数学人教版八年级下册19.2.3一次函数与一元一次不等式
- 格式:doc
- 大小:781.00 KB
- 文档页数:2
19.2.3一次函数与方程、不等式第1课时一次函数与一元一次方程、不等式【学习目标】1.理解一次函数与一元一次方程、一元一次不等式之间的关系,会根据一次函数的图象解决一元一次方程和一元一次不等式的求解问题.2.学习用函数的观点看待方程及不等式的方法,初步感受用全面的观点处理局部问题的思想.【学习重点】用一次函数解一元一次方程、一元一次不等式.【学习难点】理解一次函数与一元一次方程、一元一次不等式之间的关系.情景导入生成问题1.已知直线经过点A(2,4)和点B(0,-2),那么这条直线的解析式是( )A.y=-2x+3B.y=3x-2C.y=-3x+2 D.y=2x-32.一个y关于x的函数同时满足两个条件:①图象过点(2,1);②当x>0时,y随x 的增大而减小,这个函数的解析式为(写出一个即可)自学互研生成能力一.阅读教材P96思考,完成下列内容:1.一元一次方程kx+b=0的解就是一次函数的图象与轴交点的坐标.2.已知一次函数y=ax+3与x轴的交点的横坐标为-4,则一元一次方程ax+3=0的解为.二.合作探究一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为()A.x=-1B.x=2C.x=0 D.x=3归纳:当某一个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=kx+b,确定它与x轴的交点的横坐标的值.三.自主探究阅读教材P96思考,完成下列问题:1.一次函数与一元一次不等式的关系:一元一次不等式kx+b>0(或kx+b<0)的解集,就是一次函数的图象在x轴方(或方)相应的自变量x的取值范围.2.已知一次函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b≤0的解集是.四.合作探究对照图象,请回答下列问题:(1)当x取何值时,2x-5=-x+1?(2)当x取何值时,2x-5>-x+1?(3)当x取何值时,2x-5<-x+1?解:(1)由图象可知,直线y=2x-5与直线y=-x+1的交点的横坐标是,所以当x取时,2x-5=-x+1;(2)由图象可知,当时,直线y=2x-5落在直线y=-x+1的上方,即2x-5>-x+1;(3)由图象可知,当时,直线y=2x-5落在直线y=-x+1的下方,即2x-5<-x+1.五.合作探究A、B两城相距600 km,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(km)与行驶时间x(h)之间的函数图象.(1)求甲车行驶过程中,y与x之间的函数解析式,并写出自变量x的取值范围;(2)当它们行驶了7小时,两车相遇,求乙车车速.解:(1)(2)交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.检测反馈达成目标一.当堂检测1.一次函数y=2x-4的图象与x轴的交点坐标为(2,0),则一元一次不等式2x-4≤0的解集应是( )A.x≤2 B.x<2 C.x≥2 D.x>22.函数y=kx+b,当x>5时,y<0;当x<5时,y>0,则y=kx+b的图象必经过点( ) A.(0,5) B.(5,0) C.(-5,0) D.(0,-5)3.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围为.二课后检测见《长江作业》课后反思查漏补缺1.我的收获:------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------- 2.我的困惑:------------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------------。
19.2.3 一次函数与方程、不等式01基础题学问点1一次函数与一元一次方程一元一次方程kx+b=0(k≠0,k,b为常数)的解即为函数y=kx+b的图象与x轴的交点的横坐标;反之,函数y=kx+b的图象与x轴的交点的横坐标即为方程kx+b=0的解.1.若直线y=kx+b的图象经过点(1,3),则方程kx+b=3的解是x=(A)A.1 B.2 C.3 D.42.若方程ax+b=0的解是x=-2,则图中肯定不是直线y=ax+b的是(B)A B C D3.(2024·邵阳)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4).结合图象可知,关于x的方程ax+b=0的解是x=2.学问点2一次函数与一元一次不等式一元一次不等式kx+b>0(或kx+b<0)的解集,从“数”的角度看,就是一次函数y=kx+b的函数值大于0(或小于0)时相应的自变量x的取值范围;从“形”的角度看,就是一次函数的图象在x轴上方(或下方)时,相应的自变量x的取值范围.4.(2024·遵义)如图,直线y =kx +3经过点(2,0),则关于x 的不等式kx +3>0的解集是(B )A .x >2B .x <2C .x ≥2D .x ≤25.一次函数y =kx +b 的图象如图所示,则不等式kx +b <0的解集为x <1.第5题图 第6题图6.如图,函数y =ax -1的图象过点(1,2),则不等式ax -1>2的解集是x >1.学问点3 一次函数与二元一次方程(组)一般地,每个含有未知数x 和y 的二元一次方程,都可以改写成y =kx +b(k ,b 是常数且k ≠0)的形式,所以它都对应一个一次函数,也就是一条直线.这条直线上每个点的坐标(x ,y )都是这个二元一次方程的解.方程组⎩⎪⎨⎪⎧y =ax +b ,y =mx +n 的解是函数y =ax +b 与函数y =mx+n 的图象的交点坐标,画出这两个一次函数的图象,找出它们的交点,即可得到相应的二元一次方程组的解.7.如图,一次函数y =k 1x +b 1的图象l 1与y =k 2x +b 2的图象l 2相交于点P ,则方程组⎩⎪⎨⎪⎧y =k 1x +b 1,y =k 2x +b 2的解是(A )A.⎩⎪⎨⎪⎧x =-2y =3B.⎩⎪⎨⎪⎧x =3y =-2 C.⎩⎪⎨⎪⎧x =2y =3D.⎩⎪⎨⎪⎧x =-2y =-38.如图,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P(1,b).(1)求b 的值;(2)不解关于x ,y 的方程组⎩⎪⎨⎪⎧y =x +1,y =mx +n ,请你干脆写出它的解;(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.解:(1)b =2.(2)⎩⎪⎨⎪⎧x =1,y =2. (3)直线y =nx +m 也经过点P.理由: ∵点P (1,2)在直线y =mx +n 上, ∴m +n =2,即2=n ×1+m.∴这说明直线y=nx+m也经过点P.02中档题9.如图是直线y=x-5的图象,点P(2,m)在该直线的下方,则m的取值范围是(D)A.m>-3B.m>-1C.m>0D.m<-310.已知一次函数y=kx+b的图象如图所示,则下列推断中不正确的是(A) A.方程kx+b=0的解是x=0B.k>0,b>0C.当x<-3时,y<0D.y随x的增大而增大第10题图第12题图11.(2024·遵义期末)函数y=2x和y=ax+4的图象相交于点A(m,3),则依据图象可得关于x ,y 的方程组⎩⎪⎨⎪⎧2x -y =0,ax -y +4=0的解是⎩⎪⎨⎪⎧x =32y =3.12.(2024·白银)如图,一次函数y =-x -2与y =2x +m 的图象相交于点P(n ,-4),则关于x 的不等式组⎩⎪⎨⎪⎧2x +m<-x -2,-x -2<0的解集为-2<x <2.13.在同一平面直角坐标系内画一次函数y 1=-x +4和y 2=2x -5的图象,依据图象求:(1)方程-x +4=2x -5的解;(2)当x 取何值时,y 1>y 2?当x 取何值时,y 1>0且y 2<0?解:如图.(1)由图可知,一次函数y 1=-x +4和y 2=2x -5的图象相交于点(3,1), ∴方程-x +4=2x -5的解为x =3. (2)当x <3时,y 1>y 2; 当x <52时,y 1>0且y 2<0.14.如图,已知直线y =kx +b 经过点A(5,0),B(1,4).(1)求直线AB 的解析式;(2)若直线y =2x -4与直线AB 相交于点C ,求点C 的坐标; (3)依据图象,写出关于x 的不等式2x -4>kx +b 的解集.解:(1)∵直线y =kx +b 经过点A (5,0),B (1,4),∴⎩⎪⎨⎪⎧5k +b =0,k +b =4,解得⎩⎪⎨⎪⎧k =-1,b =5. ∴直线AB 的解析式为y =-x +5.(2)联立⎩⎪⎨⎪⎧y =-x +5,y =2x -4,解得⎩⎪⎨⎪⎧x =3,y =2. ∴C (3,2).(3)依据图象可得x >3. 03 综合题15.甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l 1和l 2分别表示甲、乙两人跑步的路程y(m )与甲跑步的时间x(s )之间的函数关系,其中l 1的关系式为y 1=8x ,问甲追上乙用了多长时间?解:设y 2=kx +b (k ≠0),依据题意,得⎩⎪⎨⎪⎧10=b ,22=2k +b.解得⎩⎪⎨⎪⎧k =6,b =10. ∴y 2=6x +10.当y 1=y 2时,8x =6x +10,解得x =5. ∴甲追上乙用了5 s.。
人教版八下数学学霸笔记整理19.2.3 一次函数与方程、不等式1.因为任何一个以x为未知数的一元一次方程都可以变形为ax+b=0(a≠0)的形式,所以解一元一次方程相当于在某个一次函数y=ax+b的函数值为0时,求自变量x的值.2.因为任何一个以x为未知数的一元一次不等式都可以变形为ax+b>0或ax+b<0 (a≠0)的形式,所以解一元一次不等式相当于当某个一次函数y=ax+b的值大于0或小于0时,求自变量x的取值范围.3.一般地,因为每个含有未知数x和y的二元一次方程,都可以改写为y=kx+b(k,b是常数,k≠0)的形式,所以每个这样的方程都对应一个一次函数,于是也对应一条直线.这样直线上每个点的坐标(x,y)都是这个二元一次方程的解.4.由含有未知数x和y的两个二元一次方程组成的每个二元一次方程组,都对应两个一次函数,于是也对应两条直线.从“数”的角度看,解这样的方程组,相当于求自变量为何值时相应的两个函数值相等,以及这个函数值是多少;从“形”的角度看,解这样方程组,相当于确定两条相应直线交点的坐标.因此,我们可以用画一次函数图象的方法得到方程组的解.1.解关于x的一元一次方程kx+b=0(k≠0)可以转化为:已知函数y=kx+b的函数值为0,求相应的自变量x的值.从图象上看,相当于已知直线y=kx+b,确定它与x轴的交点的横坐标.2.用图象法求解问题,作图要准确.1.规律方法:(1)根据图象求关于x的不等式kx+b>mx+n的解的方法:①求当自变量x取何值时,直线y=(k-m)x+b-n上的点在x轴的上方;②求当x取何值时,直线y=kx+b上的点在直线y=mx+n上相应的点的上方.特别说明:不等号为“<”时,道理类似.(2)用图象法解二元一次方程组的一般步骤:①先把方程组中的两个二元一次方程转化成一次函数的形式;②建立平面直角坐标系,画出这两个一次函数的图象;③写出这两条直线的交点的横、纵坐标,从而得出二元一次方程组的近似解(横坐标为x,纵坐标为y).2.解题技巧:(1)在直角坐标系中,以二元一次方程kx-y+b=0的解为坐标的点的集合组成的图象就是一次函数y=kx+b 的图象.(2)由于两条直线的交点坐标是由这两条直线的解析式所组成的二元一次方程组的解,所以求两条直线的交点坐标时,通常把两个一次函数的解析式联立成二元一次方程组,通过解方程组求得.[典例精析]【例1】 如图,已知函数y=x-2和y=-2x+1的图象交于点P ,根据图象可得方程组{x -y =2,2x +y =1的解是( )A.{x =1,y =1B.{x =-1,y =-1C.{x =1,y =-1D.{x =-1,y =1解析:由y=x-2,得x-y=2;由y=-2x+1,得2x+y=1.由图象可知:函数y=x-2和y=-2x+1的图象的交点P 的坐标是(1,-1).∴方程组{x -y =2,2x +y =1的解是{x =1,y =-1.故选C . 答案:C 解题总结:二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即两条直线的交点坐标.【例2】 如图,直线y=kx+b 经过点A (-1,-2)和点B (-2,0),直线y=2x 经过点A ,则2x<kx+b<0的解集为( )A.x<-2B.-2<x<-1C.-2<x<0D.-1<x<0解析:2x<kx+b<0体现的几何意义就是直线y=kx+b上,位于直线y=2x上方,x轴下方的那部分点,显然,这些点在点A与点B之间.故选B.答案:B解题总结:解决此类问题关键是仔细观察图形,注意几个关键点(两直线的交点,直线与坐标轴的交点、原点等),数形结合求解即可.。
《一次函数与方程、不等式》教学设计方案(第一课时)一、教学目标1. 理解一次函数的概念,掌握一次函数的定义条件。
2. 通过一次函数的学习,掌握方程、不等式与一次函数的关系。
3. 提高分析问题、解决问题的能力,培养数学思维。
二、教学重难点1. 重点:一次函数的概念及图像性质。
2. 难点:运用一次函数解决实际问题,建立方程、不等式与一次函数的关系。
三、教学准备1. 准备教学用具:黑板、白板、投影仪等教学设备,以及几何画板等数学软件。
2. 准备教材和练习题:选择适合学生理解和应用的教材,同时准备一定量的练习题供学生练习。
3. 备课:深入理解一次函数与方程、不等式的关系,设计合理的教学计划,以使学生更好地理解和运用相关知识。
4. 准备课堂互动环节:为了活跃课堂气氛,激发学生的学习热情,准备组织一些互动环节,如小组讨论、抢答等,以增强学生的学习参与度。
5. 课后反馈:课后,我会收集学生的反馈,了解他们对知识的掌握情况,以便对教学计划进行调整和改进。
总之,我会尽心尽力地做好备课、授课和课后反馈三个环节,以确保学生能够充分理解和掌握一次函数与方程、不等式的关系,并能够灵活运用相关知识解决实际问题。
感谢您的支持和信任,期待与您共同探讨和进步!四、教学过程:本节课是《一次函数与方程、不等式》教学的第一课时,具体教学过程如下:(一)导入新课:1. 回顾一次函数的概念、性质和应用。
2. 引出方程、不等式与一次函数的关系。
3. 引导学生思考如何利用一次函数解决相关问题。
(二)新课教学:1. 讲解一次函数与方程的关系:通过实例引导学生发现一次函数与一元一次方程的关系,并总结规律。
2. 讲解一次函数与不等式的关系:通过实例引导学生发现一次函数与一次不等式的联系,并总结规律。
3. 练习:让学生完成相关练习题,巩固所学知识。
(三)小组合作:将学生分成若干小组,让小组内成员互相讨论、交流,共同解决遇到的问题。
教师在此过程中可以进行适当的引导和提示,帮助学生更好地进行讨论。
人教版数学八年级下册19.2.3《一次函数与方程、不等式说课稿一. 教材分析《一次函数与方程、不等式》是人教版数学八年级下册第19章第2节的一部分。
这部分内容是在学生已经掌握了函数、方程、不等式的基本概念和性质的基础上进行讲解的。
通过这部分的学习,使学生能够掌握一次函数与方程、不等式的关系,能够运用一次函数解决实际问题,培养学生解决实际问题的能力。
教材中通过丰富的例题和练习题,帮助学生理解和掌握一次函数与方程、不等式的解法与应用。
二. 学情分析八年级的学生已经具备了一定的数学基础,对于函数、方程、不等式的概念和性质有一定的了解。
但是,对于一次函数与方程、不等式的关系,以及如何运用一次函数解决实际问题,还需要进一步的学习和引导。
因此,在教学过程中,需要注重学生的参与和实践,通过引导学生自主探索和合作交流,帮助学生理解和掌握一次函数与方程、不等式的关系,提高学生解决实际问题的能力。
三. 说教学目标1.知识与技能目标:使学生理解和掌握一次函数与方程、不等式的关系,能够运用一次函数解决实际问题。
2.过程与方法目标:通过学生的自主探索和合作交流,培养学生的解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心和自尊心,使学生感受到数学的实际应用价值。
四. 说教学重难点1.教学重点:一次函数与方程、不等式的关系,一次函数解决实际问题的方法。
2.教学难点:一次函数与方程、不等式的关系的理解,一次函数解决实际问题的方法的运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作交流法等,引导学生自主探索和合作交流,培养学生的解决问题的能力。
2.教学手段:使用多媒体课件、黑板、粉笔等教学工具,帮助学生理解和掌握一次函数与方程、不等式的关系。
六. 说教学过程1.导入:通过一个实际问题,引发学生对一次函数与方程、不等式的关系的思考,激发学生的学习兴趣。
2.讲解:通过讲解一次函数与方程、不等式的关系,引导学生理解一次函数解决实际问题的方法。
19.2.3一次函数与一元一次方程学习目标:1、理解一次函数与一元一次方程的关系,会根据图象解决一元一次方程求解问题。
2、学习用函数的观点看待方程的方法,经历方程与函数关系问题的探究过程,学习用联系的观点看待数学问题。
学习重点:利用一次函数知识求一元一次方程的解。
学习难点:一次函数与一元一次方程的关系发现、归纳和应用。
学习过程:活动一、课前小测1、一次函数12+=x y ,当=x 时,3=y ;当=x 时,0=y ;当=x 时,1-=y 。
2、一次函数,12+=x y ,x 轴交点坐标为________;与y 轴交点坐标_________;图像经过_______象限,y 随x 的增大而______,图像与坐标轴所围成的三角形的面积是 。
活动二:观察分析,探究新知 1、自主探究(1)解方程2x+20=0(2)当自变量x 为何值时,函数y=2x+20的值为0?解:(1) 2x+20=0(2) 当y=0时 ,即思考:上面两个问题实际上是______问题.(3)画出函数y=2x+20的图象,并确定它与x 轴的交点坐标.(思考:直线y=2x+20与x 轴交点坐标为(____,_____),这说明方程2χ+20=0的解是x=_____)2、合作交流(小组交流答成共识,然后展示交流成果 )从“函数值”看,“解方程ax+b=0(a ,b 为常数, a ≠0)”与“求自变量 x 为何值时,一次函数y=ax+b 的值为0”有什么关系?从图象上看呢?求一元一次方程ax +b =0(a ,b 是常数,a ≠0)的解,从“函数值”看就是某个一次函数b ax y +=求一元一次方程ax +b =0(a , b 是常数,a ≠0)的解,从“函数图象”看就是直线b ax y +=与x 轴的交点的活动三、师生互动,运用新知1、根据下列图像,你能说出哪些一元一次方程的解?并直接写出相应方程的解?1、直线3+=x y 与y 轴的交点是( )A 、(0,3)B 、(0,1)C 、(3,0)D 、(1,0) 2、直线3+=kx y 与x 轴的交点是(1,0 ),则k 的值是( ) A 、3 B 、2 C 、-2 D 、-3y=x-13600 OBt(分)S(米) A 153、直线y=x+3与x 轴的交点坐标为( , ),所以相应的方程x+3=0的解是x=4、直线y=3x+6与x 轴的交点的横坐标x 的值是方程2x+a=0的解,则a•的值是______5、弹簧的长度与所挂物体的质量的关系是一次函数,如图所示,请判断不挂物体时弹簧的长度是多少?活动五、课堂小结,巩固新知同学们,本节课你学到了那些重要的知识点或内容呢?请试着自己总结一下吧!活动六、作业1、有一个一次函数的图象,可心和黄瑶分别说出了它的两个特征. 可心:图象与x 轴交于点(6,0)。
第2课时一次函数与一元一次不等式
活动1知识准备
1.关于x的方程kx+b=0(k≠0)的解就是一次函数y=kx+b的图象() A.与x轴交点的横坐标
B.与x轴交点的纵坐标
C.与y轴交点的横坐标
D.与y轴交点的纵坐标
2.当x________时,2x-3>-x+4.
3.解不等式:
(1)2x-5>0;(2)2x-5<0;(3)2x-5>3.
活动2教材导学
作出函数y=2x-5的图象如图19-2-9所示,观察图象回答下列问题:
(1)当x取何值时,2x-5=0?
(2)当x取何值时,2x-5>0?
(3)当x取何值时,2x-5<0?
(4)当x取何值时,2x-5>3?
图19-2-9
◆知识链接——[新知梳理]知识点一
►知识点一一次函数与一元一次不等式的关系
若方程ax+b=0(a,b为常数,且a≠0)的解为x=-b
a,则关于x的不等式ax+b>0(或
ax+b<0)的解集就是一次函数y=ax+b的值大于0(或小于0)时x的取值范围.
►知识点二不等式ax+b>cx+d的图象解法
若解关于x的不等式ax+b>cx+d(或ax+b<cx+d)(a,b,c,d为常数,且a≠c),则可先化为最简一元一次不等式,再利用一次函数图象求解.也可把两边分别看成一次函数,利用图象求解.
探究一用图象法解一元一次不等式
教材补充例题利用函数图象解不等式:
(1)-1
3x+1>0;(2)4x-2<x-8.
探究二在实际问题中体会一元一次不等式与一次函数之间的关系
教材补充例题为调动销售人员的积极性,A,B两公司采取如下工资支付方式:A 公司每月2000元基本工资,另加销售额的2%作为奖金;B公司每月1600元基本工资,另加销售额的4%作为奖金.已知A公司销售员小李、B公司销售员小张1~6月的销售额如下表:
月份
销售额/元
1月2月3月4月5月6月小李(A公司) 11600 12800 14000 15200 16400 17600
小张(B公司) 7400 9200 11000 12800 14600 16400
(1)请问小李与小张3月份的工资各是多少?
(2)小李1-6月的销售额y1与月份x之间的函数解析式是y1=1200x+10400, 小张1-6月的销售额y2也是月份x的一次函数,请求出y2与x之间的函数解析式;
(3)如果7-12月两人的销售额也分别满足(2)中两个一次函数的关系,从几月起小张的工资高于小李的工资?
[归纳总结] 对于集一次函数、方程和不等式于一体的题目,在求解时,一定要认真分析题意,运用所学知识,灵活使用数学思想方法,如方程思想、转化思想、分类讨论思想以及数学建模思想等,找准问题的切入点,从而快速、准确地求解问题.
[反思] 已知关于x的一次函数y=kx+b(k≠0)的图象过点(2,0),(0,-1),试求不等式kx+b≥0的解集.
解:∵关于x的一次函数y=kx+b(k≠0)的图象过点(2,0),(0,-1),∴函数值y随x 的增大而增大,
∴不等式kx+b≥0的解集是x≥0.
(1)错因分析:
(2)纠错:。