所在的象限(即角θ的终边的位置),以便正确地求出角θ(θ∈[0,2π))的值.极坐标方程的应用[例2] (2017·福州五校联考)已知曲线C 的极坐标方程为ρ2-22ρcos ⎝⎛⎭⎫θ+π4-2=0.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系xOy .(1)若直线l 过原点,且被曲线C 截得的弦长最小,求直线l 的直角坐标方程; (2)若M 是曲线C 上的动点,且点M 的直角坐标为(x ,y ),求x +y 的最大值. [解] (1)ρ2-22ρcos ⎝⎛⎭⎫θ+π4-2=0,即ρ2-2ρcos θ+2ρsin θ-2=0, 将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入得曲线C 的直角坐标方程为(x -1)2+(y +1)2=4, 圆心C (1,-1),若直线l 被曲线C 截得的弦长最小,则直线l 与OC 垂直, 即k l ·k OC =-1,k OC =-1,因而k l =1,故直线l 的直角坐标方程为y =x .(2)因为M 是曲线C 上的动点,因而利用圆的参数方程可设⎩⎪⎨⎪⎧x =1+2cos φ,y =-1+2sin φ(φ为参数),则x +y =2sin φ+2cos φ=22sin ⎝⎛⎭⎫φ+π4,当sin ⎝⎛⎭⎫φ+π4=1时,x +y 取得最大值2 2.[易错提醒]用极坐标系解决问题时要注意题目中的几何关系,如果几何关系不容易通过极坐标表示时,可以先化为直角坐标方程,将不熟悉的问题转化为熟悉的问题加以解决.能力练通 抓应用体验的“得”与“失”1.[考点一、二]已知直线l 的极坐标方程为2ρsin ⎝⎛⎭⎫θ+π4=2,点A 的极坐标为A ⎝⎛⎭⎫22,7π4,求点A 到直线l 的距离. 解:由2ρsin ⎝⎛⎭⎫θ+π4=2, 得2ρ⎝⎛⎭⎫22sin θ+22cos θ=2,由坐标变换公式,得直线l 的直角坐标方程为y +x =1,即x +y -1=0.由点A 的极坐标为⎝⎛⎭⎫22,7π4得点A 的直角坐标为(2,-2),所以点A 到直线l 的距离d =|2-2-1|2=22.2.[考点一]已知圆C 的极坐标方程为ρ2+22ρsin θ-π4-4=0,求圆C 的半径.解:以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系xOy .圆C 的极坐标方程为ρ2+22ρ⎝⎛⎭⎫22sin θ-22cos θ-4=0,化简,得ρ2+2ρsin θ-2ρcosθ-4=0.由坐标变换公式,得圆C 的直角坐标方程为x 2+y 2-2x +2y -4=0, 即(x -1)2+(y +1)2=6, 所以圆C 的半径为 6.3.[考点二]在极坐标系中,直线ρ(sin θ-cos θ)=a 与曲线ρ=2cos θ-4sin θ相交于A ,B 两点,若|AB |=23,求实数a 的值.解:直线的极坐标方程化为直角坐标方程为x -y +a =0,曲线的极坐标方程化为直角坐标方程为(x -1)2+(y +2)2=5,所以圆心C 的坐标为(1,-2),半径r =5,所以圆心C 到直线的距离为|1+2+a |2=r 2-⎝⎛⎭⎫|AB |22=2,解得a =-5或a =-1.故实数a 的值为-5或-1.4.[考点一、二](2017·洛阳统考)已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2. (1)将圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程.解:(1)由ρ=2知ρ2=4,由坐标变换公式,得x 2+y 2=4. 因为ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2, 所以ρ2-22ρ⎝⎛⎭⎫cos θcos π4+sin θsin π4=2. 由坐标变换公式, 得x 2+y 2-2x -2y -2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x +y =1.化为极坐标方程为ρcos θ+ρsin θ=1,即ρsin ⎝⎛⎭⎫θ+π4=22. [全国卷5年真题集中演练——明规律]1.(2016·全国乙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解:(1)消去参数t 得到C 1的普通方程为x 2+(y -1)2=a 2, 则C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ. 若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0, 由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0, 从而1-a 2=0,解得a =-1(舍去)或a =1.当a =1时,极点也为C 1,C 2的公共点,且在C 3上. 所以a =1.2.(2015·新课标全国卷Ⅰ)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.解:(1)因为x =ρcos θ,y =ρsin θ, 所以C 1的极坐标方程为ρcos θ=-2, C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0. (2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0, 解得ρ1=22,ρ2= 2. 故ρ1-ρ2=2,即|MN |= 2. 由于C 2的半径为1, 所以△C 2MN 的面积为12.[课时达标检测] 基础送分题——高考就考那几点,练通就能把分捡 1.在极坐标系中,已知圆C 经过点P ⎝⎛⎭⎫2,π4,圆心为直线ρsin ⎝⎛⎭⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.解:在ρsin ⎝⎛⎭⎫θ-π3=-32中,令θ=0,得ρ=1,所以圆C 的圆心坐标为(1,0). 因为圆C 经过点P ⎝⎛⎭⎫2,π4, 所以圆C 的半径PC = (2)2+12-2×1×2cos π4=1,于是圆C 过极点,所以圆C的极坐标方程为ρ=2cos θ.2.设M ,N 分别是曲线ρ+2sin θ=0和ρsin ⎝⎛⎭⎫θ+π4=22上的动点,求M ,N 的最小距离.解:因为M ,N 分别是曲线ρ+2sin θ=0和ρsin ⎝⎛⎭⎫θ+π4=22上的动点,即M ,N 分别是圆x 2+y 2+2y =0和直线x +y -1=0上的动点,要求M ,N 两点间的最小距离,即在直线x +y -1=0上找一点到圆x 2+y 2+2y =0的距离最小,即圆心(0,-1)到直线x +y -1=0的距离减去半径,故最小值为|0-1-1|2-1=2-1.3.在极坐标系中,求直线ρ(3cos θ-sin θ)=2与圆ρ=4sin θ的交点的极坐标. 解:ρ(3cos θ-sin θ)=2化为直角坐标方程为3x -y =2,即y =3x -2. ρ=4sin θ可化为x 2+y 2=4y , 把y =3x -2代入x 2+y 2=4y ,得4x 2-83x +12=0,即x 2-23x +3=0, 所以x =3,y =1.所以直线与圆的交点坐标为(3,1),化为极坐标为⎝⎛⎭⎫2,π6. 4.(2017·山西质检)在极坐标系中,曲线C 的方程为ρ2=31+2sin 2θ,点R ⎝⎛⎭⎫22,π4. (1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,把曲线C 的极坐标方程化为直角坐标方程,R 点的极坐标化为直角坐标;(2)设P 为曲线C 上一动点,以PR 为对角线的矩形PQRS 的一边垂直于极轴,求矩形PQRS 周长的最小值,及此时P 点的直角坐标.解:(1)曲线C :ρ2=31+2sin 2θ,即ρ2+2ρ2sin 2θ=3,从而ρ2cos 2θ3+ρ2sin 2θ=1. ∵x =ρcos θ,y =ρsin θ,∴曲线C 的直角坐标方程为x 23+y 2=1,点R 的直角坐标为R (2,2). (2)设P (3cos θ,sin θ),根据题意可得|PQ |=2-3cos θ,|QR |=2-sin θ, ∴|PQ |+|QR |=4-2sin ⎝⎛⎭⎫θ+π3, 当θ=π6时,|PQ |+|QR |取最小值2,∴矩形PQRS 周长的最小值为4, 此时点P 的直角坐标为⎝⎛⎭⎫32,12.5.(2017·南京模拟)已知直线l :ρsin ⎝⎛⎭⎫θ-π4=4和圆C :ρ=2k cos ⎝⎛⎭⎫θ+π4(k ≠0),若直线l 上的点到圆C 上的点的最小距离等于2.求实数k 的值并求圆心C 的直角坐标.解:圆C 的极坐标方程可化为ρ=2k cos θ-2k sin θ, 即ρ2=2kρcos θ-2kρsin θ,所以圆C 的直角坐标方程为x 2+y 2-2kx +2ky =0, 即⎝⎛⎭⎫x -22k 2+⎝⎛⎭⎫y +22k 2=k 2,所以圆心C 的直角坐标为⎝⎛⎭⎫22k ,-22k .直线l 的极坐标方程可化为ρsin θ·22-ρcos θ·22=4,所以直线l 的直角坐标方程为x -y +42=0,所以⎪⎪⎪⎪22k +22k +422-|k |=2.即|k +4|=2+|k |, 两边平方,得|k |=2k +3,所以⎩⎪⎨⎪⎧ k >0,k =2k +3或⎩⎪⎨⎪⎧k <0,-k =2k +3,解得k =-1,故圆心C 的直角坐标为⎝⎛⎭⎫-22,22. 6.已知圆C :x 2+y 2=4,直线l :x +y =2.以O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系.(1)将圆C 和直线l 方程化为极坐标方程;(2)P 是l 上的点,射线OP 交圆C 于点R ,又点Q 在OP 上,且满足|OQ |·|OP |=|OR |2,当点P 在l 上移动时,求点Q 轨迹的极坐标方程.解:(1)将x =ρcos θ,y =ρsin θ分别代入圆C 和直线l 的直角坐标方程得其极坐标方程为C :ρ=2,l :ρ(cos θ+sin θ)=2.(2)设P ,Q ,R 的极坐标分别为(ρ1,θ),(ρ,θ),(ρ2,θ),则由|OQ |·|OP |=|OR |2,得ρρ1=ρ22.又ρ2=2,ρ1=2cos θ+sin θ,所以2ρcos θ+sin θ=4,故点Q 轨迹的极坐标方程为ρ=2(cos θ+sin θ)(ρ≠0).7.(2017·贵州联考)已知在一个极坐标系中点C 的极坐标为⎝⎛⎭⎫2,π3. (1)求出以C 为圆心,半径长为2的圆的极坐标方程(写出解题过程);(2)在直角坐标系中,以圆C 所在极坐标系的极点为原点,极轴为x 轴的正半轴建立直角坐标系,点P 是圆C 上任意一点,Q (5,-3),M 是线段PQ 的中点,当点P 在圆C 上运动时,求点M 的轨迹的普通方程.解:(1)如图,设圆C 上任意一点A (ρ,θ),则∠AOC =θ-π3或π3-θ.由余弦定理得,4+ρ2-4ρcos θ-π3=4,所以圆C 的极坐标方程为ρ=4cos ⎝⎛⎭⎫θ-π3. (2)在直角坐标系中,点C 的坐标为(1,3),可设圆C 上任意一点P (1+2cos α,3+2sin α),又令M (x ,y ),由Q (5,-3),M 是线段PQ 的中点,得点M 的轨迹的参数方程为⎩⎨⎧x =6+2cos α2,y =2sin α2(α为参数),即⎩⎪⎨⎪⎧x =3+cos α,y =sin α(α为参数), ∴点M 的轨迹的普通方程为(x -3)2+y 2=1.8.在平面直角坐标系中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =sin φ(φ为参数),以原点O为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2是圆心在极轴上且经过极点的圆,射线θ=π3与曲线C 2交于点D ⎝⎛⎭⎫2,π3. (1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知极坐标系中两点A (ρ1,θ0),B ⎝⎛⎭⎫ρ2,θ0+π2,若A ,B 都在曲线C 1上,求1ρ21+1ρ22的值.解:(1)∵C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =sin φ,∴C 1的普通方程为x 24+y 2=1.由题意知曲线C 2的极坐标方程为ρ=2a cos θ(a 为半径), 将D ⎝⎛⎭⎫2,π3 代入,得2=2a ×12, ∴a =2,∴圆C 2的圆心的直角坐标为(2,0),半径为2, ∴C 2的直角坐标方程为(x -2)2+y 2=4.(2)曲线C 1的极坐标方程为ρ2cos 2θ4+ρ2sin 2θ=1,即ρ2=44sin 2θ+cos 2θ.∴ρ21=44sin 2θ0+cos 2θ0,ρ22=44sin 2⎝⎛⎭⎫θ0+π2+cos 2⎝⎛⎭⎫θ0+π2=4sin 2θ0+4cos 2θ0.∴1ρ21+1ρ22=4sin 2θ0+cos 2θ04+4cos 2θ0+sin 2θ04=54. 第二节 参数方程突破点(一) 参数方程基础联通 抓主干知识的“源”与“流”1.参数方程一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数:⎩⎪⎨⎪⎧ x =f (t ),y =g (t ),并且对于t 的每一个允许值,由方程组⎩⎪⎨⎪⎧x =f (t ),y =g (t )所确定的点M (x ,y )都在这条曲线上,那么方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )就叫做这条曲线的参数方程,变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.直线、圆、椭圆的参数方程(1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).(2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).(3)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数).考点贯通 抓高考命题的“形”与“神”参数方程与普通方程的互化1.参数方程化为普通方程本节主要包括2个知识点:1.参数方程;2.参数方程与极坐标方程的综合问题.基本思路是消去参数,常用的消参方法有:①代入消元法;②加减消元法;③恒等式(三角的或代数的)消元法;④平方后再加减消元法等.其中代入消元法、加减消元法一般是利用解方程的技巧,三角恒等式消元法常利用公式sin 2θ+cos 2θ=1等.2.普通方程化为参数方程 (1)选择参数的一般原则曲线上任意一点的坐标与参数的关系比较明显且关系相对简单;当参数取某一值时,可以唯一确定x ,y 的值;(2)具体步骤第一步,引入参数,但要选定合适的参数t ;第二步,确定参数t 与变量x 或y 的一个关系式x =f (t )(或y =φ(t ));第三步,把确定的参数与一个变量的关系式代入普通方程F (x ,y )=0,求得另一关系y =g (t )(或x =ψ(t )),问题得解.[例1] 将下列参数方程化为普通方程.(1)⎩⎨⎧x =1t,y =1tt 2-1(t 为参数);(2)⎩⎪⎨⎪⎧x =2+sin 2θ,y =-1+cos 2θ(θ为参数). [解] (1)∵⎝⎛⎭⎫1t 2+⎝⎛⎭⎫1t t 2-12=1, ∴x 2+y 2=1.∵t 2-1≥0,∴t ≥1或t ≤-1. 又x =1t ,∴x ≠0.当t ≥1时,0<x ≤1, 当t ≤-1时,-1≤x <0,∴所求普通方程为x 2+y 2=1,其中⎩⎪⎨⎪⎧ 0<x ≤1,0≤y <1或⎩⎪⎨⎪⎧-1≤x <0,-1<y ≤0.(2)∵y =-1+cos 2θ=-1+1-2sin 2θ=-2sin 2θ,sin 2θ=x -2, ∴y =-2x +4,∴2x +y -4=0. ∵0≤sin 2θ≤1,∴0≤x -2≤1,∴2≤x ≤3,∴所求的普通方程为2x +y -4=0(2≤x ≤3). [易错提醒](1)将曲线的参数方程化为普通方程时务必要注意x ,y 的取值范围,保证消参前后的方程的一致性.(2)将参数方程化为普通方程时,要注意参数的取值范围对普通方程中x ,y 的取值范围的影响.直线与圆锥曲线的参数方程及应用1.解决直线与圆锥曲线的参数方程的应用问题,其一般思路如下: 第一步,把直线和圆锥曲线的参数方程都化为普通方程; 第二步,根据直线与圆锥曲线的位置关系解决问题.2.当直线经过点P (x 0,y 0),且直线的倾斜角为α,求直线与圆锥曲线的交点、弦长问题时,可以把直线的参数方程设成⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数),交点A ,B 对应的参数分别为t 1,t 2,计算时把直线的参数方程代入圆锥曲线的直角坐标方程,求出t 1+t 2,t 1·t 2,得到|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1·t 2.[例2] (2017·豫南九校联考)在直角坐标系xOy 中,设倾斜角为α的直线l :⎩⎨⎧ x =2+t cos α,y =3+t sin α(t 为参数)与曲线C :⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数)相交于不同的两点A ,B .(1)若α=π3,求线段AB 的中点M 的坐标;(2)若|PA |·|PB |=|OP |2,其中P (2,3),求直线l 的斜率. [解] (1)将曲线C 的参数方程化为普通方程是x 24+y 2=1.当α=π3时,设点M 对应的参数为t 0.直线l 的方程为⎩⎨⎧x =2+12t ,y =3+32t(t 为参数),代入曲线C 的普通方程x 24+y 2=1,得13t 2+56t +48=0,设直线l 上的点A ,B 对应参数分别为t 1,t 2. 则t 0=t 1+t 22=-2813,所以点M 的坐标为⎝⎛⎭⎫1213,-313. (2)将⎩⎨⎧x =2+t cos α,y =3+t sin α代入曲线C 的普通方程x 24+y 2=1,得(cos 2α+4sin 2α)t 2+(83sin α+4cos α)t +12=0,因为|PA |·|PB |=|t 1t 2|=12cos 2α+4sin 2α,|OP |2=7, 所以12cos 2α+4sin 2α=7,得tan 2α=516. 由于Δ=32cos α(23sin α-cos α)>0, 故tan α=54.所以直线l 的斜率为54.[方法技巧]1.解决直线与圆的参数方程的应用问题时一般是先化为普通方程再根据直线与圆的位置关系来解决问题.2.对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt(t 为参数)的直线的参数方程,当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.能力练通 抓应用体验的“得”与“失”1.[考点一]将下列参数方程化为普通方程.(1)⎩⎨⎧x =3k1+k 2,y =6k21+k2(k 为参数);(2)⎩⎪⎨⎪⎧x =1-sin 2θ,y =sin θ+cos θ(θ为参数). 解:(1)两式相除,得k =y 2x ,将其代入x =3k 1+k 2得x =3·y2x 1+⎝⎛⎭⎫y 2x 2,化简得4x 2+y 2-6y =0,因为y =6k 21+k 2=6-11+k 2,所以0<y <6, 所以所求的普通方程是4x 2+y 2-6y =0(0<y <6). (2)由(sin θ+cos θ)2=1+sin 2θ=2-(1-sin 2θ) 得y 2=2-x .又x =1-sin 2θ∈[0,2], 得所求的普通方程为y 2=2-x ,x ∈[0,2].2.[考点二](2017·唐山模拟)已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =6cos θ,y =4sin θ(θ为参数),在同一平面直角坐标系中,将曲线C 上的点按坐标变换⎩⎨⎧x ′=13x ,y ′=14y得到曲线C ′.(1)求曲线C ′的普通方程;(2)若点A 在曲线C ′上,点D (1,3).当点A 在曲线C ′上运动时,求AD 中点P 的轨迹方程.解:(1)将⎩⎪⎨⎪⎧x =6cos θ,y =4sin θ代入⎩⎨⎧x ′=13x ,y ′=14y ,得曲线C ′的参数方程为⎩⎪⎨⎪⎧x ′=2cos θ,y ′=sin θ,∴曲线C ′的普通方程为x 24+y 2=1.(2)设点P (x ,y ),A (x 0,y 0),又D (1,3)且AD 的中点为P ,∴⎩⎪⎨⎪⎧x 0=2x -1,y 0=2y -3.又点A 在曲线C ′上,∴将A 点坐标代入C ′的普通方程x 24+y 2=1,得(2x -1)2+4(2y-3)2=4,∴动点P 的轨迹方程为(2x -1)2+4(2y -3)2=4.3.[考点二](2017·郑州模拟)将曲线C 1:x 2+y 2=1上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到曲线C 2,A 为C 1与x 轴正半轴的交点,直线l 经过点A 且倾斜角为30°,记l 与曲线C 1的另一个交点为B ,与曲线C 2在第一、三象限的交点分别为C ,D .(1)写出曲线C 2的普通方程及直线l 的参数方程; (2)求|AC |-|BD |.解:(1)由题意可得C 2:x22+y 2=1,对曲线C 1,令y =0,得x =1,所以l :⎩⎨⎧x =1+32t ,y =12t(t 为参数).(2)将⎩⎨⎧x =1+3t 2,y =12t代入x 22+y 2=1,整理得5t 2+43t -4=0.设点C ,D 对应的参数分别为t 1,t 2,则t 1+t 2=-435,且|AC |=t 1,|AD |=-t 2.又|AB |=2|OA |cos 30°=3,故|AC |-|BD |=|AC |-(|AD |-|AB |)=|AC |-|AD |+|AB |=t 1+t 2+3=35. 4.[考点二]设直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos α,y =4+t sin α(t 为参数,α为倾斜角),圆C 的参数方程为⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ(θ为参数).(1)若直线l 经过圆C 的圆心,求直线l 的斜率;(2)若直线l 与圆C 交于两个不同的点,求直线l 的斜率的取值范围.解:(1)由已知得直线l 经过的定点是P (3,4),而圆C 的圆心是C (1,-1),所以,当直线l 经过圆C 的圆心时,直线l 的斜率为k =52.(2)将圆C 的参数方程⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ,化成普通方程为(x -1)2+(y +1)2=4,① 将直线l 的参数方程代入①式,得 t 2+2(2cos α+5sin α)t +25=0.②当直线l 与圆C 交于两个不同的点时,方程②有两个不相等的实根,即Δ=4(2cos α+5sin α)2-100>0,即20sin αcos α>21cos 2α,两边同除以cos 2α, 由此解得tan α>2120,即直线l 的斜率的取值范围为⎝⎛⎭⎫2120,+∞.突破点(二) 参数方程与极坐标方程的综合问题将极坐标方程与参数方程、普通方程交织在一起,考查极坐标方程与参数方程的综合应用.将各类方程相互转化是求解该类问题的前提.,解决问题时要注意:(1)解题时,易将直线与圆的极坐标方程混淆.要熟练掌握特殊直线、圆的极坐标方程的形式.(2)应用解析法解决实际问题时,要注意选取直角坐标系还是极坐标系,建立极坐标系要注意极点、极轴位置的选择,注意点和极坐标之间的“一对多”关系.(3)求曲线方程,常设曲线上任意一点P (ρ,θ),利用解三角形的知识,列出等量关系式,特别是正弦、余弦定理的应用.圆的参数方程常和三角恒等变换结合在一起,解决取值范围或最值问题.(4)参数方程和普通方程表示同一个曲线时,要注意其中x ,y 的取值范围,即注意两者的等价性.考点贯通 抓高考命题的“形”与“神”参数方程与极坐标方程的综合问题[典例] (2017·长沙模拟)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =-1+cos α,y =sin α(α为参数),以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,直线l 的极坐标方程为ρ(cos θ+k sin θ)=-2(k 为实数).(1)判断曲线C 1与直线l 的位置关系,并说明理由;(2)若曲线C 1和直线l 相交于A ,B 两点,且|AB |=2,求直线l 的斜率.[解] (1)由曲线C 1的参数方程⎩⎪⎨⎪⎧x =-1+cos α,y =sin α可得其普通方程为(x +1)2+y 2=1.由ρ(cos θ+k sin θ)=-2可得直线l 的直角坐标方程为x +ky +2=0. 因为圆心(-1,0)到直线l 的距离d =11+k 2≤1, 所以直线与圆相交或相切,当k =0时,d =1,直线l 与曲线C 1相切; 当k ≠0时,d <1,直线l 与曲线C 1相交. (2)由于曲线C 1和直线l 相交于A ,B 两点, 且|AB |=2,故圆心到直线l 的距离d =11+k 2= 1-⎝⎛⎭⎫222=22, 解得k =±1,所以直线l 的斜率为±1. [方法技巧]处理极坐标、参数方程综合问题的方法(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.能力练通 抓应用体验的“得”与“失”1.已知曲线C 的参数方程为⎩⎨⎧x =3+10cos α,y =1+10sin α(α为参数),以直角坐标系原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程,并说明其表示什么轨迹;(2)若直线的极坐标方程为sin θ-cos θ=1ρ,求直线被曲线C 截得的弦长.解:(1)∵曲线C 的参数方程为⎩⎨⎧x =3+10cos α,y =1+10sin α(α为参数),∴曲线C 的普通方程为(x -3)2+(y -1)2=10,①曲线C 表示以(3,1)为圆心,10为半径的圆.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入①并化简,得ρ=6cos θ+2sin θ, 即曲线C 的极坐标方程为ρ=6cos θ+2sin θ. (2)∵直线的直角坐标方程为y -x =1, ∴圆心C 到直线的距离为d =322, ∴弦长为210-92=22.2.在极坐标系中,圆C 的方程为ρ=2a cos θ(a ≠0),以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系,设直线l 的参数方程为⎩⎪⎨⎪⎧x =3t +1,y =4t +3(t 为参数).(1)求圆C 的标准方程和直线l 的普通方程;(2)若直线l 与圆C 恒有公共点,求实数a 的取值范围.解:(1)由ρ=2a cos θ,ρ2=2aρcos θ,又ρ2=x 2+y 2,ρcos θ=x ,所以圆C 的标准方程为(x -a )2+y 2=a 2.由⎩⎪⎨⎪⎧x =3t +1,y =4t +3,得⎩⎨⎧x -13=t ,y -34=t ,因此x -13=y -34,所以直线l 的普通方程为4x -3y +5=0.(2)因为直线l 与圆C 恒有公共点,所以|4a +5|42+(-3)2≤|a |,两边平方得9a 2-40a -25≥0,所以(9a +5)(a -5)≥0,解得a ≤-59或a ≥5,所以a 的取值范围是⎝⎛⎦⎤-∞,-59∪[)5,+∞.[全国卷5年真题集中演练——明规律] 1.(2016·全国甲卷)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0. (2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11. |AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2 =144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153.所以直线l 的斜率为153或-153. 2.(2016·全国丙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. 解:(1)C 1的普通方程为x 23+y 2=1,C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值, d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪sin ⎝⎛⎭⎫α+π3-2, 当且仅当α=2k π+π6(k ∈Z)时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝⎛⎭⎫32,12. 3.(2015·新课标全国卷Ⅱ)在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值. 解:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0, 曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎨⎧ x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎨⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎫32,32. (2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α).所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4. 4.(2014·新课标全国卷Ⅰ)已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|.则|PA |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA |取得最大值,最大值为2255.当sin(θ+α)=1时,|PA |取得最小值,最小值为255.5.(2014·新课标全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎡⎦⎤0,π2. (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t (t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝⎛⎭⎫1+cos π3,sin π3,即⎝⎛⎭⎫32,32. 6.(2013·新课标全国卷Ⅰ)已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t , (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ .(1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).解:(1)将⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t 消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0 得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的普通方程为x 2+y 2-2y =0.由⎩⎪⎨⎪⎧ x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0,解得⎩⎪⎨⎪⎧ x =1,y =1,或⎩⎪⎨⎪⎧x =0,y =2. 所以C 1与C 2交点的极坐标分别为⎝⎛⎭⎫2,π4,⎝⎛⎭⎫2,π2. [课时达标检测] 基础送分题——高考就考那几点,练通就能把分捡1.(2017·郑州模拟)已知曲线C 1的参数方程为⎩⎨⎧x =-2-32t ,y =12t ,曲线C 2的极坐标方程为ρ=22cos θ-π4,以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系.(1)求曲线C 2的直角坐标方程;(2)求曲线C 2上的动点M 到曲线C 1的距离的最大值. 解:(1)ρ=22cos ⎝⎛⎭⎫θ-π4=2(cos θ+sin θ),即ρ2=2(ρcos θ+ρsin θ),可得x 2+y 2-2x -2y =0, 故C 2的直角坐标方程为(x -1)2+(y -1)2=2.(2)C 1的普通方程为x +3y +2=0,由(1)知曲线C 2是以(1,1)为圆心,以2为半径的圆,且圆心到直线C 1的距离d =|1+3+2|12+(3)2=3+32,所以动点M 到曲线C 1的距离的最大值为3+3+222.2.在极坐标系中,已知三点O (0,0),A ⎝⎛⎭⎫2,π2,B ⎝⎛⎭⎫22,π4. (1)求经过点O ,A ,B 的圆C 1的极坐标方程;(2)以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,圆C 2的参数方程为⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(θ是参数),若圆C 1与圆C 2外切,求实数a 的值. 解:(1)O (0,0),A ⎝⎛⎭⎫2,π2,B ⎝⎛⎭⎫22,π4对应的直角坐标分别为O (0,0),A (0,2),B (2,2),则过点O ,A ,B 的圆的普通方程为x 2+y 2-2x -2y =0,将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入可求得经过点O ,A ,B 的圆C 1的极坐标方程为ρ=22cos ⎝⎛⎭⎫θ-π4. (2)圆C 2:⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(θ是参数)对应的普通方程为(x +1)2+(y +1)2=a 2,圆心为(-1,-1),半径为|a |,而圆C 1的圆心为(1,1),半径为2,所以当圆C 1与圆C 2外切时,有2+|a |=(-1-1)2+(-1-1)2,解得a =±2.3.(2017·太原模拟)在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立的极坐标系中,直线l 的极坐标方程为θ=π4(ρ∈R),曲线C 的参数方程为⎩⎨⎧x =2cos θ,y =sin θ.(1)写出直线l 的直角坐标方程及曲线C 的普通方程;(2)过点M 且平行于直线l 的直线与曲线C 交于A ,B 两点,若|MA |·|MB |=83,求点M轨迹的直角坐标方程.解:(1)直线l 的直角坐标方程为y =x ,曲线C 的普通方程为x 22+y 2=1.(2)设点M (x 0,y 0),过点M 的直线为l 1:⎩⎨⎧x =x 0+22t ,y =y 0+22t (t 为参数),由直线l 1与曲线C 相交可得:3t 22+2tx 0+22ty 0+x 20+2y 20-2=0,由|MA |·|MB |=83,得t 1t 2=。
参数方程的意义授课人:游娟 学科:高中数学 学校:淮阴师范学院附属中学教学目标:(1) 理解曲线参数方程的概念,明确参数方程与普通方程的关系,能选取适当的参数建立曲线的参数方程;(2) 通过对直线、圆和椭圆等常见曲线的参数方程的研究,了解参数意义,体会学习参数方程的必要性,形成数学抽象思维的能力;(3) 初步学会应用参数方程解决实际问题,体验参数的基本思想,培养数学应用的意识,提高探究和发现的能力;(4) 感知数学知识之间的内在联系以及生长和发展的规律,感受人类思维和智慧的魅力,培养学习数学的兴趣,激发学习数学的热情教学重点:参数方程的概念教学难点:建立曲线参数方程的方法教学过程:一、 创设情境 律动思维 以600π弧度/的角情境:楚秀园的摩天轮半径为60m ,按逆时针方向速度匀速旋转【小组议一议】你能就此情境提出一个数学问题吗?【问题预设】如图,某游客现在点0P 处(其中点0P 和转轴O 的连线与水平面平行)问经过t 秒,这个游客的位置在何处?【设计意图】通过生活中具体实例,让学生感受数学迹,激发学生的求知欲与问题意识。
通过数学建模,让学生感受数学的魅力。
从而引入本节课所学的关键词:参数方程、普通方程二、 师生交流 体验过程问题1圆是我们最熟悉的一种曲线,如果一个圆,圆心在原点,半径为r ,它们的普通方程是什么?你能写出它的参数方程吗?问题2怎样选择适当的参数,将圆222(0)x y r r +=>表示成参数方程的形式?问题3圆的方程222()()(0)x a y b r r -+-=>对应的参数方程是什么?【设计意图】通过圆从特殊到一般位置的参数方程的探究活动,让学生再一次感受参数方程的建立过程以及参数的意义,深刻参数方程的意义,为下面引入参数方程的概念做铺垫三、 意义建构 概念形成思考:通过对前面几个问题的研究,能否归纳总结曲线参数方程的一般定义?定义:一般地,在平面直角坐标系中,如果曲线C 上任意一点的坐标,x y 都是某个变量t 的函数(),().x f t y g t =⎧⎨=⎩(*)反过来,对于t 的每个允许值,由函数式(),().x f t y g t =⎧⎨=⎩所确定的点(,)P x y 都在曲线C 上,那么方程(),().x f t y g t =⎧⎨=⎩叫做曲线C 的参数方程,变量t 是参变数,简称参数相对于参数方程,直接给出曲线上点的坐标,x y 间关系的方程(,)0F x y =叫做曲线的普通方程【小组合作探究】:1选一选、说一说:在下列的方程中,哪些是参数方程,哪些是普通方程?且这些方程各表示什么曲线?(1)2240x y --=(2)3cos ,(sin .x y θθθ=+⎧⎨=⎩为参数)(3)234(21)0(x y x y λλ+-+-+=为参数)(4)cos ,(sin .x t t y t θθ=⎧⎨=⎩为确定的正数,θ为参数)(5)cos ,(sin .x t y t θθθ=⎧⎨=⎩为确定的锐角,t 为参数)(6)2(1x t t y t =⎧⎨=-⎩为参数) (7)2sin ,[0,2)cos x y θθπθ=⎧∈⎨=⎩ 【设计意图】通过选一选、说一说,让学生在活动中理解曲线参数方程的定义,尤其注意含参方程与参数方程的区别、强调参数选取不同可以得到不同的曲线、参数不同也能得到相同的曲线等常见的理解误区四、尝试应用 培养能力例1如图,以原点O 为圆心,分别以,(0)a b a b >>为半径作两个圆,点N 是大圆半径OM 与小圆的交点,过点M 作MT x ⊥轴,垂足为T ,过点N 作NP MT ⊥,垂足为P ,求当半径OM 绕点O 旋转时,点P 的轨迹【设计意图】立足课本,通过运用参数方程解决常见的椭圆,充分感悟参数方程的优点和学习的必要性五、 回顾反思 提炼升华1. 今天主要研究了曲线参数方程的哪些内容?(What )2. 既然我们已经学习了曲线的普通方程,为什么还要研究参数方程呢?(Wh )(视频播放)3. 本节课你运用了哪些数学思想方法?如何利用参数方程解决实际问题?(How ?)【设计意图】以WWH 的学习反思模式,让学生自己学会总结消化,进而形成良好的自我学习习惯六、 课后探究 拓展延伸1已知直线l 经过点00(,)x y ,倾斜角为θ,写出它的参数方程2针对问题情境中的实际情况,游客总是从摩天轮的最低点登上转盘若某游客登上转盘的时刻记为0t ,则经过时间t 该游客的位置在何处?3已知点(,)A x y 在圆22:4C x y +=上运动,求x y +的最大值【设计意图】此处选取了三题,直线的参数方程是对课堂的补充,而摩天轮问题的改编更加切合实际,第三小题让学生感知参数方程不仅可以用来表示图形,还可以用于解决最值问题,知识之间的相互迁移。
高二数学椭圆的参数方程无锡市第六高级中学吴华一、整体设计说明1.课题及学情分析“椭圆的参数方程”内容选自《苏教版高中数学选修4-4》:参数方程中参数方程的意义中的例1。
椭圆的参数方程的应用不仅是高考附加的重点和热点,而且是解决与椭圆的坐标有关问题的最简捷有效的方法。
椭圆的参数方程,指的是将椭圆上点的坐标和用同一个参数表示。
利用换元、消元思想,解决与坐标和有关的题型,降低解题的计算算量,优化解题过程。
从学生的知识储备情况上看,他们已经系统学习三角公式,圆的参数方程,具备了推导椭圆参数方程和应用椭圆参数方程的能力。
2.教学目标及重难点本节课的教学目标是:①明确椭圆参数方程的由来;②结合实例体会和理解,与椭圆有关的问题类型;③掌握利用椭圆参数方程解题。
本节课的教学重点:椭圆参数方程与普通方程的互换;椭圆参数方程的应用。
教学难点:椭圆参数方程中离心角的几何意义。
3.本节课适用微课教学的原因?椭圆的参数方程是选修4-4参数方程中相对独立地内容,知识容量相对较小,学生易于理解。
教材对本节内容有明确的知识要求,高考是常考题,占的比重大,该部分知识是学习的重点。
椭圆参数方程,可以延伸的内容及其广泛。
利用微课教学:视频预习,带动学生的学习热情,促进一部分有研究意识的学生,较早系统的关注椭圆;翻转课堂的课堂教学,帮助解决学生在学习椭圆参数方程中出现的疑惑,并且提升学生对椭圆的整体题型把握。
教师借助椭圆参数方程的微课学习活动,将知识“活化”,用一些学生比较喜爱的、直观的、简洁的方式,促进一部分有研究意识的学生,对椭圆相关概念,知识体系进行分析,及早帮助学生,适度克服椭圆解析几何题的大运算的心理负担。
二、微课设计思想第一步,类比三角公式in2θco2θ=1,直接给出焦点在轴和轴上的椭圆的参数方程的一般性结论;第二步,利用数形结合,体会和感受椭圆参数方程的由来,以及其中的参数几何意义;第三步,总结归纳,比较,再次体会椭圆的普通方程如何转化为参数方程。
4.4 参数方程4.4.1参数方程的意义课标解读1.理解曲线参数方程的概念,能选取适当的参数建立参数方程.2.通过常见曲线的参数方程的研究,了解某些参数的几何意义和物理意义.1.参数方程的定义一般地,在平面直角坐标系中,如果曲线C 上任意一点P 的坐标x 和y 都可以表示为某个变量t 的函数⎩⎪⎨⎪⎧x =ft ,y =g t ,反过来,对于t 的每一个允许值,由函数式⎩⎪⎨⎪⎧x =ft ,y =g t所确定的点P (x ,y )都在这条曲线上,那么方程⎩⎪⎨⎪⎧x =ft ,y =g t叫做曲线C 的参数方程,变量t 是参变数,简称参数.2.求参数方程的一般步骤(1)建立直角坐标系,设曲线上任意一点M 的坐标为(x ,y ); (2)选取适当的参数;(3)根据已知条件、图形的几何性质、物理意义等,建立点M 的坐标与参数的函数关系式; (4)证明所求得的参数方程就是所求曲线的方程(通常省略不写).1.从参数方程的概念来看,参数t 的作用是什么?什么样的量可以当参数?【提示】 参数t 是联系变数x ,y 的桥梁;可以是一个有物理意义或几何意义的变数,也可以是没有明显实际意义的变数. 2.在选择参数时,要注意什么?【提示】 在选择参数时,要注意以下几点:①参数与动点坐标x ,y 有函数关系,且x ,y 便于用参数表示; ②选择的参数要便于使问题中的条件明析化;③对于所选定的参数,要注意其取值范围,并能确定参数对x ,y 取值范围的制约; ④若求轨迹,应尽量使所得的参数方程便于消参.已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =3t ,y =2t 2+1(t 为参数).(1)判断点M 1(0,1),M 2(5,4)与曲线C 的位置关系; (2)已知点M 3(6,a )在曲线C 上,求a 的值.【自主解答】 (1)把点M 1(0,1)代入,得⎩⎪⎨⎪⎧0=3t ,1=2t 2+1,解得t =0,故点M 1在曲线C 上,把点M 2(5,4)代入,得⎩⎪⎨⎪⎧5=3t ,4=2t 2+1,这个方程组无解,因此点M 2(5,4)不在曲线C 上,(2)因为点M 3(6,a )在曲线C 上,所以⎩⎪⎨⎪⎧6=3t ,a =2t 2+1,解得⎩⎪⎨⎪⎧t =2,a =9,故a =9.已知某条曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =at 2(其中t 为参数,a ∈R ),点M (5,4)在该曲线上,求常数a .【解】 ∵点M (5,4)在曲线C 上,∴⎩⎪⎨⎪⎧5=1+2t ,4=at 2,解得:⎩⎪⎨⎪⎧t =2,a =1.∴a 的值为1.如图4-4-1,△ABP 是等腰直角三角形,∠B 是直角,腰长为a ,顶点B 、A 分别在x 轴、y 轴上滑动,求点P 在第一象限的轨迹的参数方程.图4-4-1【自主解答】 法一 设P 点的坐标为(x ,y ),过P 点作x 轴的垂线交x 轴于Q . 如图所示,则Rt △OAB ≌Rt △QBP .取OB =t ,t 为参数(0<t <a ). ∵OA =a 2-t 2, ∴BQ =a 2-t 2.∴点P 在第一象限的轨迹的参数方程为⎩⎨⎧x =t +a 2-t 2,y =t(0<t <a ).法二 设点P 的坐标为(x ,y ),过点P 作x 轴的垂线交x 轴于点Q ,如图所示. 取∠QBP =θ,θ为参数(0<θ<π2),则∠ABO =π2-θ.在Rt △OAB 中,OB =a cos(π2-θ)=a sin θ.在Rt △QBP 中,BQ =a cos θ,PQ =a sin θ.∴点P 在第一象限的轨迹的参数方程为⎩⎪⎨⎪⎧x =a sin θ+cos θ,y =a sin θ(θ为参数,0<θ<π2).求动点的轨迹方程,是解析几何中常见的题型之一,通常可用解析法寻找变量之间的关系,列出等式,得到曲线的方程.当变量之间的关系不容易用等式表示时,可以引入参数,使变量之间通过参数联系在一起,从而得到曲线的参数方程.设质点沿以原点为圆心,半径为2的圆做匀角速运动,角速度为π60rad/s.试以时间t 为参数,建立质点运动轨迹的参数方程.【解】 如图所示,运动开始时质点位于点A 处,此时t =0,设动点M (x ,y )对应时刻t ,由图可知⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ,又θ=π60t (t 以s 为单位),故参数方程为⎩⎪⎨⎪⎧x =2cos π60t ,y =2sin π60t (t 为参数,t ≥0).(教材第56页习题4.4第1题)物体从高处以初速度v 0(m/s)沿水平方向抛出.以抛出点为原点,水平直线为x 轴,写出物体所经路线的参数方程,并求出它的普通方程.(2013·课标全国卷Ⅱ)已知动点P 、Q 都在曲线C :⎩⎪⎨⎪⎧x =2cos t ,y =2sin t (t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点.(1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 【命题意图】 本题考查参数方程及轨迹方程,主要考查逻辑思维能力和运算求解能力. 【解】 (1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α), 因此M (cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =cos α+cos 2α,y =sin α+sin 2α(α为参数,0<α<2π).(2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π).当α=π时,d =0,故M 的轨迹过坐标原点.1.已知曲线⎩⎪⎨⎪⎧x =2sin θ+1,y =sin θ+3(θ为参数,0≤θ<2π).下列各点A (1,3),B (2,2),C (-3,5),其中在曲线上的点是________.【解析】 将A 点坐标代入方程得:θ=0或π,将B 、C 点坐标代入方程,方程无解,故A 点在曲线上.【答案】 A (1,3)2.椭圆⎩⎪⎨⎪⎧x =5cos θ,y =4sin θ的焦点坐标为________.【解析】 把椭圆方程化为普通方程,得x 225+y 216=1.则a 2=25,b 2=16,所以c 2=9.椭圆的焦点为(-3,0)和(3,0).【答案】 (-3,0)和(3,0) 3.椭圆x -224+y 2=1的一个参数方程为______.【解析】 设x -22=cos θ,y =sin θ,所以椭圆的一个参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =sin θ(θ为参数).【答案】 ⎩⎪⎨⎪⎧x =2+2cos θ,y =sin θ4.参数方程⎩⎪⎨⎪⎧x =cos 2θ,y =sin 2θ(θ为参数)表示的曲线是________.【答案】 线段图4-4-21.如图4-4-2,OB 是机器上的曲柄,长是r ,绕点O 转动,AB 是连杆,M 是AB 上一点,MA =a ,MB =b (2r <a +b ).当点A 在Ox 上做往返运动,点B 绕着O 做圆周运动时,求点M 的轨迹方程.【解】 如题图,设点M (x ,y ),θ=∠BAO ,由点B 作BC ⊥Ox ,交Ox 于点C ,由点M 作MD ⊥Ox ,交Ox 于点D ,由点M 作ME ⊥BC ,交BC 于点E ,那么y =DM =a sin θ,x =OD =OC +CD =OC +EM=±OB 2-CB 2+EM =±r 2-a +b2sin 2θ+b cos θ,得到点M (x ,y )的坐标满足方程组⎩⎨⎧x =b cos θ±r 2-a +b2sin 2θ,y =a sin θ,即为点M 的轨迹方程.2.动点M 作匀速直线运动,它在x 轴和y 轴方向上的分速度分别为9 m/s 和12 m/s ,运动开始时,点M 位于A (1,1),求点M 的轨迹方程.【解】 设t s 后点M 的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =1+9t ,y =1+12t .所以点M 的轨迹方程为⎩⎪⎨⎪⎧x =1+9t ,y =1+12t(t ≥0).3.以椭圆x 24+y 2=1的长轴的左端点A 与椭圆上任意一点连线的斜率k 为参数,将椭圆方程化为参数方程.【解】 椭圆x 24+y 2=1的长轴的左端点A 的坐标为(-2,0).设P (x ,y )为椭圆上任意一点(除点A ),则点P 的坐标满足⎩⎪⎨⎪⎧y x +2=k ,x24+y 2=1.将y x +2=k 代入x 24+y 2=1,消去x ,得(1k 2+4)y 2-4ky =0.解得y =0,或y =4k1+4k 2.由y =4k1+4k2, 解得x =21-4k21+4k2;由y =0,解得x =2.由于(2,0)满足方程组⎩⎪⎨⎪⎧x =21-4k21+4k2,y =4k1+4k 2,所以椭圆x 24+y 2=1的参数方程为⎩⎪⎨⎪⎧x =21-4k 21+4k2,y =4k 1+4k 2.4.△ABC 是圆x 2+y 2=1的内接三角形,已知A (1,0),∠BAC =60°,求△ABC 的重心的轨迹方程.【解】 因为∠BAC =60°,所以∠BOC =120°. 设B (cos θ,sin θ)(0°<θ<240°),则有C (cos(θ+120°),sin(θ+120°)).设重心坐标为(x ,y ),则 ⎩⎪⎨⎪⎧x =1+cos θ+cos θ+120°3,y =sin θ+sin θ+120°3.所以⎩⎪⎨⎪⎧x =1+12cos θ-32sin θ3y =12sin θ+32cos θ3,即⎩⎪⎨⎪⎧x =1+cos θ+60°3,y =sin θ+60°3.消去θ+60°,得(3x -1)2+9y 2=1, ∵0°<θ<240°, ∴-1≤cos(θ+60°)<12,∴0≤1+cos θ+60°3<12,即0≤x <12.∴△ABC 的重心的轨迹方程为(x -13)2+y 2=19(0≤x <12).图4-4-35.如图4-4-3,过抛物线y 2=4x 上任一点M 作MQ 垂直于准线l ,垂足为Q ,连接OM 和QF (F 为焦点)相交于点P ,当M 在抛物线上运动时,求点P 的轨迹方程.【解】 设直线OM 的方程为y =kx (k ≠0),由⎩⎪⎨⎪⎧y =kx ,y 2=4x 得⎩⎪⎨⎪⎧x =0,y =0,或⎩⎪⎨⎪⎧x =4k 2,y =4k ,所以M (4k 2,4k),则Q (-1,4k),于是直线QF 的方程为y =4k-1-1(x -1),即y =-2k(x -1).由⎩⎪⎨⎪⎧y =kx ,y =-2k x -1,消去k ,得2x 2+y 2-2x =0.所以点P 的轨迹方程为2x 2+y 2-2x =0(y ≠0).图4-4-46.如图4-4-4所示,OA 是圆C 的直径,且OA =2a ,射线OB 与圆交于Q 点,和经过A 点的切线交于B 点,作PQ ⊥OA ,PB ∥OA ,试求点P 的轨迹方程.【解】 设P (x ,y )是轨迹上任意一点,取∠DOQ =θ,由PQ ⊥OA ,PB ∥OA ,得x =OD =OQ cos θ=OA cos 2θ=2a cos 2θ, y =AB =OA tan θ=2a tan θ.所以P 点轨迹的参数方程为⎩⎪⎨⎪⎧x =2a cos 2θ,y =2a tan θ,θ∈(-π2,π2).7.已知点P (x ,y )是曲线C :⎩⎨⎧x =3+cos θ,y =2+3sin θ上的任意一点,求3x +y 的取值范围.【解】 设P (3+cos θ,2+3sin θ),则3x +y =3(3+cos θ)+(2+3sin θ)=11+3cos θ+3sin θ=11+23sin(θ+π3),∴3x +y 的最大值为11+23,最小值为11-23,取值范围是[11-23,11+23].教师备选8.如图,已知曲线4x 2+9y 2=36(x >0,y >0),点A 在曲线上移动,点C (6,4),以AC 为对角线作矩形ABCD ,使AB ∥x 轴,AD ∥y 轴,求矩形ABCD 的面积最小时点A 的坐标.【解】 ∵椭圆方程为x 29+y 24=1(x >0,y >0),设A (3cos θ,2sin θ),θ∈(0,π2),则B (6,2sin θ),C (6,4),D (3cos θ,4), 所以S ABCD =AB ·AD =(6-3cos θ)(4-2sin θ) =24-12(sin θ+cos θ)+6sin θcos θ.令t =sin θ+cos θ,则t ∈(1,2],sin θcos θ=t 2-12,则S ABCD =3(t -2)2+9.因为t ∈(1,2],所以当t =2时,矩形面积最小,即t =sin θ+cos θ=2sin(θ+π4)=2,此时,θ=π4.所以矩形ABCD 的面积最小时点A 坐标是(322,2).4.4.2参数方程与普通方程的互化课标解读 1.能通过消去参数将参数方程化为普通方程.2.能选择适当的参数将普通方程化为参数方程.1.过定点P 0(x 0,y 0),倾斜角为α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+l cos α,y =y 0+l sin α(l 为参数),其中参数l 的几何意义:有向线段P 0P 的数量(P 为该直线上任意一点).2.圆x 2+y 2=r2的参数方程为⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ(θ为参数).圆心为M 0(x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).3.椭圆x 2a 2+y 2b 2=1的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数).1.普通方程化为参数方程,参数方程的形式是否惟一?【提示】 不一定惟一.如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同. 2.将参数方程化为普通方程时,消去参数的常用方法有哪些?【提示】 ①代入法.先由一个方程求出参数的表达式(用直角坐标变量表示),再代入另一个方程.②利用代数或三角函数中的恒等式消去参数.例如对于参数方程⎩⎪⎨⎪⎧x =at +1tcos θ,y =at -1tsin θ,如果t 是常数,θ是参数,那么可以利用公式sin 2θ+cos 2θ=1消参;如果θ是常数,t 是参数,那么适当变形后可以利用(m +n )2-(m -n )2=4mn 消参.参数方程化为普通方程将下列参数方程化为普通方程:(1)⎩⎪⎨⎪⎧x =t +1t -1,y =2tt 3-1(t 为参数);(2)⎩⎪⎨⎪⎧x =5cos θ,y =4sin θ-1(θ为参数).【自主解答】 (1)由x =t +1t -1,得t =x +1x -1. 代入y =2t t 3-1化简得y =x +1x -123x 2+1(x ≠1).(2)由⎩⎪⎨⎪⎧x =5cos θ,y =4sin θ-1得⎩⎪⎨⎪⎧cos θ=x5, ①sin θ=y +14. ②①2+②2得x 225+y +1216=1.将下列参数方程化为普通方程: (1)⎩⎪⎨⎪⎧x =t +1t ,y =t 2+1t2(t 为参数);(2)⎩⎪⎨⎪⎧x =2+3cos θ,y =3sin θ(θ为参数).【解】 (1)∵x =t +1t,∴x 2=t 2+1t2+2.把y =t 2+1t2代入得x 2=y +2.又∵x =t +1t ,当t >0时,x =t +1t≥2;当t <0时,x =t +1t≤-2.∴x ≥2或x ≤-2.∴普通方程为x 2=y +2(x ≥2或x ≤-2).(2)⎩⎪⎨⎪⎧x =2+3cos θ,y =3sin θ可化为⎩⎪⎨⎪⎧cos θ=x -23,sin θ=y3.两式平方相加,得(x -23)2+(y3)2=1.即普通方程为(x -2)2+y 2=9.普通方程化为参数方程根据所给条件,把曲线的普通方程化为参数方程.(1)x -123+y -225=1,x =3cos θ+1.(θ为参数)(2)x 2-y +x -1=0,x =t +1.(t 为参数) 【自主解答】 (1)将x =3cos θ+1代入x -123+y -225=1得:y =2+5sin θ.∴⎩⎨⎧x =3cos θ+1,y =5sin θ+2(θ为参数),这就是所求的参数方程.(2)将x =t +1代入x 2-y +x -1=0得:y =x 2+x -1=(t +1)2+t +1-1=t 2+3t +1,∴⎩⎪⎨⎪⎧x =t +1,y =t 2+3t +1(t 为参数),这就是所求的参数方程.已知圆的方程为x 2+y 2+2x -6y +9=0,将它化为参数方程.【解】 把x 2+y 2+2x -6y +9=0化为标准方程为(x +1)2+(y -3)2=1.∴参数方程为⎩⎪⎨⎪⎧x =-1+cos θ,y =3+sin θ(θ为参数).利用参数求轨迹方程过A (1,0)的动直线l 交抛物线y 2=8x 于M ,N 两点,求MN 中点的轨迹方程.【思路探究】 设出直线MN 的参数方程,然后代入抛物线的方程,利用参数方程中t 的几何意义及根与系数的关系解题. 【自主解答】 直线MN 方程⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(α≠0,t 为参数)代入y 2=8x ,得t 2sin 2α-8t cos α-8=0.设M ,N 对应参数为t 1,t 2,MN 中点G 的参数为t 0,则t 0=12(t 1+t 2)=4cos αsin 2α, ∵⎩⎪⎨⎪⎧x =1+4cos 2αsin 2α,y =4cos αsin α,消去α得y 2=4(x -1).1.用参数法求动点的轨迹方程,其基本思想是选取适当的参数作为中间变量,使动点的坐标分别与参数有关,从而得到动点的参数方程,然后再消去参数,化为普通方程.2.涉及到用直线的参数方程求轨迹方程时,需理解参数l 的几何意义.经过点A (-3,-32),倾斜角为α的直线l 与圆x 2+y 2=25相交于B 、C 两点.(1)求弦BC 的长;(2)当A 恰为BC 的中点时,求直线BC 的方程; (3)当BC =8时,求直线BC 的方程;(4)当α变化时,求动弦BC 的中点M 的轨迹方程. 【解】 取AP =t 为参数(P 为l 上的动点),则l 的参数方程为⎩⎪⎨⎪⎧x =-3+t cos α,y =-32+t sin α,代入x 2+y 2=25,整理,得t 2-3(2cos α+sin α)t -554=0.∵Δ=9(2cos α+sin α)2+55>0恒成立, ∴方程必有相异两实根t 1,t 2,且t 1+t 2=3(2cos α+sin α),t 1·t 2=-554.(1)BC =|t 1-t 2|=t 1+t 22-4t 1t 2=92cos α+sin α2+55.(2)∵A 为BC 中点,∴t 1+t 2=0, 即2cos α+sin α=0,∴tan α=-2. 故直线BC 的方程为y +32=-2(x +3),即4x +2y +15=0. (3)∵BC =92cos α+sin α2+55=8,∴(2cos α+sin α)2=1.∴cos α=0或tan α=-34.∴直线BC 的方程是x =-3或3x +4y +15=0. (4)∵BC 的中点M 对应的参数是t =t 1+t 22=32(2cos α+sin α),∴点M 的轨迹方程为 ⎩⎪⎨⎪⎧ x =-3+32cos α2cos α+sin α,y =-32+32sin α2cos α+sin α(0≤α<π).∴⎩⎪⎨⎪⎧x +32=32cos 2α+12sin 2α,y +34=32sin 2α-12cos 2α.∴(x +32)2+(y +34)2=4516.即点M 的轨迹是以(-32,-34)为圆心,以354为半径的圆.(教材第56页习题4.4第2题)将下列参数方程化为普通方程,并说明它表示什么曲线:(1)⎩⎪⎨⎪⎧x =-4+3t ,y =3-4t (t 为参数);(2)⎩⎪⎨⎪⎧x =3cos θ-1,y =3sin θ+2(θ为参数);(3)⎩⎪⎨⎪⎧x =1-t 21+t2,y =4t1+t2(t 为参数);(4)⎩⎪⎨⎪⎧x =a cos θ,y =b tan θ(θ为参数);(5)⎩⎪⎨⎪⎧x =sin θ,y =cos 2θ(θ为参数).(2013·盐城模拟)在平面直角坐标系xOy中,求过椭圆⎩⎪⎨⎪⎧x =5cos φ,y =3sin φ(φ为参数)的右焦点,且与直线⎩⎪⎨⎪⎧x =4-2t ,y =3-t(t 为参数)平行的直线的普通方程.【命题意图】 本题主要考查参数方程与普通方程的互化及椭圆的基本性质、直线方程、两条直线的位置关系等知识. 【解】 由题设知,椭圆的长半轴长a =5,短半轴长b =3, 从而c =a 2-b 2=4,所以右焦点为(4,0).将已知直线的参数方程化为普通方程:x -2y +2=0, 故所求直线的斜率为12,因此其方程为y =12(x -4),即x -2y -4=0.1.将参数方程⎩⎨⎧x =t ,y =2t -4(t 为参数)化为普通方程为________.【解析】 将x =t 代入y =2t -4得y =2x -4. 又∵x =t ≥0,∴普通方程为2x -y -4=0(x ≥0). 【答案】 2x -y -4=0(x ≥0)2.(2013·陕西高考)圆锥曲线⎩⎪⎨⎪⎧x =t 2,y =2t (t 为参数)的焦点坐标是________.【解析】 将参数方程化为普通方程为y 2=4x ,表示开口向右,焦点在x 轴正半轴上的抛物线,由2p =4⇒p =2,则焦点坐标为(1,0). 【答案】 (1,0)3.将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =sin 2θ(θ为参数)化为普通方程为________.【解析】 转化为普通方程为y =x -2,且x ∈[2,3],y ∈[0,1]. 【答案】 y =x -2(2≤x ≤3)4.(2012·广东高考)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =t ,y =t(t 为参数)和⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),则曲线C 1与C 2的交点坐标为________.【解析】 C 1的普通方程为y 2=x (x ≥0,y ≥0),C 2的普通方程为x 2+y 2=2.由⎩⎪⎨⎪⎧y 2=x ,x ≥0,y ≥0x 2+y 2=2得⎩⎪⎨⎪⎧x =1,y =1.∴C 1与C 2的交点坐标为(1,1).【答案】 (1,1)1.将下列参数方程化为普通方程:(1)⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数,a 、b 为常数,且a >b >0);(2)⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数,p 为正常数).【解】 (1)由cos 2θ+sin 2θ=1,得x 2a 2+y 2b2=1,这是一个长轴长为2a ,短轴长为2b ,中心在原点的椭圆.(2)由已知t =y 2p ,代入x =2pt 2得y 24p2·2p =x ,即y 2=2px , 这是一条抛物线.2.已知抛物线C 的参数方程为⎩⎪⎨⎪⎧x =8t 2,y =8t(t 为参数).若斜率为1的直线经过抛物线C 的焦点,且与圆(x -4)2+y 2=r 2(r >0)相切,求r 的值.【解】 由⎩⎪⎨⎪⎧x =8t 2,y =8t 得y 2=8x ,抛物线C 的焦点坐标为F (2,0),直线方程为y =x -2,即x -y -2=0.因为直线y =x -2与圆(x-4)2+y 2=r 2相切,由题意得r =|4-0-2|2= 2.3.若直线⎩⎪⎨⎪⎧x =1-2t ,y =2+3t (t 为参数)与直线4x +ky =1垂直,求常数k 的值.【解】 将⎩⎪⎨⎪⎧x =1-2t ,y =2+3t 化为普通方程为y =-32x +72,斜率k 1=-32,当k ≠0时,直线4x +ky =1的斜率k 2=-4k,由k 1k 2=(-32)×(-4k)=-1得k =-6;当k =0时,直线y =-32x +72与直线4x =1不垂直.综上可知,k =-6.4.过椭圆x 29+y 24=1内一定点P (1,0)作弦,求弦的中点的轨迹.【解】 设弦的两端点A (x 1,y 1),B (x 2,y 2),AB 的中点为M (x ,y ).当AB 与x 轴不垂直时,设AB 的方程为y =k (x -1),代入方程x 29+y 24=1,得(9k 2+4)x 2-18k 2x +9k 2-36=0.由根与系数的关系,得x 1+x 2=18k29k 2+4, 所以⎩⎪⎨⎪⎧x =9k 29k 2+4,y =kx -1=-4k9k 2+4,∴x y =-94k , 即k =-4x 9y,代入y =k (x -1)中,得4x 2+9y 2-4x =0,即x -12214+y 219=1.① 当AB ⊥Ox 轴时,线段AB 的中点为(1,0),该点的坐标满足方程①,所以所求的轨迹方程为x -12214+y 219=1.点M 的轨迹是以O 、P 为长轴端点且离心率与原椭圆相同的一个椭圆.5.已知某条曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =at 2(其中t 是参数,α∈R ),点M (5,4)在该曲线上,(1)求常数a ;(2)求曲线C 的普通方程.【解】 (1)由题意,可知⎩⎪⎨⎪⎧1+2t =5,at 2=4,故⎩⎪⎨⎪⎧t =2,a =1,所以a =1.(2)由已知及(1)得,曲线C 的方程为⎩⎪⎨⎪⎧x =1+2t , ①y =t 2, ②由①得t =x -12,代入②得y =(x -12)2,即(x -1)2=4y 为所求.6.已知极坐标系的极点O 与直角坐标系的原点重合,极轴与x 轴的正半轴重合,曲线C 1:ρcos(θ+π4)=22与曲线C 2:⎩⎪⎨⎪⎧x =4t 2,y =4t (t ∈R )交于A 、B 两点.求证:OA ⊥OB .【证明】 曲线C 1的直角坐标方程为x -y =4,曲线C 2的直角坐标方程是抛物线y 2=4x . 设A (x 1,y 1),B (x 2,y 2),将这两个方程联立,消去x , 得y 2-4y -16=0⇒y 1y 2=-16,y 1+y 2=4.∴x 1x 2+y 1y 2=(y 1+4)(y 2+4)+y 1y 2=2y 1y 2+4(y 1+y 2)+16=0,∴OA →·OB →=0,∴OA ⊥OB . 7.设点M (x ,y )在圆x 2+y 2=1上移动,求点P (x +y ,xy )的轨迹.【解】 设点M (cos θ,sin θ)(0≤θ<2π),点P (x ′,y ′),则⎩⎪⎨⎪⎧x ′=cos θ+sin θ, ①y ′=cos θsin θ, ②①2-2×②,得x ′2-2y ′=1,即x ′2=2(y ′+12),∴所求点P 的轨迹方程为x 2=2(y +12)(|x |≤2,|y |≤12).它是顶点为(0,-12),开口向上的抛物线的一部分.教师备选8.在平面直角坐标系xOy 中,求圆C 的参数方程为⎩⎪⎨⎪⎧x =-1+r cos θ,y =r sin θ(θ为参数,r >0),以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos(θ+π4)=2 2.若直线l 与圆C 相切,求r 的值.【解】 将直线l 的极坐标方程化为直角坐标方程得:x -y -4=0, 将圆C 的参数方程化为普通方程得:(x +1)2+y 2=r 2, 由题设知:圆心C (-1,0)到直线l 的距离为r ,即r =|-1-0-4|12+-12=522, 即r 的值为522.4.4.3参数方程的应用第1课时 直线的参数方程的应用直线的参数方程直线参数方程的常见形式:过定点P 0(x 0,y 0),倾斜角为α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+l cos α,y =y 0+l sin α(l 为参数).其中参数l 的几何意义是有向线段P 0P 的数量,|l |表示P 0P 的长度.1.怎样理解参数l 的几何意义?【提示】 参数l 的几何意义是P 0到直线上任意一点P (x ,y )的有向线段P 0P 的数量.当点P 在点P 0的上 方或右方时,l 取正值,反之,l 取负值;当点P 与P 0重合时,l =0. 2.如何由直线的参数方程求直线的倾斜角?【提示】 如果直线的参数方程是⎩⎪⎨⎪⎧x =x 0+t cos θ,y =y 0+t sin θ(t 为参数)的形式,由方程直接可得出倾斜角,即方程中的角θ,例如,直线的参数方程为⎩⎪⎨⎪⎧x =1+t cos 15°,y =1+t sin 15°,则直线的倾斜角为15°.如果不是上述形式,例如直线⎩⎪⎨⎪⎧x =1+t sin 15°,y =1+t cos 15°(t 为参数)的倾斜角就不能直接判断了.第一种方法:把参数方程改写为⎩⎪⎨⎪⎧x -1=t sin 15°,y -1=t cos 15°,消去t ,有y -1=1tan 15°(x -1),即y -1=tan 75°(x -1),故倾斜角为75°.第二种方法:把原方程化为参数方程和标准形式,即⎩⎪⎨⎪⎧x =1+t cos 75°,y =1+t sin 75°,可以看出直线的倾斜角为75°.已知直线l 过(3,4),且它的倾斜角θ=120°.(1)写出直线l 的参数方程;(2)求直线l 与直线x -y +1=0的交点. 【自主解答】 (1)直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos 120°,y =4+t sin 120°(t 为参数),即⎩⎪⎨⎪⎧ x =3-12t ,y =4+32t (t 为参数).(2)把⎩⎪⎨⎪⎧x =3-12t ,y =4+32t 代入x -y +1=0,得3-12t -4-32t +1=0,得t =0.把t =0代入⎩⎪⎨⎪⎧x =3-12t ,y =4+32t 得两直线的交点为(3,4).已知两点A (1,3),B (3,1)和直线l :y =x ,求过点A 、B 的直线的参数方程,并求它与直线l 的交点M 分AB 的比. 【解】 设直线AB 上动点P (x ,y ),选取参数λ=APPB, 则直线AB 的参数方程为⎩⎪⎨⎪⎧x =1+3λ1+λ,y =3+λ1+λ(λ为参数,λ≠-1).①把①代入y =x ,得1+3λ1+λ=3+λ1+λ,得λ=1,所以M 分AB 的比:AMMB=1.直线参数方程的应用求直线⎩⎨⎧x =2+t ,y =3t(t 为参数)被双曲线x 2-y 2=1截得的弦长.【思路探究】 先求出直线和双曲线的交点坐标,再用两点间的距离公式,或者用直线参数方程中参数的几何意义求弦长. 【自主解答】 令t =112+32t ′,即t ′=2t ,则直线的参数方程为⎩⎪⎨⎪⎧x =2+t ′cos θ,y =t ′sin θ(其中sin θ=32,cos θ=12), 将⎩⎪⎨⎪⎧x =2+t ′cos θ,y =t ′sin θ代入双曲线方程,得t ′2-4t ′-6=0,所以弦长=|t 1′-t 2′|=t 1′+t 2′2-4t 1′t 2′=42+4×6=210.方程⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt 中t 的几何意义为定点P 0(x 0,y 0)到动点P (x ,y )的有向线段的数量,有两个原则:其一为a 2+b 2=1,其二为b ≥0.这是因为α为直线的倾斜角时,必有sin 2α+cos 2α=1及sin α≥0.不满足上述原则时,则必须通过换元的方法进行转化后,才能利用直线参数方程的几何意义解决问题.(2013·湖南高考)在平面直角坐标系xOy 中,若直线l 1:⎩⎪⎨⎪⎧x =2s +1,y =s (s 为参数)和直线l 2:⎩⎪⎨⎪⎧x =at ,y =2t -1(t 为参数)平行,则常数a 的值为________.【解析】 由⎩⎪⎨⎪⎧x =2s +1,y =s消去参数s ,得x =2y +1.由⎩⎪⎨⎪⎧x =at ,y =2t -1消去参数t ,得2x =ay +a .∵l 1∥l 2,∴2a =12,∴a =4.【答案】 4(教材第57页习题4.4第6题)运用4.4.2小节中例3的结论:(1)求经过点P (1,-5),倾斜角是π3的直线的参数方程;(2)求(1)中的直线与直线x -y -23=0的交点到点P 的距离.(2013·江苏高考)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t(t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =2tan 2θ,y =2tan θ(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.【命题意图】 本题考查参数方程与普通方程的互化以及直线与抛物线的位置关系等基础知识,考查转化、分析问题的能力和运算能力.【解】 因为直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t(t 为参数),由x =t +1,得t =x -1,代入y =2t ,得到直线l 的普通方程为2x -y -2=0.同理得到曲线C 的普通方程为y 2=2x .联立方程组⎩⎪⎨⎪⎧y =2x -1,y 2=2x ,解得公共点的坐标为(2,2),⎝ ⎛⎭⎪⎫12,-1.1.直线⎩⎪⎨⎪⎧x =-2+t cos 50°,y =3-t sin 40°(t 为参数)的倾斜角α=________.【解析】 根据tan α=-sin 40°cos 50°=-1,因此倾斜角为135°.【答案】 135°2.曲线⎩⎪⎨⎪⎧x =-2+5t ,y =1-2t (t 为参数)与坐标轴的交点是________.【解析】 当x =-2+5t =0时,解得t =25,可得y =1-2t =15,当y =1-2t =0时,解得t =12,可得x =-2+5t =12,∴曲线与坐标轴的交点坐标为(0,15),(12,0).【答案】 (0,15),(12,0)3.点(-3,0)到直线⎩⎪⎨⎪⎧ x =2t ,y =22t (t 为参数)的距离为________.【解析】 直线⎩⎪⎨⎪⎧x =2t ,y =22t 化为普通方程为x -22y =0.∴点(-3,0)到直线的距离为|-3-0|1+-222=1.【答案】 1 4.直线⎩⎪⎨⎪⎧x =2-12t ,y =-1+12t (t 为参数)被圆x 2+y 2=4截得的弦长为________.【答案】141.已知直线l 经过点P (1,-33),倾斜角为π3,求直线l 与直线l ′:y =x -23的交点Q 与点P 的距离|PQ |.【解】 ∵l 过点P (1,-33),倾斜角为π3,∴l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos π3,y =-33+t sinπ3(t 为参数),即⎩⎪⎨⎪⎧x =1+12t ,y =-33+32t (t 为参数).代入y =x -23,得-33+32t =1+12t -23, 解得t =4+23,即t =23+4为直线l 与l ′的交点Q 所对应的参数值,根据参数t 的几何意义,可知|t |=PQ ,∴PQ =4+2 3.2.求直线⎩⎪⎨⎪⎧x =1+2t ,y =2+t (t 为参数)被圆x 2+y 2=9截得的弦长.【解】 将⎩⎪⎨⎪⎧x =1+2t ,y =2+t 代入圆的方程x 2+y 2=9,得5t 2+8t -4=0,t 1+t 2=-85,t 1t 2=-45.|t 1-t 2|2=(t 1+t 2)2-4t 1t 2=6425+165=14425,所以弦长=22+1|t 1-t 2|=5·125=1255.3.已知椭圆x 216+y 24=1和点P (2,1),过P 作椭圆的弦,并使点P 为弦的中点,求弦所在的直线方程.【解】 设弦所在直线的参数方程为⎩⎪⎨⎪⎧x =2+t cos α,y =1+t sin α(t 为参数),代入椭圆方程x 216+y 24=1,得(cos 2α+4sin 2α)·t 2+4(cos α+2sin α)t -8=0,所以t 1+t 2=-4cos α+2sin αcos 2α+4sin 2α,因为P 是弦的中点,所以t 1+t 2=0, 即-4cos α+2sin αcos 2α+4sin 2α=0,所以cos α+2sin α=0,tan α=-12.又P (2,1)在椭圆内,所以弦所在的直线方程为y -1=-12(x -2),即x +2y -4=0.4.过抛物线y 2=2px (p >0)的顶点作两条互相垂直的弦OA ,OB ,求线段AB 中点M 的轨迹的普通方程. 【解】 由题意知,两弦所在直线的斜率存在且不为0,所以设直线OA 的方程为y =kx ,则OB 的方程为y =-1k x ,解⎩⎪⎨⎪⎧y =kx ,y 2=2px 得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =2p k2,y =2pk .所以A 点坐标为(2p k 2,2p k).同理可求得B 点坐标为(2pk 2,-2pk ).设AB 中点M 的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =p 1k2+k2,y =p1k-k.消去k 得y 2=px -2p 2.所以点M 的轨迹方程为y 2=px -2p 2.5.(2012·湖南高考改编)在直角坐标系xOy 中,已知曲线C 1:⎩⎪⎨⎪⎧x =t +1,y =1-2t (t 为参数)与曲线C 2:⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ(θ为参数,a >0)有一个公共点在x 轴上,试求a 的值.【解】 ∵⎩⎪⎨⎪⎧x =t +1,y =1-2t ,消去参数t 得2x +y -3=0.又⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ,消去参数θ得x 2a 2+y 29=1.方程2x +y -3=0中,令y =0得x =32,将(32,0)代入x 2a 2+y 29=1,得94a 2=1.又a >0,∴a =32.6.已知直线l 经过点P (1,0),倾斜角为α=π6.(1)写出直线l 的参数方程;(2)设直线l 与椭圆x 2+4y 2=4相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 【解】 (1)直线l 的参数方程为⎩⎪⎨⎪⎧ x =1+t cos π6,y =t sin π6,即⎩⎪⎨⎪⎧x =1+32t ,y =12t (t 为参数).(2)联立直线与圆的方程得 (1+32t )2+4(t 2)2=4,∴74t 2+3t -3=0, 所以t 1t 2=-127,即|t 1||t 2|=127.所以P 到A 、B 两点的距离之积为127.7.已知抛物线y 2=8x 的焦点为F ,过F 且斜率为2的直线交抛物线于A 、B 两点. (1)求AB ;(2)求AB 的中点M 的坐标及FM . 【解】 抛物线y 2=8x 的焦点为F (2,0), 依题意,设直线AB 的参数方程为 ⎩⎪⎨⎪⎧x =2+15t ,y =25t(t 为参数),其中tan α=2,cos α=15,sin α=25,α为直线AB 的倾斜角,代入y 2=8x 整理得t 2-25t -20=0.则t 1+t 2=25,t 1t 2=-20. (1)AB =|t 2-t 1|=t 1+t 22-4t 1t 2=252+80=10.(2)由于AB 的中点为M , 故点M 对应的参数为t 1+t 22=5,∴M (3,2),FM =|t 1+t 22|= 5.教师备选8.如图所示,已知直线l 过点P (2,0),斜率为43,直线l 和抛物线y 2=2x 相交于A ,B 两点,设线段AB 的中点为M ,求:(1)P ,M 间的距离PM ; (2)点M 的坐标; (3)线段AB 的长.【解】 (1)∵直线l 过点P (2,0),斜率为43,设直线l 的倾斜角为α,则tan α=43,cos α=35,sin α=45,∴直线l 的参数方程的标准形式为 ⎩⎪⎨⎪⎧x =2+35t ,y =45t(t 为参数).(*)∵直线l 和抛物线相交,∴将直线l 的参数方程代入抛物线方程y 2=2x 中, 整理得8t 2-15t -50=0,Δ=152+4×8×50>0.设这个二次方程的两个根为t 1,t 2,由根与系数的关系得t 1+t 2=158,t 1t 2=-254.由M 为线段AB 的中点,根据t 的几何意义,得PM =⎪⎪⎪⎪⎪⎪t 1+t 22=1516.(2)因为中点M 所对应的参数为t M =1516,将此值代入直线l 的参数方程的标准形式(*), 得⎩⎪⎨⎪⎧x =2+35×1516=4116,y =45×1516=34,即M (4116,34).(3)AB =|t 1-t 2|=t 1+t 22-4t 1t 2=5873. 第2课时 圆、椭圆的参数方程的应用1.圆的参数方程圆的参数方程的常见形式为⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α(α为参数).其中,参数α的几何意义是以圆心A (a ,b )为顶点,且与x 轴同向的射线按逆时针方向旋转到圆上一点P 所在半径成的角.2.椭圆的参数方程椭圆的参数方程的常见形式为⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数).1.椭圆的参数方程与圆的参数方程有什么区别和联系?【提示】 椭圆x 2a 2+y 2b2=1(a >b >0)和圆x 2+y 2=r 2普通方程都是平方和等于1的形式,故参数方程都运用了三角代换法,只是参数方程的常数不同.2.椭圆的参数方程中参数φ的几何意义是什么?【提示】 从几何变换的角度看,通过伸缩变换,令⎩⎪⎨⎪⎧x ′=1ax ,y ′=1b y ,椭圆x 2a 2+y 2b2=1可以变成圆x ′2+y ′2=1.利用圆x ′2+y ′2=1的参数方程⎩⎪⎨⎪⎧x ′=cos φ,y ′=sin φ(φ是参数)可以得到椭圆x 2a 2+y 2b 2=1的参数方程⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ是参数).因此,参数φ的几何意义应是椭圆上任意一点M 所对应的圆的半径OA (或OB )的旋转角(称为离心角),而不是OM 的旋转角,如图.圆的参数方程的应用在圆x 2+2x +y 2=0上求一点,使它到直线2x +3y -5=0的距离最大.【自主解答】 圆的方程x2+2x +y 2=0可化为(x +1)2+y 2=1,所以设圆的参数方程为⎩⎪⎨⎪⎧x =-1+cos θ,y =sin θ.设P (-1+cos θ,sin θ),则点P 到直线2x +3y -5=0的距离为d =|2-1+cos θ+3sin θ-5|22+32=|2cos θ+3sin θ-7|13=|13sin θ+α-7|13(其中sin α=21313,cos α=31313).当sin(θ+α)=-1,θ+α=3π2,即θ=3π2-α时,d 取到最大值13+71313,此时x =-1+cos θ=-1-21313,y =sin θ=-31313,即点P (-1-21313,-31313)即为所求.已知点P (x ,y )在圆x 2+y 2=1上,求x 2+2xy +3y 2的最大值和最小值. 【解】 圆x2+y 2=1的参数方程为⎩⎪⎨⎪⎧x =cos α,y =sin α(α为参数).∴x 2+2xy +3y 2=cos 2α+2cos αsin α+3sin 2α =1+cos 2α2+sin 2α+3×1-cos 2α2=2+sin 2α-cos 2α=2+2sin(2α-π4).则当α=k π+3π8(k ∈Z )时,x 2+2xy +3y 2取最大值为2+2,当α=k π-π8(k ∈Z )时,x 2+2xy +3y 2取最小值为2- 2.已知实数x ,y 满足3x 2+2y 2=6x ,求:(1)x +y 的最大值; (2)x 2+y 2的取值范围.【思路探究】 本题表面上看是代数题,但由于方程3x 2+2y 2=6x 可以表示一个椭圆,故可以用椭圆的参数方程来解.【自主解答】 方程3x 2+2y 2=6x ,即(x -1)2+y 232=1.设⎩⎪⎨⎪⎧x =1+cos θ,y = 32sin θ.(1)x +y =1+cos θ+ 32sin θ =1+52sin(θ+α)(其中tan α=63,θ∈[0,2π)). 所以x +y 的最大值为1+102.(2)x 2+y 2=(1+cos θ)2+(32sin θ)2 =1+2cos θ+cos 2θ+32sin 2θ=52-12cos 2θ+2cos θ=-12(cos θ-2)2+92,因为cos θ∈[-1,1],所以0≤x 2+y 2≤4.利用椭圆的参数方程⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ是参数),将问题转化为三角函数问题处理.(2013·湖北高考)在直角坐标系xOy 中,椭圆C 的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数,a >b >0).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为ρsin ⎝ ⎛⎭⎪⎫θ+π4=22m (m 为非零常数)与ρ=b .若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为________.【解析】 由已知可得椭圆标准方程为x 2a 2+y 2b2=1(a >b >0).由ρsin ⎝ ⎛⎭⎪⎫θ+π4=22m 可得ρsin θ+ρcos θ=m ,即直线的普通方程为x +y =m .又圆的普通方程为x 2+y 2=b 2,不妨设直线l 经过椭圆C 的右焦点(c,0),则得c =m .又因为直线l 与圆O 相切,所以|m |2=b ,因此c =2b ,即c 2=2(a 2-c 2).整理,得c 2a 2=23,故椭圆C的离心率为e =63. 【答案】63(教材第47页例1)如图4-4-5,已知M 是椭圆x 2a 2+y 2b2=1(a >b >0)上在第一象限的点,A (a,0)和B (0,b )是椭圆的两个顶点,O 为原点,求四边形MAOB 的面积的最大值.(2013·镇江模拟)在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).(1)已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,π2),判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.【命题意图】 本题主要考查极坐标与直角坐标的互化、椭圆的参数方程等基础知识,考查运算求解能力和转化与化归思想. 【解】 (1)把极坐标系下的点P (4,π2)化为直角坐标得点(0,4).因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0, 所以点P 在直线l 上.(2)因为点Q 在曲线C 上,故可设点Q 的坐标为(3cos α,sin α), 从而点Q 到直线l 的距离为 d =|3cos α-sin α+4|2=2cos α+π6+42=2cos(α+π6)+22,由此得,当cos(α+π6)=-1时,d 取得最小值,且最小值为 2.1.已知圆的方程为x 2+y 2=4x ,则它的参数方程是 ________.【解析】 x 2+y 2=4x 可化为(x -2)2+y 2=4, ∴圆心为(2,0),半径r =2.∴参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数,0≤θ<2π).【答案】 ⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数,0≤θ<2π)2.椭圆⎩⎨⎧x =32cos φ,y =23sin φ(φ为参数)的焦距是________.【解析】 根据参数方程,可知a =32,b =2 3.∴c =322-232=18-12=6, ∴焦距为2c =2 6. 【答案】 2 63.椭圆x 23+y 2=1上的点到直线x -y +6=0的距离的最小值为________.【解析】 设P (3cos θ,sin θ)是椭圆上的点,则点P 到直线x -y +6=0的距离 d =|3cos θ-sin θ+6|2=|2cos θ+π6+6|2,当cos(θ+π6)=-1时,d 取到最小值,最小值为2 2.【答案】 2 24.点P (x ,y )在圆(x -1)2+(y -1)2=1上运动,则3x +4y 的最大值为________,yx的最小值为________. 【解析】 设x =1+cos θ,y =1+sin θ,所以3x +4y =7+3cos θ+4sin θ=7+5sin(θ+α)(其中sin α=35,cos α=45),所以当sin(θ+α)=1时,3x +4y 取到最大值12.设t =y x =1+sin θ1+cos θ,则sin θ-t cos θ=t -1,从而1+t 2sin(θ-α)=t -1(其中sin α=t1+t2,cos α=11+t2),t -11+t2=sin(θ-α), 所以⎪⎪⎪⎪⎪⎪t -11+t 2≤1,解得t ≥0,即y x 的最小值为0. 【答案】 12 01.当x 2+y 2=4时,求u =x 2+23xy -y 2的最值. 【解】 设⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(0≤θ<2π),于是u =x 2+23xy -y 2=4cos 2θ+83cos θsin θ-4sin 2θ =4cos 2θ+43sin 2θ=8sin(2θ+π6).所以,当θ=π6,x =3,y =1时,或θ=7π6,x =-3,y =-1时,u max =8;当θ=2π3,x =-1,y =3时,或θ=5π3,x =1,y =-3时,u min =-8.2.若x ,y 满足(x -1)2+(y +2)2=4,求2x +y 的最值. 【解】 令x -1=2cos θ,y +2=2sin θ,则有x =2cos θ+1,y =2sin θ-2,故2x +y =4cos θ+2+2sin θ-2=4cos θ+2sin θ=25sin(θ+φ)(tan φ=2). ∴-25≤2x +y ≤2 5.即2x +y 的最大值为25,最小值为-2 5.3.过点P (-3,0)且倾斜角为30°的直线和曲线⎩⎪⎨⎪⎧x =t +1t,y =t -1t(t 为参数)相交于A 、B 两点.求线段AB 的长.【解】 直线的参数方程为⎩⎪⎨⎪⎧x =-3+32s ,y =12s(s 为参数),曲线⎩⎪⎨⎪⎧x =t +1t,y =t -1t(t 为参数)可以化为x 2-y 2=4.将直线的参数方程代入上式,得s 2-63s +10=0.设A 、B 对应的参数分别为s 1,s 2, ∴s 1+s 2=63,s 1s 2=10.AB =|s 1-s 2|=s 1+s 22-4s 1s 2=217.4.已知A 是椭圆长轴的一个端点,O 是椭圆的中心,若椭圆上存在一点P ,使∠OPA =90°,求椭圆离心率的取值范围.【解】 设椭圆的方程为x 2a 2+y 2b 2=1,A (a,0),设P (a cos θ,b sin θ)是椭圆上一点,则AP →=(a cos θ-a ,b sin θ),OP →=(a cos θ,b sin θ),由于∠OPA =90°,所以AP →·OP →=0,即(a cos θ-a )a cos θ+b 2sin 2θ=0,。