北师大版七年级下册 第1章《整式的乘除》培优拔尖习题训练(带答案)
- 格式:doc
- 大小:107.00 KB
- 文档页数:11
北师大版七年级数学下册第一章整式的乘除 乘法公式课后作业题二(培优部分含答案)1.下列计算中正确的是( )A . 426a a a +=B . ()222a b a b -=-C . 633a a a ÷=D . ()236a a -=- 2.若x 2+y 2=(x+y) 2+A=(x-y) 2+B ,则A ,B 各等于( )A .-2xy ,2xyB .-2xy ,-2xyC .2xy ,-2xyD .2xy ,2xy3.下列运算正确的是( )A .a 2+3a 2=4a 4B .3a 2•a=3a 3C .(3a 3)2=9a 5D .(2a+1)2=4a 2+14.已知a+b=﹣5,ab=﹣4,则a 2﹣ab+b 2=( )A .29B .37C .21D .335.如图①,在边长为的正方形中挖掉一个边长为的小正方形(>),把余下的部分剪拼成一个矩形(如图②),通过计算两个图形的面积,验证了一个等式,则这个等式是( )A .B .C .D . 6.下列各式从左到右的变形,正确的是( )A .﹣x ﹣y=﹣(x ﹣y )B .﹣a+b=﹣(a+b )C .(y ﹣x )2=(x ﹣y )2D .(a ﹣b )3=(b ﹣a )37.计算101 等于 ( )A .100+1B .101×2C .100+100×1+1D .100+2×100+18.已知a +b =3,a -b =-1,则a 2-b 2的值为 ______ .9.x +y =(x+y )-__________=(x-y )+________.10.关于x 的二次三项式4x²+mx+1是完全平方式,则m=________11.若是关于的完全平方式,则常数________.12.()()()2a b c a b c c a b ⎡⎤-+--+÷-=⎣⎦________________.13.计算: 2200220012003-⨯_______________.14.设4x 2+mx+121是一个完全平方式,则m=________15.计算:(−x −y )2=__________;(−2a +5b )2=_________;(−xy +5)2=__________.16.把几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得等式:(a+2b )(a+b )=a 2+3ab+2b 2(1)如图2,将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c 的正方形,试用不同的形式表示这个大正方形的面积,你能发现什么结论?请用等式表示出来.(2)利用(1)中所得到的结论,解决下面的问题: 已知a+b+c =11,ab+bc+ac =38,求a 2+b 2+c 2的值.(3)如图3,将两个边长分别为a 和b 的正方形拼在一起,B ,C ,G 三点在同一直线上,连接BD 和BF .若这两个正方形的边长满足a+b =10,ab =20,请求出阴影部分的面积.17.先化简,再求值: ()()()2333a a a +-++,其中2a =-。
整式的乘除计算训练(1)1. )2()(b a b a -++-2. (x+2)(y+3)-(x+1)(y-2)3. 22)2)(2(y y x y x ++-4. x(x -2)-(x+5)(x -5)5. ⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛--y x y x 224 6. )94)(32)(23(22x y x y y x +---7. ()()3`122122++-+a a 8. ()()()2112+--+x x x9. (x -3y)(x+3y)-(x -3y)2 10. 23(1)(1)(21)x x x +---11. 22)23()23(y x y x --+ 12. 22)()(y x y x -+13. 0.125100×810014. 30022)2(21)x (4554---÷⎪⎭⎫ ⎝⎛--π-+⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛15. (1211200622332141)()()()-⨯+----16—19题用乘法公式计算16.999×1001 17.1992-18.298 19.2010200820092⨯-20.化简求值:)4)(12()12(2+-+-a a a ,其中2-=a 。
21. 化简求值2(2)2()()2(3)x y x y x y y x y +--++-,其中12,2x y =-=。
22. 5(x-1)(x+3)-2(x-5)(x-2) 23. (a-b)(a2+ab+b2)24. (3y+2)(y-4)-3(y-2)(y-3) 25. a(b-c)+b(c-a)+c(a-b)1y2)2 26. (-2mn2)2-4mn3(mn+1) 27. 3xy(-2x)3·(-428. (-x-2)(x+2) 29. 5×108·(3×102)30. (x-3y)(x+3y)-(x-3y)2 31. (a+b-c)(a-b-c)答案1. 2. 3. 4.5. 6. 7. 8.9. 10. 11. 12.13. 14. 15.16. 原式=(1000-1)(1000+1) 17. 原式=(99+1)(99-1) =1000000-1 =10098=999999 =980018. 原式=(900-2)2 19. 原式=20092-(2009+1)(2009-1)=10000-400+4 =20092-20092+1=9604 =120.原式=,当时,原式=21.原式=,当,时,原式=22. 23. 24. 25. 0 26. 27. 28. 29.30. 31. 哲学1[单]哲学是( D )A.科学的世界观和方法论B.科学的科学C.关于自然、社会、思维发展一般规律的科学D.世界观的理论体系2[多]任何哲学都是( AC )A理论化,系统的化的世界观;B科学的世界观和方法论;C自然知识,社会知识,思维知识的概括和总结;D改造世界的思想武器。
乘法公式1. 2 2 1x mx 是一个完整平方式,那么 m 的值为〔〕A、1B、-1C、1D、02.假定a >0,且a 2 1a ,那么2a42a=〔〕A、3B、-1C、-3D、53.假定ab <0,那么2(a b) 与2(a b) 的大小关系是4.设x 2z 3y ,试判断 2 9 2 4 2 4x y z xz 的值能否是定值?假如是定值,求出它的值;否那么请说明原因。
5.假定2 2 2 2 2 2 2A 1 2 3 4 ...... 99 100 101 ,那么A被3除得的余数是。
6、假定x y 2, 2 2 4x y ,那么2002 2002x y 的值是:7、〔1〕计算:220042003 12 220042002 20042004〔2〕计算:2200520042 220052003 20052005 2〔3〕 3 2培优训练〔 2〕1、在多项式 29x 1中,增添一个单项式 ,使其成为一个完整平方式 .那么增添的单项式能够是 (起码填 3 种)2、a,b 知足等式 2 2 20x a b , y 4(2 b a), 请比较x, y的大小关系.3、 2 2 2 2M (x 2x 1) x 2x 1 ,N (x x 1) x x 1 ,( x 0)比较M , N 的大小关系.4、(希望杯邀请赛 ) x,y知足 2 2 5x y 2x y ,求代数式4xyx y的值 .5.计算 :1) 2 2(2 x 3y) (2 x 3y) 2)2 2 2 3(2a 1) (2a 1) (2a 3) (2a 3)6. 2(x y) 2x 2y 1 0 ,那么999 (x y) =7. x y 1, 2 2 2x y ,那么4 4x y 的值是〔〕A、4B、3C、72 D、528、假定a,b为有理数,且2 22a 2ab b 4a 4 0,求2 2a b ab 的值。
培优训练〔 3〕1.a 1999,b 1,那么 2 2 2 3a b ab 。
北师⼤版七年级下册第1章《整式的乘除》培优拔尖习题训练(带答案)北师⼤版第1章《整式的乘除》培优拔尖习题训练⼀.选择题(共10⼩题)1.下⾯计算正确的是()A.a2?a3=a5B.3a2﹣a2=2C.4a6÷2a3=2a2D.(a2)3=a52.化简(x+4)(x﹣1)+(x﹣4)(x+1)的结果是()A.2x2﹣8B.2x2﹣x﹣4C.2x2+8D.2x2+6x3.若要使4x2+mx+成为⼀个两数差的完全平⽅式,则m的值应为()A.B.C.D.4.下列计算错误的是()A.(﹣2a3)3=﹣8a9B.(ab2)3?(a2b)2=a7b8C.(xy2)2?(9x2y)=x6y6D.(5×105)×(4×104)=2×10105.已知长⽅形ABCD可以按图⽰⽅式分成九部分,在a,b变化的过程中,下⾯说法正确的有()①图中存在三部分的周长之和恰好等于长⽅形ABCD的周长②长⽅形ABCD的长宽之⽐可能为2③当长⽅形ABCD为正⽅形时,九部分都为正⽅形④当长⽅形ABCD的周长为60时,它的⾯积可能为100.A.①②B.①③C.②③④D.①③④6.若(x2+x+b)?(2x+c)=2x3+7x2﹣x+a,则a,b,c的值分别为()A.a=﹣15,b=﹣3,c=5B.a=﹣15,b=3,c =﹣5C.a=15,b=3,c=5D.a=15,b=﹣3,c=﹣57.如图1,在边长为a的正⽅形中剪去⼀个边长为b的⼩正⽅形(a>b),把剩下部分沿图1中的虚线剪开后重新拼成⼀个梯形(如图2),利⽤这两幅图形⾯积,可以验证的乘法公式是()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.a(a+b)=a2+ab D.(a+b)(a﹣b)=a2﹣b28.若(a﹣c+b)2=21,(a+c+b)2=2019,则a2+b2+c2+2ab的值是()A.1020B.1998C.2019D.20409.我们知道,同底数幂的乘法法则为a m?a n=a m+n(其中a≠0,m、n为正整数),类似地我们规定关于任意正整数m、n的⼀种新运算:h(m+n)=h(m)?h(n);⽐如h(2)=3,则h(4)=h(2+2)=3×3=9,若h(2)=k(k≠0),那么h(2n)?h(2020)的结果是()A.2k+2020B.2k+1010C.k n+1010D.1022k10.观察下列各式:(x2﹣1)÷(x﹣1)=x+1.(x3﹣1)÷(x﹣1)=x2+x+1,(x4﹣1)÷(x﹣1)=x3+x2+x+1,(x5﹣1)÷(x﹣1)=x4+x3+x2+x+1,根据上述规律计算2+22+23+…+262+263的值为()A.264﹣1B.264﹣2C.264+1D.264+2⼆.填空题(共8⼩题)11.2015年诺贝尔⽣理学或医学奖得主中国科学家屠呦呦,发现了⼀种长度约为0.000000456毫⽶的病毒,把0.000000456⽤科学记数法表⽰为.12.已知x2﹣2(m+3)x+9是⼀个完全平⽅式,则m=.13.计算:(16x3﹣8x2+4x)÷(﹣2x)=.14.若计算(x﹣2)(3x+m)的结果中不含关于字母x的⼀次项,则m的值为.15.若(x﹣2)x=1,则x=.16.如图所⽰,如图,边长分别为a和b的两个正⽅形拼接在⼀起,则图中阴影部分的⾯积为.17.在我们所学的课本中,多项式与多项式相称可以⽤⼏何图形的⾯积来表⽰,例如:(2a+b)(a+b)=2a2+3ab+b2就可以⽤下⾯图中的图①来表⽰.请你根据此⽅法写出图②中图形的⾯积所表⽰的代数恒等式:18.观察下列各等式:x﹣2=x﹣2(x﹣2)(x+2)=x2﹣22(x﹣2)(x2+2x+4)=x3﹣23(x﹣2)(x3+2x2+4x+8)=x4﹣24……请你猜想:若A?(x+y)=x5+y5,则代数式A=.19.先化简,再求值:(m﹣2)2﹣(n+2)(n﹣2)﹣m(m﹣1),其中2m2+12m+18+|2n﹣3|=0.20.计算:(1)(﹣4x2)﹣(1+2x)(8x﹣2)(2)(﹣2x﹣y)(y﹣2x)﹣(2x+y)2(3)先化简再求值:(12x3y2+x2y﹣x2y3)÷(﹣2x2y)﹣[2(x﹣y)]2,其中x=﹣,y=321.阅读材料:(1)1的任何次幂都为1:(2)﹣1的奇数次幂为﹣1:(3)﹣1的偶数次幂为1:(4)任何不等于零的数的零次幂为1.请问当x为何值时,代数式(2x+3)x+2020的值为1.22.(1)先化简,再求值已知:[(x﹣2y)2﹣4y2+2xy]÷2x,其中x=1,y=2.(2)先化简,再求值:(﹣3ab)2(a2+ab+b2)﹣3ab(3a3b+3a2b2﹣ab3),其中a=﹣,b=23.(1)计算:(a﹣2)(a2+2a+4)=.(2x﹣y)(4x2+2xy+y2)=.(2)上⾯的整式乘法计算结果很简洁,你⼜发现⼀个新的乘法公式(请⽤含a,b的字母表⽰).(3)下列各式能⽤你发现的乘法公式计算的是.A.(a﹣3)(a2﹣3a+9)B.(2m﹣n)(2m2+2mn+n2)C.(4﹣x)(16+4x+x2)D.(m﹣n)(m2+2mn+n2)24.如图1,在⼀个边长为a的正⽅形⽊板上锯掉⼀个边长为b的正⽅形,并把余下的部分沿虚线剪开拼成图2的形状.(1)请⽤两种⽅法表⽰阴影部分的⾯积:图1得:;图2得;(2)由图1与图2⾯积关系,可以得到⼀个等式:;(3)利⽤(2)中的等式,已知a2﹣b2=16,且a+b=8,则a﹣b=.参考答案1.【解答】解:A、结果是a5,故本选项符合题意;B、结果是2a2,故本选项不符合题意;C、结果是2a3,故本选项不符合题意;D、结果是a6,故本选项不符合题意;故选:A.2.【解答】解:(x+4)(x﹣1)+(x﹣4)(x+1)=x2+3x﹣4+x2﹣3x﹣4=2x2﹣8,故选:A.3.【解答】解:∵(2x﹣)2=4x2﹣x+,或[2x﹣(﹣)]2=4x2+x+,∴m=﹣或.故选:A.4.【解答】解:A、(﹣2a3)3=﹣8a9,正确;B、(ab2)3?(a2b)2=a7b8,正确;C、(xy2)2?(9x2y)=x4y5,错误;D、(5×105)×(4×104)=2×1010,正确;故选:C.5.【解答】解:①四边形AEFG、FHKM、SKWC的周长之和等于长⽅形ABCD的周长;②长⽅形的长为a+2b,宽为2a+b,若该长⽅形的长宽之⽐为2,则a+2b=2(2a+b)解得a=0.这与题意不符,故②的说法不正确;③当长⽅形ABCD为正⽅形时,2a+b=a+2b所以a=b,所以九部分都为正⽅形,故③的说法正确;④当长⽅形ABCD的周长为60时,即2(2a+b+a+2b)=60整理,得a+b=10所以四边形GHWD的⾯积为100.故当长⽅形ABCD的周长为60时,它的⾯积不可能为100,故④的说法不正确.综上正确的是①③.故选:B.6.【解答】解:∵(x2+x+b)?(2x+c)=2x3+7x2﹣x+a,2x3+2x2+2bx+cx2+cx+bc=2x3+7x2﹣x+a,2x3+(2+c)x2+(2b+c)x+bc∴2+c=7,2b+c=﹣1,bc=a.解得c=5,b=﹣3,a=﹣15.故选:A.7.【解答】解:图1阴影部分的⾯积等于a2﹣b2,图2梯形的⾯积是(2a+2b)(a﹣b)=(a+b)(a﹣b)根据两者阴影部分⾯积相等,可知(a+b)(a﹣b)=a2﹣b2⽐较各选项,只有D符合题意故选:D.8.【解答】解:(a﹣c+b)2=a2+b2+c2﹣2ac﹣2bc+2ab=21①,(a+c+b)2=a2+b2+c2+2ac+2bc+2ab=2019②,①+②,得2(a2+b2+c2)+4ab=2040,a2+b2+c2+2ab=1020.故选:A.9.【解答】解:∵h(2)=k(k≠0),h(m+n)=h(m)?h(n),∴h(2n)?h(2020)=h()?h()=?=k n?k1010=k n+1010,故选:C.10.【解答】解:有上述规律可知:(x64﹣1)÷(x﹣1)=x63+x62+…+x2+x+1当x=2时,即(264﹣1)÷(2﹣1)=1+2+22+…+262+263∴2+22+23+…+262+263=264﹣2.故选:B.⼆.填空题(共8⼩题)11.【解答】解:把0.000000456⽤科学记数法表⽰为4.56×10﹣7,故答案为:4.56×10﹣7.12.【解答】解:∵x2﹣2(m+3)x+9是⼀个完全平⽅式,∴m+3=±3,解得:m=﹣6或m=0,故答案为:﹣6或013.【解答】解:(16x3﹣8x2+4x)÷(﹣2x)=﹣8x2+4x﹣2.故答案为:﹣8x2+4x﹣2.14.【解答】解:原式=3x2+(m﹣6)x﹣2m,由结果不含x的⼀次项,得到m﹣6=0,解得:m=6,故答案为:615.【解答】解:∵(x﹣2)x=1,∴x=0时,(0﹣2)0=1,当x=3时,(3﹣2)3=1,则x=0或3.故答案为:0或3.16.【解答】解:∵去掉△DEF,则剩余部分为⼀个直⾓梯形∴图中阴影部分的⾯积为:(a+a+b)b﹣(b﹣a)a﹣(a+b)a=ab+b2﹣ab+a2﹣a2﹣ab=b2故答案为:.17.【解答】解:根据图形列得:(a+2b)(2a+b)=2a2+5ab+2b2.故答案为:(a+2b)(2a+b)=2a2+5ab+2b2.18.【解答】解:(x4﹣x3y+x2y2﹣xy3+y4)(x+y)=x5+y5,故答案为:x4﹣x3y+x2y2﹣xy3+y4.三.解答题(共6⼩题)19.【解答】解:(m﹣2)2﹣(n+2)(n﹣2)﹣m(m﹣1)=m2﹣4m+4﹣n2+4﹣m2+m=﹣n2﹣3m+8,∵2m2+12m+18+|2n﹣3|=0,∴2(m+3)2+|2n﹣3|=0,∴m+3=0,2n﹣3=0,∴m=﹣3,n=1.5,当m=﹣3,n=1.5时,原式=﹣1.52﹣3×(﹣3)+8=﹣3.20.【解答】解:(1)(﹣4x2)﹣(1+2x)(8x﹣2)=﹣4x2﹣8x+2﹣16x2+4x=﹣20x2﹣4x+2;(2)(﹣2x﹣y)(y﹣2x)﹣(2x+y)2=4x2﹣y2﹣4x2﹣4xy﹣y2=﹣2y2﹣4xy;(3)(12x3y2+x2y﹣x2y3)÷(﹣2x2y)﹣[2(x﹣y)]2=﹣6xy+y2﹣4x2+8xy﹣4y2=2xy﹣4x2﹣y2﹣,当,y=3时,原式=2×(﹣)×3﹣4×(﹣)2﹣×32﹣=﹣36.21.【解答】解:①由2x+3=1,得x=﹣1,当x=﹣1时,代数式(2x+3)x+2020=12019=1;②由2x+3=﹣1,得x=﹣2,当x=﹣2时,代数式(2x+3)x+2020=(﹣1)2018=1;③由x+2020=0,得x=﹣2020,当x=﹣2020时,2x+3=﹣4037≠0所以(2x+3)x+2020=(﹣4037)0=1.当x=﹣2020时,代数式(2x+3)x+2020的值为1.答:当x为﹣1、﹣2、﹣2020时,代数式(2x+3)x+2020的值为1.22.【解答】解:(1)[(x﹣2y)2﹣4y2+2xy]÷2x=[x2﹣4xy+4y2﹣4y2+2xy]÷2x=[x2﹣2xy]÷2x=,当x=1,y=2时,原式=;(2)(﹣3ab)2(a2+ab+b2)﹣3ab(3a3b+3a2b2﹣ab3)=9a2b2(a2+ab+b2)﹣(9a4b2+9a3b3﹣3a2b4)=9a4b2+9a3b3+9a2b4﹣9a4b2﹣9a3b3+3a2b4=12a2b4,当a=,b=时,原式=.23.【解答】解:(1)原式=a3﹣8;原式=8x3﹣y3;(2)(a﹣b)(a2+ab+b2)=a3﹣b3;(3)能⽤发现的乘法公式计算的是(4﹣x)(16+4x+x2).故答案为:(1)a3﹣8;8x3﹣y3;(2)(a﹣b)(a2+ab+b2)=a3﹣b3;(3)C.24.【解答】解:(1)图1中阴影部分的⾯积为:a2﹣b2,图2中阴影部分的⾯积为:(2b+2a)(a﹣b),即(a+b)(a﹣b);故答案为:a2﹣b2,(a+b)(a﹣b);(2)由图1与图2⾯积关系,可以得到⼀个等式:a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2=(a+b)(a﹣b);(3)∵a2﹣b2=16,且a+b=8,∴(a+b)(a﹣b)=16,即8(a﹣b)=16,∴a﹣b=2.故答案为:2.。
北师⼤版数学七年级下册第⼀章整式的乘除练习(包含答案)北师⼤版七年级下册第⼀章整式的乘除⼀、选择题1.计算(-2a2b)3(3a3b)的结果是()A. -24a8b4B. -24a9b4C. 24a8b4D. 24a9b72.下列运算中,错误的是()A.(-a)3?(-a)3=a6B.(-a)2(-a)3=-a5C.(-a)2?(-a)4=a6D.(-a)3?(-a)4=a73.若x+y=7,xy=-11,则x2+y2的值是()A. 49B. 27C. 38D. 714.若(x-5)(2x-n)=2x2+mx-15,则m、n的值分别是()A.m=-7,n=3B.m=7,n=-3C.m=-7,n=-3D.m=7,n=35.计算()2014×1.52015×(-1)2016的结果是()A.B.C. -D. -6.化简2a3+a2?a的结果等于()A. 3a3B. 2a3C. 3a6D. 2a67.添括号结果是-16(x-0.5)的是()C. 16x-8D. -16x+88.算式-80的值是()A.?B. 1C. -1D.⼆、填空题9.⼀种数码照⽚的⽂件⼤⼩是28K,⼀个存储量为26M(1M=210K)的移动存储器能存储张这样的照⽚.10.若(a+b)?(a+b)2?(a+b)n=(a+b)12,则n的值等于.11.⼀块长m⽶,宽n⽶的地毯,长、宽各裁掉2⽶后,恰好能铺盖⼀间房间地⾯,问房间地⾯的⾯积是平⽅⽶.12.若82a+3?8b-2=820,则2a+b的值是.13.如图(1),边长为a的⼤正⽅形中⼀个边长为b的⼩正⽅形,⼩明将图(1)的阴影部分拼成了⼀个矩形,如图(2).这⼀过程可以验证的乘法公式是.14.设(xm-1yn+2)?(x5m y-2)=x5y3,则nm的值为.15.若am=3,am+n=36,则an=.16.计算(a2b4)n+3(-ab2)2n+(-2anb2n)2=.三、解答题17.化简:(x+2y)2-y(x+2y).18.计算:(2+1)(22+1)(24+1)(28+1)(216+1)+1.19.三峡⼀期⼯程结束后的当年发电量为 5.5×109度,某市有10万户居民,若平均每户⽤电2.75×103度.那么三峡⼯程该年所发的电能供该市居民使⽤多少年?(结果⽤科学记数法表⽰)20.计算:(2x-y+3)2.21.有⼀种长度单位叫纳⽶(nm),1nm=10-9m,现⽤边长为1纳⽶的⼩正⽅体堆垒成边长为1cm的正⽅体要⽤多少个?22.若xm+n=12,xn=3,(x≠0),求x2m+n的值.23.计算:(x-y)7÷(y-x)6+(-x-y)3÷(x+y)2.24.仔细观察下列四个等式:22=1+12+2,32=2+22+3,42=3+32+4,52=4+42+5,….(1)请写出第六个等式;(2)利⽤这⼏个等式的规律,归纳总结出⼀个表达此规律的等式;(3)将表⽰上述规律的等式的右边认真整理,你会发现什么?【解析】(-2a2b)3(3a3b)=(-8a6b3)(3a3b)=-24a9b4.故选B.2.【答案】D【解析】A中,(-a)3?(-a)3=(-a)6=a6,原式计算正确,故本选项错误;B中,(-a)2(-a)3=(-a)5=-a5,原式计算正确,故本选项错误;C中,(-a)2?(-a)4=(-a)6=a6,原式计算正确,故本选项错误;D中,(-a)3?(-a)4=(-a)7=-a7,原式计算错误,故本选项正确;故选D.3.【答案】D【解析】∵x+y=7,∴(x+y)2=49,即x2+2xy+y2=49,∵xy=-11,∴x2+y2=49-2×(-11)=49+22=71.故选D.4.【答案】C【解析】∵(x-5)(2x-n)=2x2+mx-15,∴2x2-(10+n)x+5n=2x2+mx-15,故5n=?15,m=?10?n,解得m=?7 ,n=?3.故选C.5.【答案】B【解析】()2014×1.52015×(-1)2016=()2014×1.52014×1.5×1=(×1.5)2014×1.5=1.5.故选B.6.【答案】A【解析】2a3+a2?a=2a3+a3=3a3.故选A.7.【答案】D【解析】-16x+8=-16(x-0.5),故选D.8.【答案】C【解析】-80=-1.故选C.9.【答案】28【解析】∵26M=26?210K=216K,∴216÷28=216-8=28(张).10.【答案】9【解析】(a+b)?(a+b)2?(a+b)n=(a+b)1+2+n=(a+b)3+n,∴3+n=12,解得n=9.故答案为9.11.【答案】(m-2)(n-2)或(mn-2m-2n+4)【解析】根据题意得出房间地⾯的⾯积是(m-2)(n-2);(m-2)(n-2)=mn-2m-2n+4.故答案为(m-2)(n-2)或(mn-2m-2n+4)12.【答案】19【解析】∵82a+3?8b-2=82a+3+b-2=820,∴2a+3+b-2=20.∴2a+b=20-1.∴2a+b=19,故答案为19.13.【答案】(a+b)(a-b)=a2-b2【解析】阴影部分的⾯积=(a+b)(a-b)=a2-b2;因⽽可以验证的乘法公式是(a+b)(a-b)=a2-b2.14.【答案】3【解析】∵(xm-1yn+2)?(x5m y-2)=xm-1+5myn+2-2=x5y3,∴m-1+5m=5,n+2-2=3,解得m=1,n=3,∴nm=31=3.故填3.15.【答案】12【解析】若am=3,am+n=36,am an=36,则an=12.16.【答案】8a2n b4n【解析】原式=a2n b4n+3a2n b4n+4a2n b4n=8a2n b4n.故答案为8a2n b4n.17.【答案】解:(x+2y)2-y(x+2y)=x2+4xy+4y2-xy-2y2=x2+3xy+2y2.【解析】先根据完全平⽅公式和单项式乘以多项式法则算乘法,再合并同类项即可.18.【答案】解:(2+1)(22+1)(24+1)(28+1)(216+1)+1= (2?1)(2+1)(22+1)(24+1)(28+1)(216+1)+1= (22?1)(22+1)(24+1)(28+1)(216+1)+1= (24?1)(24+1)(28+1)(216+1)+1= (28?1)(28+1)(216+1)+1= (216?1)(216+1)+1= 232?1+1= 232.【解析】平⽅差公式:(a+b)(a-b)=a2?b2,注意的是在实际应⽤中,公式中的“a”、“b”可以是⼀个字母,也可以是⼀个式⼦,平⽅时是整个式⼦的平⽅.19.【答案】解:该市⽤电量为2.75×103×105=2.75×108,(5.5×109)÷(2.75×108)=(5.5÷2.75)×109-8=2×10(年).答:三峡⼯程该年所发的电能供该市居民使⽤2×10年.【解析】先求出该市总⽤电量,再⽤当年总发电量除以⽤电量;然后根据同底数幂相乘,底数不变指数相加和同底数幂相除,底数不变指数相减计算.20.【答案】解:原式=[(2x-y)+3]2=(2x-y)2+2(2x-y)?3+32=4x2-4xy+y2+12x-6y+9.【解析】把2x-y当作⼀个整体根据完全平⽅公式展开,再根据完全平⽅公式和多项式乘以单项式法则算乘法,最后合并即可.21.【答案】解:∵1nm=10-9m=10-7cm,∴1cm=107nm.∴1cm3=(107nm)3=1021nm3.答:要⽤1021个.【解析】⾸先利⽤nm表⽰出1cm的长度,然后利⽤体积公式即可求得.22.【答案】解:∵xm+n=12,xn=3,∴xm xn= 12.∴xm=4,∴x2m+n=(xm)2×xn=42×3=48.【解析】根据幂的乘⽅,底数不变指数相乘,先把xm和xn的值求出,然后根据同底数幂的除法,底数不变指数相减求解即可.23.【答案】解:原式=(x-y)7÷(x-y)6-(x+y)3÷(x+y)2=(x-y)-(x+y)=x-y-x-y=-2y.【解析】根据负数的偶次幂是正数,负数的奇次幂是负数,可得同底数幂的除法,根据同底数幂的除法,可得同类项,根据合并同类项,可得答案.24.【答案】解:(1)第六个等式是72=6+62+7.(2)(n+1)2=n+n2+(n+1).(3)将右边整理后得出n+n2+(n+1)=n2+2n+1=(n+1)2,即是两数和的平⽅形式.【解析】(1)根据已知所反映的规律得出即可.(2)根据已知所反映的规律得出即可.(3)根据整式的混合运算求出即可.。
北师大版 七年级(下册) 第一章整式的乘除 分节练习第1节 同底数幂的乘法01、【基础题】 (1)67)3()3(-⨯-; (2)111111113⨯)(; (3)—53x x ⋅ (4)122+⋅m m b b01.1、【基础题】 (1)=-⋅23b b (2)=-⋅3)(a a (3)=--⋅32)()(y y (4)=--⋅43)()(a a(5)=-⋅2433 (6)=--⋅67)5()5( (7)=--⋅32)()(q q n(8)=--⋅24)()(m m(9)=-32 (10)=--⋅54)2()2((11)=--⋅69)(b b(12)=--⋅)()(33a a01.2、【综合I 】 (1)=++⋅⋅21n n n a a a (2)=⋅⋅n n n b b b 53 (3)=+-⋅⋅132m m b b b b (4)=--⋅4031)1()1((5)=⨯-⨯672623 (6)=⨯+⨯54373602、【基础题】光在真空中的速度约为3⨯810m/s ,太阳光照耀到 地球 上大约需要5210⨯s ,那么 地球距离太阳大约有多远?02.1、【基础题】已知每平方千米的土地上,一年内从太阳得到的能量相当于燃烧81.310kg ⨯煤所产生的能量,那么我国629.610km ⨯的土地上,一年内从太阳得到的能量相当于燃烧煤多少千克?第2节 幂的乘方与积的乘方03、【基础题】 (1) (102)3 ; (2) (b 5)5 ; (3) (a n )3;(4) -(x 2)m ; (5) (y 2)3 · y ; (6) 2(a 2)6 - (a 3)403.1【基础题】 (1)_____)(33=x (2)_____)(52=-x (3)_____)(532=⋅a a(4)________)()(4233=⋅-m m (5)_____)(32=n x03.2、 【综合II 】04、【基础题】 (1)2)3(x ; (2)5)2(b -; (3)4)2(xy -; (4)na )3(2. 04.1、【基础题】 (1)4()ab ; (2)3(2)xy -; (3)23(310)-⨯; (4)23(2)ab 04.2、【综合I 】 (1)200720080.254⨯; (2)2334(310)(10)⨯⋅-;(3)2323()()()n n na b a b -⋅--; (4)3232733(3)(4)(5)a a a a a -⋅+-⋅-04.3、【综合II 】 若2,3,n n x y == 求 3()n xy 的值.04.4【综合I 】 计算:1010)128910()1218191101(⨯⨯⋯⨯⨯⨯•⨯⨯⋯⨯⨯⨯.第3节 同底数幂的除法05、【基础题】计算 :(1)m 9÷m 3; (2)(﹣a )6÷(﹣a )3;(3)(﹣8)6÷(﹣8)5; (4)62m+3÷6m .05.1、【基础题】计算 (1)a 7÷a 4; (2)(﹣m )8÷(﹣m )3; (3)(xy )7÷(xy )4; (4)x 2m+2÷x m+2; (5)x 6÷x 2•x ; (6)(x ﹣y )5÷(y ﹣x )305.2【综合I 】计算: ⑴3459)(a a a ÷•; ⑵347)()()(a a a -⨯-÷-;⑶533248÷•; ⑷[]233234)()()()(x x x x -÷-•-÷-.05.3、【综合 I 】 已知n m n ma a a -==243,求,的值.06、【基础题】用小数或分数表示下列各数: (1)310—; (2)2087—⨯; (3)4106.1—⨯.06.1、【基础题】用分数或小数表示下列各数: (1)0)21(; (2)33—; (3)5103.1—⨯; (4)25—. 07、【基础题】用科学记数法表示下列各数 (1) 732400 (2) -6643919000(3) 0.00000006005 (4) -0.0000021707.1、【基础题】用科学记数法表示下列各数 (1)0.00000072; (2)0.000861; (3)0.0000000003425第4节 整式的乘法 08、【基础题】计算:(1)xy xy 3122•; (2)322b a —)3(a —•; (3)22)2(7xyz z xy •.08.1、【基础题】计算: (1)xy 4·(-23xy ); (2)b a 3·c ab 5; (3)y x 22·2)(xy -; (4)3252y x ·xyz 85; (5)-32z xy ·32)(y x -; (6)-3ab ·22abc ·32)(c a .09、【基础题】计算: (1)6x 2•3xy (2)(4a ﹣b 2)•(﹣2b )(3)(3x 2y ﹣2x+1)•(﹣2xy ); (4) 2(322z xy z y x ++)•xyz09.1、【基础题】(1) (﹣12a 2b 2c )•(﹣abc 2)2 ; (2) (3a 2b ﹣4ab 2﹣5ab ﹣1)•(﹣2ab 2);(3)﹣6a •(﹣﹣a+2); (4)﹣3x •(2x 2﹣x+4)(5) (﹣a 2b )(b 2﹣a+); (6).09.2、【综合Ⅰ】 先化简,再求值 3a (2a 2﹣4a+3)﹣2a 2(3a+4),其中a=-210、【基础题】 计算: (1)(21)(3)x x ++; (2)(2)(3)m n m n +-; (3)2(1)a -; (4)(3)(3)a b a b +-;(5)2(21)(4)x x --; (6)2(3)(25)x x +-; (7)(7)()()33a bc bc a ---; (8)(3x -2y)2-(3x +2y)210.1【基础题】计算:(1)(6)(3)x x -- ; (2)11()()23x x +-; (3)(32)(2)x x ++; (4)(41)(5)y y --;(5)2(2)(4)x x -+; (6)22()()x y x xy y -++10.2、【基础题】计算: ))((e d c c b a ++++第5节 平方差公式11、【基础题】利用平方差 公式 计算: (1)(2)(2)(a a +-= 2)(- 2)= ;(2)(43)(34)(a b b a -+= 2)(- 2)= ; (3)(58)(58)(x x -+--= 2)(- 2)= ; (4)(23)(23)(a b a b -++= 2)(- 2)= ; (5)()()(a b c a b c +++-= 2)(- 2);(6)()()(x y a b x y a b ++++--= 2)(- 2).11.1、【基础题】利用平方差公式 计算: (1)(3)(3)a b a b +-; (2)(32)(32)a a +-+ ; (3)5149⨯;(4) (34)(34)(23)(32)x x x x +--+-; (5) ))((y x y x nn +-; (6) )231)(312(a b b a ---.11.2、【基础题】用平方差公式进行计算: (1)103×97; (2)118×122; (3)20011 ⨯ 99911.3、【综合Ⅰ】计算:(1))1)(1)(1(2+-+a a a ; (2) 2244()()()()a b a b a b a b -+++.(3)222))((b a b a b a a +-+; (4))32(2)52)(52(--+-x x x x ;(5))1)(1()2)(2(-++-+x x y x y x ; (6))31)(31()1(+---x x x x ; (7))()3)(3(y x y y x y x +++-; (8))23)(23()21)(21(b a b a b a b a +---+第6节 完全平方公式12、【基础题】 用完全平方公式 计算: (1)2)32(-x ; (2)2)54(y x +; (3)2)(a mn -;(4)263; (5)299812.1、【基础题】用完全平方公式计算:(1)(a+3)2 ; (2)(5x -2)2 ; (3)(-1+3a )2; (4)(13a+15b )2 ; (5)(-a -b )2 ; (6)(-a 2+12)2; (7)(xy 2+4)2 ; (8)(a+1)2-a 2 (9)(-2m 2-12n 2)2; (10)1012 ; (11)1982 ; (12)19.9212.2、【综合Ⅰ】计算: (1)(a+2b )(a -2b )-(a+b )2 ; (2)(x -12)2-(x -1)(x -2); (3)(x -2y )(x +2y )-(x +2y )2; (4)(a +b +c )(a +b -c );(5)(2a +1)2-(1-2a )2; (6)(3x -y )2-(2x +y )2+5x (y -x ).(7))12)(12(-+++y x y x ; (8))3)(1()2)(2(-+-+-x x x x ; (9)22)1()1(--+ab ab ; (10))2)((4)2(2y x y x y x +---. 12.3、【综合Ⅰ】先化简,再求值: (1) (2x -1)(x+2)-(x -2)2-(x+2)2,其中x=-13. (2) (x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.12.4【综合Ⅲ】 根据已知条件,求值:(1)已知x -y =9,x ·y =5,求x 2+y 2的值;(2)已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.(3)已知x +1x =3, 求 x 2+21x和(x -1x )2的值.第7节 整式的除法 13、【基础题】计算:(1)y x y x 232353÷-; (2)bc a c b a 3234510÷; (3)3423214)7()2(y x xy y x ÷-•; (4)24)2()2(b a b a +÷+.14、【基础题】计算:(1)b b ab 2)86(÷+; (2)a a a a 3)61527(23÷+-; (3)xy xy y x 3)69(22÷-;(4))21()213(22xy xy xy y x -÷+-.14.1、【综合Ⅰ】填空:(1)223293m m m m a b a b +-÷ =___________; (2) 8a 2b 2c ÷_________=2a 2bc ; (3)(7x 3-6x 2+3x)÷3x=_________. (4)__________÷73(210)510⨯=-⨯. (5)(____________________)·235444234826x y x y x y x y =--.七(下)第一章分节练习 参考答案 第1节 答案01、【答案】 (1)13)3(-; (2)41111)(; (3)—8x ; (4)1m 4+b . 01.1【答案】(1)5b - (2)4a - (3)5y - (4)7a - (5)-729 (6)135- (7)32+-n q(8)6m - (9)-8 (10)-512 (11)15b - (12)6a01.2【答案】 (1)33+n a (2)n b 9 (3)22+m b (4)-1 (5)0 (6)73 02、【答案】 1.51110⨯ m. 02.1【答案】 解:9.6×106×1.3×108=1.248×1015(kg)第2节 答案03、【答案】 (1)106;(2)b 25;(3)a 3n ;(4)-x 2m ;(5)y 7;(6)a 12.03.1【答案】 (1)9x ; (2)—10x ; (3)11a ; (4)—17m ; (5)n x 6 03.2【答案 】04、【答案】 (1)92x ; (2)—325b ; (3)1644y x ; (4)n n a 23. 04.1【答案】 (1)44a b ; (2)338x y -; (3)72.710-⨯; (4)368a b . 04.2【答案】 (1)4; (2)192.710⨯; (3)232n n a b -; (4)9100a -. 04.3【答案】 216【解析】 333()n n n xy x y =⋅33()()n n x y =⋅3323=⨯216= 04.4【答案】 1第3节 答案05、【答案】(1)m 9÷m 3=m 9﹣3=m 6; (2)(﹣a )6÷(﹣a )3=(﹣a )6﹣3=(﹣a )3=﹣a 3; (3)(﹣8)6÷(﹣8)5=(﹣8)6﹣5=(﹣8)1=﹣8; (4)62m+3÷6m =6(2m+3)﹣m =6m+305.1、【答案】(1)a 7÷a 4=a 3; (2)(﹣m )8÷(﹣m )3=(﹣m )5=﹣m 5; (3)(xy )7÷(xy )4=(xy )3=x 3y 3; (4)x 2m+2÷x m+2=x m ; (5)x 6÷x 2•x=x 4•x=x 5. (6)(x ﹣y )5÷(y ﹣x )3=﹣(y ﹣x )5÷(y ﹣x )3=﹣(y ﹣x )2;05.2【答案】 ⑴2a ; ⑵6a ;⑶533248÷•=569222÷•=102; ⑷7x -.05.3 【答案】49 【解析】∵a m =3,a n =4,∴a 2m ﹣n =a 2m ÷a n =(a m )2÷a n =32÷4=.06、【答案 】(1)0.001 (2)641(3)0.00016 06.1【答案】 (1)1 (2)271 (3)0.000013 (4)25107、【答案】 (1)7.324×105; (2)-6.643919×109; (3)6.005×10-8; (4)-2.17×10-6 07.1、【答案】 (1) 7.2710—⨯; (2) 8.61410—⨯; (3)3.4251010—⨯第4节 答案 08、【答案】 (1)3232y x ; (2)336b a ; (3)34328z y x 08.1【答案】(1)-842y x ; (2)c b a 64; (3)234y x ; (4)z y x 4341; (5)357z y x ; (6)-2548c b a .09、【答案】(1)18x 3y ; (2)﹣8ab+2b 3; (3)﹣6x 3y 2+4x 2y ﹣2xy ;(4)432232222z y x z xy yz x ++09.1【答案 】(1)﹣; (2)﹣6a 3b 3+8a 2b 4+10a 2b 3+2ab 2;(3) 3a 3+2a 2﹣12a . (4)﹣6x 3+3x 2﹣12x . (5)﹣a 2b 3+a 3b ﹣a 2b ; (6)x 3y 5﹣x 3y 6+x 2y 4.09.2、【答案】-98【解析】3a (2a 2﹣4a+3)﹣2a 2(3a+4)=6a 3﹣12a 2+9a ﹣6a 3﹣8a 2=﹣20a 2+9a ,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.10、【答案】(1)2273x x ++; (2)226m mn n --; (3)221a a -+; (4)229a b -;(5)32284x x x --+; (6)3225615x x x -+-; (7)-29a +22c b ; (8)-xy 2410.1【答案】(1)2918x x -+; (2)21166x x +-; (3)2384x x ++; (4)24215y y -+; (5)32248x x x -+-; (6)33x y -.10.2【答案】 ce cd c be bd bc ae ad ac ++++++++2第5节 答案 11、【答案】(1)(2)(2)(a a +-=a 2)(- 22)= - 2 4 a ;(2)(43)(34)(a b b a -+=4a 2)(-3b 2)=22169a b - ; (3)(58)(58)(x x -+--=5- 2)(-8x 2)=22564x - ;(4)(23)(23)(a b a b -++=3b 2)(-2a 2)=2294b a - ; (5)()()(a b c a b c +++-=a b + 2)(-c 2);(6)()()(x y a b x y a b ++++--=x y + 2)(-a b + 2).11.1【答案】(1)229a b -; (2)249a -; (3)2499; (4)23510x x --; (5)22y xn-; (6)22491a b -.11.2【答案】 (1)9991; (2)14396; (3)399999911.3【答案】 (1)14-a ; (2)88a b -; (3)4a ; (4)256-x ; (5)14222--y x ;(6)91+x -; (7)xy x +29; (8)228415a b -第6节 答案12、【答案】 (1) 91242+-x x ; (2) 22254016y xy x ++; (3)2222a amn n m +-; (4)3969;(5)99600412.1【答案】(1)a 2+6a+9; (2)25x 2-20x+4 ; (3)9a 2-6a+1; (4)19a 2+215ab+125b 2; (5)a 2+2ab+b 2 ; (6)a 4-a 2+14; (7)x 2y 4+8xy 2+16; (8)2a+1; (9)4m 4+2m 2n 2+14n 4; (10)10 201; (11)39 204; (12)396.01 12.2【答案】 (1)-2ab -5b 2 ; (2)2x -74; (3)-4xy -8y 2; (4)a 2+2ab+b 2-c 2; (5)8a ; (6)-5xy ; (7)14422-++y xy x ; (8)12-x ; (9)ab 4; (10)xy y 892-.12.3、【答案】 (1)原式=3x -10=-11(12) 原式=x 4-8x 2y 2+16y 4=012.4、【答案】 (1)91; (2)249; (3) x 2+21x=7, (x -1x )2 =5第7节 答案 13、【答案】 (1)251y -; (2)c ab 22; (3)234y x -; (4)2244b ab a ++. 14、【答案】 (1)43+a ; (2)2592+-a a ; (3)y x 23-; (4)126-+-y x 14.1【答案】 (1)33m a b -;(2)4b ; (3)273x -2x+1;(4)1110-; (5)3213222x y x y --。
北师大版七年级数学下册第一章:整式的乘除—计算专题培优训练一、计算题1.计算:(1)(a 3)3·(a 4)3;(2)(-a 2)3·(b 3)2·(ab)4.(3)(3x -1)(2x -1);(4)5x(x +1)2-(2x +3)(2x -3).2.计算:(1)(﹣2a 2b )3+8(a 2)2•(﹣a )2•(﹣b )3;(2)(x﹣3)0﹣()﹣2+(﹣1)2021+|﹣5|.123.计算:(1)x 3y 2··.23(32xy 2)2(23x )(2);[(−a 5)4÷a 12]2⋅(−2a 4)4.要求:利用乘法公式计算(1)2023×2021−20222(2)(2x−y +3)(2x−y−3)5.计算:(1);(−2022)0−(12)−2+(−2)3(2).(3a−b)2−(a−3b)(a +3b)6.计算:(1);(π−2)0−(12)−2+32(2).(−2x 2)2+x 3⋅x−x 5÷x 7.计算:(1)(π−3)0+(12)−2×2−1(2)2x 2⋅x 4+(−2x 2)3−x 7÷x8.计算:(1);(3−π)0+(−13)−3+(−3)3÷(−3)2(2) .(x−2)2−(x−1)(x +3)9.计算:(1)(12)−1+(π−3.14)0−(−1)2022(2)(−2x 2)3+x 2⋅x 4+(−3x 3)210.计算:(1);(2022−π)0−32+(12)−3(2).m 2⋅m 6−(2m 2)4+m 9÷m 11.计算(1).15x 5(y 4z)2÷(−3x 4y 5z 2)(2).(x +1)(x−1)+x(2−x)12.计算:(1)(−2a 2bc 4)3(2)3x 2−x 6÷x 4(3)[−8a 2b 3+6ab 2−(−2ab)]÷(−2ab)(4)6x 2−2(2x−3)(4x +1)(5)(a +2b)2−(a−2b)2+(a +b)(a−b)13.计算:(1);−42⋅(−12)3−(−1)202(2).[(3xy +1)(3xy−1)+(xy−1)2]÷2xy 14.化简:.[(2a +b)(2a−b)−4(a−b)2−b 2]÷(−2b )15.化简:.[(x−y)(x +y)+(3x−y)2]÷2x 16.计算:(1) .(2m 3)⋅(3m 2p)÷(2mp)(2) .(a +1)2+(a +3)(a−3)17.计算:(1)(﹣x 2y 5)•(xy )3;(2)(a 2﹣b 2)2+2a (ab﹣1).18.计算:(1)a 5·(﹣a )4﹣(﹣a 3)3;(2)20210+()﹣1;13(3)(15x 2y﹣10xy 2)÷5xy .(4)x (x﹣3)﹣(x﹣1)(x+2).(1)已知:=5,=3,计算的值.4m 8n 22m +3n (2)已知:3x+5y =8,求的值.8x ⋅32y 20.计算:(1);|−2|−(2−π)0+(13)−1(2);(3x 2)2⋅(−4y 3)÷(6xy)2(3)(简便运算);1032−102×104(4).[(2x−y)(2x +y)+y(y−6x)]÷2x 21.计算:(1);(x−3)(x +2)(2);(3+a )(3−a )(3);a 3⋅a 4⋅a +(a 2)4+(−2a 4)2(4).(a +b )2−b (2a +b )22.计算题:(1)(−13)−1+(−2)2+(π−2015)0(2)(4x 3y−6x 2y 2+2xy )÷(−2xy )(3)(2a 2b )3⋅(−7ab 2)÷14a 4b 3(4)(用简便方法计算)20152−2014×2016(5)(x +2)2−(x +1)(x−1)(6)(2a-b+3)(2a+b-3)(1)2-3÷+(﹣)2;1212(2)(﹣2x 3y )2·(﹣3xy 2)÷(6x 4y 3);(3)(2x +1)(2x﹣1)+(x +2)2;(4)20212﹣2020×202224.计算或化简:(1)(−x 2)3⋅x 4(2)(13)2022×(−3)2021(3)(m +1)2−(m +1)(m−1)+2m(m−1)(4)(a 4−8a 2+16)÷(a 2+4a +4)25.计算(1)x 5•(-2x )3+x 9÷x 2•x-(3x 4)2(2)(2a-3b )2-4a (a-2b )(3)(3x-y )2(3x+y )2(4)(2a-b+5)(2a+b-5)26.计算:(1)4mn 2 (2m+3n -n 2);(2)(3m + 4n ) 2-(3m -4n )2;(3)(6a 3b 2-3a 2b 2+9a 2b )(-3a 2b );÷(4)(-8)2020 ×(-0.125)2021.(1)3x(2x−3)(2)(a+b )(3a-2b )(3)(4a 2-6ab+2a )÷2a(4)20192-2017×2021(用乘法公式)28.计算:(1);(−34)2021×(−43)2022(2);(−2a 2)3⋅a 2−3a 11÷a 3(3).(x +2y−3)(x−2y−3)29.计算:(1)2a (3a +2);(2)(4m 3﹣2m 2)÷(﹣2m );(3)(x +2)(x﹣2)﹣(x﹣2)2;(4).(π−3)0+(−12)−2−21+(−1)202130.算一算:(1)3m 2⋅m 8−(m 2)2⋅(m 3)2(2)[(a 5)3⋅(b 3)2]5(3)−t 3⋅(−t)4⋅(−t)5(4)已知,求的值.2x +3y−3=09x ⋅27y (5)已知,求x 的值.2×8x ×16=223(1)a 2⋅a 4+(−a 2)3(2)(a 2)3⋅(a 2)4⋅(−a 2)5(3)(−2a 2b 3)4+(−a)8⋅(2b 4)3(4)−t 3⋅(−t)4⋅(−t)5(5)(p−q)4⋅(q−p)3⋅(p−q)2(6)(−3a)3−(−a)⋅(−3a)232.化简:(1);(x 2)3⋅x 3−(−x)2⋅x 9÷x 2(2)(m﹣n )(m+n )﹣m (m﹣n );(3);(3a +2b)2−(2a−3b)2(4).[(2x +y)2−(3x−y)(3x +y)−2y 2]÷(−12x)33.计算:(1)35×(−3)3×(−3)2(2)−x 11÷(−x)6⋅(−x)5(3)y 3⋅y 3+(−2y 3)2(4)(3x 2y−xy 2+2xy)÷xy34.计算:(1)(−x)(−x)5+(x 2)3;(2) ;2x 3(−x)2−(−x 2)2×(−3x)(3) ;(−4x−3y 2)(3y 2−4x)(4) .(2x−y)2⋅(2x +y)235.计算.(1)(-)9÷(-)5;1313(2)(-a )10÷(-a )3;(3)(2a )7÷(2a )4;(4)a 19÷(a 12÷a 3);(5)(-)6÷(-)2;1414(6)(-x-y )6÷(x+y )4.36.计算.(1)a 2·(ab )3;(2)(ab )3·(ac )4;(3)a 5·(-a )3+(-2a 2)4;(4)(-2x 2)3+x 2·x 4-(-3x 3)237.逆用积的乘方公式计算.(1)()2022·(-1.25)2022;45(2)(-4)3×(-)3×(-)33413(3)(3)12×()11x (-2)318825(4)()100×(1)100x ()2021x4202223121438.计算.(1)(-5a 2b 3)(-3a )(2)6a 2x 5·(-3a 3b 2x 2)(3)(-a 2b )3·(-3ab 3)413(4)(-3a n+2b )3·(-4ab n+3)2(5)(ab 2-2ab )·ab2312(6)-2x·(x 2y+3y-1)1239.计算.(1)20170+2-2-()2+2017;12(2)(-2ab )(3a 2-2ab-b 2);(3)(2a+3b )2-(2a-b )(2a+b );(4)(9x 2y-6xy 2+3xy )÷()40.计算.(1)x 3·(2x 3)2÷(x 4)2;(2)(a 4)3÷a 6÷(-a )3;(3)(-x )3÷x·(-x )2;(4)-102n ×100÷(-10)2n-1.41.计算(1)(−x 2y)3÷(−13xy 3)(2)(−14x−3y)(−14x+3y)(3)(3x−1)(x+2)+(x−3)2(4)(a−b)3÷(a−b)+2ab 42.计算.(1)102×105(2)x·x5x7·(3)a2·(-a)4(4)x2m+1·x m43.计算(1)a2⋅a3(2)(y2)3⋅y2(3)(−15x2y3)3−x6y4(4) .(x−y)8÷(y−x)5⋅(y−x)2二、解答题44.已知,,求代数式的值.(a+b)2=5ab=−2(a−b)245.计算:已知(x+y)2=1,(x-y)2=49,求x2+y2和xy的值.46.已知:,求2xy的值.x2+y2=25, x+y=747.已知(a+b)2=25,(a﹣b)2=9.求a2﹣6ab+b2.48.已知a+b=3,ab=2,求①;②的值a2+b2a2+b2−ab 49.①已知a m=2,a n=3,求a m+2n的值。
20232024学年北师大版数学七年级下册章节拔高检测卷(易错专练)第1章《整式的乘除》考试时间:100分钟试卷满分:100分难度系数:0.54一、选择题(本大题共10小题,每小题2分,共20分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在括号内)1.(2分)(2023秋•长沙期末)下列计算结果正确的是()A.a+a2=a3B.2a6÷a2=2a3C.2a2•3a3=6a6D.(3a3)2=9a62.(2分)(2023秋•防城区期末)如图在边长为a的正方形纸片中剪去一个边长为b的小正方形,把余下的部分沿虚线剪开,拼成一个矩形,分别计算这两个图形阴影部分的面积,可以验证的等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)3.(2分)(2023秋•城关区校级期末)已知2a=5,4b=7,则2a+2b的值是()A.35 B.19 C.12 D.104.(2分)(2023秋•凤山县期末)计算(﹣1)2021×()2023的结果等于()A.1 B.﹣1 C.﹣D.﹣5.(2分)(2023秋•和田地区期末)如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形.通过计算这两个图形的面积验证了一个等式,这个等式是()A.(a+2b)(a﹣b)=a2+ab﹣2b2B.(a+b)2=a2+2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a﹣b)2=a2﹣2ab﹣b2.6.(2分)(2023秋•三亚期末)下列运算中正确的是()A.(a2)3=a5B.a2•a3=a6C.a5÷a2=a3D.a5+a5=2a107.(2分)(2023秋•旌阳区期末)如图,点C是线段BG上的一点,以BC,CG为边向两边作正方形,面积分别是S1和S2,两正方形的面积和S1+S2=40,已知BG=8,则图中阴影部分面积为()A.6 B.8 C.10 D.128.(2分)(2022秋•江汉区校级期末)如图,边长为a的大正方形剪去一个边长为b的小正方形后,将剩余部分通过割补拼成新的图形.根据图形能验证的等式为()A.a2﹣b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+2ab+b29.(2分)(2023春•拱墅区期末)设a,b为实数,多项式(x+a)(2x+b)展开后x的一次项系数为p,多项式(2x+a)(x+b)展开后x的一次项系数为q:若p+q=6,且p,q均为正整数,则()A.ab与的最大值相等,ab与的最小值也相等B.ab与的最大值相等,ab与的最小值不相等C.ab与的最大值不相等,ab与的最小值相等D.ab与的最大值不相等,ab与的最小值也不相等10.(2分)(2021秋•中山区期末)从前,一位农场主把一块边长为a米(a>4)的正方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的一边增加4米,相邻的另一边减少4米,变成长方形土地继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会()A.没有变化B.变大了C.变小了D.无法确定二、填空题(本大题共10小题,每题2分,共20分.不需写出解答过程,请将正确答案填写在横线上)11.(2分)(2023秋•宜阳县期末)计算:[(x﹣y)2﹣(x+y)2]÷xy=.12.(2分)(2023秋•双辽市期末)如图,长方形ABCD的周长为12,分别以BC和CD为边向外作两个正方形,且这两个正方形的面积和为20,则长方形ABCD的面积是.13.(2分)(2023春•历城区校级月考)如果定义一种新运算,规定=ad﹣bc,请化简:=.14.(2分)(2022秋•淅川县期末)若关于x的多项式(x+m)(2x﹣3)展开后不含x项,则m的值为.15.(2分)(2023春•东阿县期末)探索题:(x﹣1)(x+1)=x2﹣l;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;(x﹣1)(x4+x3+x2+x+1)=x5﹣1;…根据前面的规律,回答问题:当x=3时,(32023+32022+32021+…+33+32+3+1)=.16.(2分)(2023春•正定县期中)如图①是一个长为2a,宽为2b的长方形纸片(a>b),用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后用四块小长方形拼成如图②所示的正方形.(1)图②中,中间空余部分的小正方形的边长可表示为;(2)由图②可以直接写出(a+b)2,(a﹣b)2,ab之间的一个等量关系.17.(2分)(2023春•拱墅区校级期中)如图,长为50cm,宽为x cm的大长方形被分割成7小块.除阴影A,B外,其余5块是形状、大小完全相同的小长方形,其较短一边长为y cm.要使阴影A与阴影B的面积差不会随着x的变化而变化,则定值y为.18.(2分)(2022秋•怀化期末)定义一种新运算:,例如.若,则k=.19.(2分)(2022秋•铁西区期中)如图,两个正方形的边长分别为a,b(a>b),若a+b=10,ab=6,则阴影部分的面积为.20.(2分)(2021春•东台市期中)如图,一块直径为2a+2b的圆形钢板,从中挖去直径分别为2a与2b的两个圆,已知剩下钢板的面积与一个长为a的长方形面积相等,则这个长方形的宽为.三、解答题(本大题共8小题,共60分.解答时应写出文字说明、证明过程或演算步骤)21.(6分)(2023秋•宜阳县期末)计算:(1)(2x﹣y)(4x2+2xy+y2)﹣7y3;(2)[(a﹣3b)2+(3a+b)2﹣(a+5b)2+(a﹣5b)2]÷(a2﹣2ab+b2).22.(6分)(2022秋•巩义市期末)杨老师在黑板上布置了一道题,小白和小红展开了下面的讨论:根据上述情景,你认为谁说得对?为什么?并求出代数式的值.23.(8分)(2022秋•章丘区校级期末)观察下列等式:(m﹣1)(m+1)=m2﹣1,(m﹣1)(m2+m+1)=m3﹣1,(m﹣1)(m3+m2+m+1)=m4﹣1.(1)根据上面各式的规律,请写出第5个等式:;(2)根据上面各式的规律可得(m﹣1)(m n+m n﹣1+……+m2+m+1)=;(n为正整数,且n≥2).(3)求22022+22021+…+22+2的值.24.(8分)(2023秋•汉阳区期末)问题呈现:借助几何图形探究数量关系,是一种重要的解题策略,图1,图2是用边长分别为a,b的两个正方形和边长为a,b的两个长方形拼成的一个大正方形,利用图形可以推导出的乘法公式分别是图1 ,图2 ;(用字母a,b表示)数学思考:利用图形推导的数学公式解决问题.(1)已知a+b=7,ab=12,求a2+b2的值;(2)已知(2024﹣x)(2022﹣x)=2023,求(2024﹣x)2+(x﹣2022)2的值.拓展运用:如图3,点C是线段AB上一点,以AC,BC为边向两边作正方形ACDE和正方形CBGF,面积分别是S1和S2.若AB=m,S=S1+S2,则直接写出Rt△ACF的面积.(用S,m表示).25.(8分)(2023春•定边县期末)将两数和(差)的完全平方公式(a±b)2=a2±2ab+b2通过适当的变形,可以解决很多数学问题.例:若a﹣b=4,ab=1,求a2+b2的值.解:因为a﹣b=4,ab=1,所以a2+b2=(a﹣b)2+2ab=42+2×1=18.根据上面的解题思路和方法,解决下列问题:(1)已知a2+b2=56,(a+b)2=100,则ab=;(2)若x满足(2023﹣x)2+(x﹣2020)2=2021,求(2023﹣x)(x﹣2020)的值;(3)如图,在长方形ABCD中,AB=10,BC=6,点E,F分别是BC,CD上的点,且BE=DF=x,分别以FC,CE为边在长方形ABCD外侧作正方形CFGH和正方形CEMN,若长方形CEPF的面积为35,求图中阴影部分的面积之和.26.(8分)(2023春•蚌埠期末)[阅读理解]若x满足(9﹣x)(x﹣4)=4,求(x﹣4)2+(9﹣x)2的值.解:设9﹣x=a,x﹣4=b,则(9﹣x)(x﹣4)=ab=4,a+b=(9﹣x)+(x﹣4)=5,所以(9﹣x)2+(x﹣4)2=a2+b2=(a+b)2﹣2ab=52﹣2×4=17.[迁移运用]请仿照上面的方法求解下面问题:(1)若x满足(x﹣2023)2+(x﹣2026)2=31,求(x﹣2023)(x﹣2026)的值;(2)如图,已知正方形ABCD的边长为x,E,F分别是AD,DC上的点,且AE=1,CF=3,长方形EMFD 的面积是48,分别以MF,DF为边作正方形MFRN和正方形GFDH,求阴影部分的面积.27.(8分)(2023春•平湖市期中)小马同学化简[(x﹣y)2﹣(x﹣y)(x+y)]÷(2y)的过程如下:解:原式=(x2﹣y2﹣x2﹣y2)÷(2y)①=(﹣2y2)÷(2y)②=﹣y③(1)请把x=3,y=1分别代入原式[(x﹣y)2﹣(x﹣y)(x+y)]÷(2y)以及化简后的式子﹣y,并分别求出它们的值;由两者的求值结果可知,小马同学的化简结果对吗?(2)指出小马同学化简错误的步骤:(填写序号);并写出正确的化简过程.28.(8分)(2023春•城阳区期末)阅读理解:若x满足(60﹣x)(x﹣40)=20,求(60﹣x)2+(x﹣40)2的值.解:设60﹣x=a,x﹣40=b,则ab=20,a+b=60﹣x+x﹣40=20.∴(60﹣x)2+(x﹣40)2=a2+b2=(a+b)2﹣2ab=202﹣2×20=360;类比探究:(1)若x满足(70﹣x)(x﹣20)=﹣30,求(70﹣x)2+(x﹣20)2的值.(2)若x满足(3﹣4x)(2x﹣5)=,求(3﹣4x)2+4(2x﹣5)2的值.友情提示(2)中的4(2x﹣5)2可通过逆用积的乘方公式变成[2(2x﹣5)]2.(3)若x满足(2023﹣x)2+(2020﹣x)2=2061,求(2023﹣x)(2020﹣x)的值.解决问题:(4)如图,正方形AEGO和长方形KLMC重叠,重叠部分是长方形BEFC其面积是300,分别延长FC、BC 交AO和OG于D、H两点,构成的四边形ABCD和CFGH都是正方形,四边形ODCH是长方形.设CM=x,KC=3CM=3x,KB=54,FM=20,延长AO至P,使OP=2OD,延长AE至R,使RE=2BE,过点P、R作AP、AR垂线,两垂线交于点N,求正方形ARNP的面积.(结果是一个具体的数值)。
2021年度北师大版七年级数学下册第1章整式的乘除章末综合培优提升训练(附答案)1.1长度单位“埃”,等于一亿分之一厘米,那么一本长为35cm的杂志,等于()埃.A.3.5×107B.3.5×108C.3.5×10﹣8D.3.5×109 2.2021﹣1的倒数是()A.B.C.2021D.﹣20213.如果x2﹣kxy+9y2是一个完全平方式,那么k的值是()A.3B.±6C.6D.±34.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(2a2)3=6a6D.a3÷a2=a(a≠0)5.已知a+b=3,ab=,则a2+b2的值等于()A.6B.7C.8D.96.如图,有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为3和30,则正方形A、B的面积之和为()A.33B.30C.27D.247.如图,用4个相同的小长方形与1个小正方形(阴影部分)摆成了一个正方形图案,已知该图案的面积为81,小正方形的面积为25,若用x、y表示小长方形的两边长(x>y),请观察图案.指出以下关系式中,不正确的是()A.x+y=9B.x﹣y=5C.4xy+25=81D.x2+y2=498.若m=272,n=348,则m、n的大小关系正确的是()A.m>n B.m<n C.m=n D.大小关系无法确定9.计算(﹣)2019×(2)2020的结果是()A.﹣B.﹣C.D.﹣202010.若(x+2)(x+a)的积中不含x的一次项,则常数a的值为()A.0B.﹣1C.2D.﹣211.已知(m﹣2018)2+(2020﹣m)2=34,则m﹣2019的值为.12.下列各式能用乘法公式进行计算的是(填序号).①(﹣4x+5y)(﹣4x﹣5y)②(﹣4y﹣5x)(﹣5y+4x)③(5y+4x)(﹣5y﹣4x)④(﹣4x+5y)(5y+4x)13.冠状病毒有多种类型,新型冠状病毒也是其中的一种.专家测得冠状病毒的直径在60﹣220纳米之间,平均直径为110纳米左右.1纳米=0.000001毫米,请用科学记数法表示110纳米=毫米.14.若实数x、y满足x﹣3=y,则代数式2x2﹣4xy+2y2的值为.15.已知x+y=6,xy=3,则x2+y2的值是.16.若x+y=4,xy=1,则x2+y2﹣2=.17.若m﹣n=8,则m2﹣n2﹣16n的值是.18.已知2x﹣6y+6=0,则2x÷8y=.19.已知,(3a+2b)2=(3a﹣2b)2+A,则A=.20.已知a2+b2=30,ab=11,则(a﹣b)2=.21.计算:(1)(2a4)3﹣(﹣a7)2÷(﹣a2);(2)(p﹣q)4÷(q﹣p)3•(p﹣q);(3)(2a+1﹣b)(2a﹣1﹣b);(4)20.12﹣20.1×0.2+0.12.22.先化简再求值:(a+2)2+(a+1)(a﹣1)﹣a(2a﹣1),其中a=﹣.23.计算:(1)a4+(a2)4﹣(a3)2÷a2;(2)20192﹣2020×2018(用简便方法计算).24.已知多项式x2﹣3x+n与多项式x2+mx的乘积中的展开式中,不含x2项和x3项,试化简求值:[(2m+n)2﹣(2m+n)(2m﹣n)﹣6n]÷(﹣2n).25.请认真观察图形,解答下列问题:(1)根据图1中条件,试用两种不同方法表示两个阴影图形的面积的和.方法1:.方法2:.(2)从中你能发现什么结论?请用等式表示出来:.(3)利用(2)中结论解决下面的问题:如图2,两个正方形边长分别为a、b,如果a+b=ab=9,求阴影部分的面积.26.数形结合是解决数学问题的一种重要的思想方法,借助图的直观性,可以帮助理解数学问题.(1)请写出图1,图2,图3阴影部分的面积分别能解释的乘法公式.图1,图2,图3.(2)用4个全等的长和宽分别为a,b的长方形拼摆成一个如图4的正方形,请你通过计算阴影部分的面积,写出这三个代数式(a+b)2,(a﹣b)2,ab之间的等量关系.(3)根据(2)中你探索发现的结论,计算:当x+y=3,xy=﹣10时,求x﹣y的值.27.完全平方公式:(a±b)2=a2±2ab+b2适当的变形,可以解决很多的数学问题.例如:若a+b=3,ab=1,求a2+b2的值.解:因为a+b=3,ab=1所以(a+b)2=9,2ab=2所以a2+b2+2ab=9,2ab=2得a2+b2=7根据上面的解题思路与方法,解决下列问题:(1)若x+y=8,x2+y2=40,求xy的值;(2)①若(4﹣x)x=5,则(4﹣x)2+x2=;②若(4﹣x)(5﹣x)=8,则(4﹣x)2+(5﹣x)2=;(3)如图,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB=6,两正方形的面积和S1+S2=18,求图中阴影部分面积.参考答案1.解:35cm=35×108埃=3.5×109埃.故选:D.2.解:∵2021﹣1=,∴2021﹣1的倒数是:2021.故选:C.3.解:∵x2﹣kxy+9y2是一个完全平方式,∴k=±6.故选:B.4.解:A、a2•a3=a5,故本选项不合题意;B、(a2)3=a6,故本选项不合题意;C、(2a2)3=8a6,故本选项不合题意;D、a3÷a2=a(a≠0),故本选项符合题意.故选:D.5.解:∵a+b=3,∴(a+b)2=32=9,∴a2+b2=(a+b)2﹣2ab=9﹣3=6.故选:A.6.解:设正方形A的边长是a,正方形B的边长是b(a>b),由题可得图甲中阴影部分的面积是S甲=(a﹣b)2,图乙中阴影部分的面积是S乙=(a+b)2﹣a2﹣b2=2ab,∵图甲和图乙中阴影部分的面积分别为3和30,∴S甲=(a﹣b)2=3,S乙=2ab=30,∴正方形A、B的面积之和为:S A+S B=a2+b2=(a﹣b)2+2ab=3+30=33,故选:A.7.解:∵小正方形的面积为25,∴小正方形的为边长为5,∴x﹣y=5,∴选项B正确;∵已知该图案的面积为81,∴4xy+25=81,∴选项C正确,∵由题与图已知x+y=9,x=7,y=2,∴选项A正确,∴选项D不正确,故选:D.8.解:m=272=(23)24=824,n=348=(32)24=924,∵8<9,∴m<n,故选:B.9.解:原式=﹣()2019×()2020=﹣(×)2019×=﹣1×=﹣,故选:B.10.解:(x+2)(x+a),=x2+ax+2x+2a,=x2+(a+2)x+2a,∵积中不含x的一次项,∴a+2=0,解得a=﹣2.∴常数a的值为﹣2;故选:D.11.解:∵(m﹣2018)2+(m﹣2020)2=34,∴[(m﹣2019)+1]2+[(m﹣2019)﹣1]2=34,∴(m﹣2019)2+2(m﹣2019)+1+(m﹣2019)2﹣2(m﹣2019)+1=34,∴2(m﹣2019)2=32,∴(m﹣2019)2=16,∴m﹣2019=±4.故答案是:±4.12.解:①(﹣4x+5y)(﹣4x﹣5y)=(4x﹣5y)(4x+5y);②(﹣4y﹣5x)(﹣5y+4x)=﹣(5x+4y)(4x﹣5y);③(5y+4x)(﹣5y﹣4x)=﹣(4x+5y)(4x+5y)=﹣(4x+5y)2,④(﹣4x+5y)(5y+4x)=﹣(4x﹣5y)(4x+5y).故答案为①③④.13.解:110纳米=110×0.000001毫米=110×10﹣6毫米=1.1×10﹣4毫米,故答案为:1.1×10﹣4.14.解:由x﹣3=y可得x﹣y=3,∴2x2﹣4xy+2y2=2(x2﹣2xy+y2)=2(x﹣y)2=2×32=2×9=18.故答案为:18.15.解:∵x+y=6,xy=3,∴x2+y2=(x+y)2﹣2xy=36﹣2×3=30.故答案为:30.16.解:∵x+y=4,xy=1,∴x2+y2﹣2=(x+y)2﹣2xy﹣2=42﹣2×1﹣2=16﹣2﹣2=12.故答案为:12.17.解:∵m﹣n=8,∴m=8+n,∴m2﹣n2﹣16n=(n+8)2﹣n2﹣16n=64.故答案为:64.18.解:2x﹣6y+6=0,2(x﹣3y)=﹣6,x﹣3y=﹣2,∴2x÷8y=2x÷23y=2x﹣3y=2﹣3=.故答案为:.19.解:∵(3a+2b)2=(3a﹣2b)2+A,∴9a2+12ab+4b2=9a2﹣12ab+4b2+A,∴A=9a2+12ab+4b2﹣9a2+12ab﹣4b2,∴A=24ab.故答案为:24ab.20.解:∵a2+b2=30,ab=11,∴(a﹣b)2=a2+b2﹣2ab=30﹣2×11=8,故答案为:8.21.解:(1)原式=8a12+a12=9a12.(2)原式=﹣(p﹣q)•(p﹣q)=﹣(p﹣q)2.(3)原式=(2a﹣b+1)(2a﹣b﹣1)=(2a﹣b)2﹣1=4a2﹣4ab+b2+1.(4)原式=(20.1﹣0.1)2=202=400.22.解:原式=a2+4a+4+a2﹣1﹣2a2+a=5a+3,当a=﹣时,原式=5×(﹣)+3=﹣1.23.解:(1)原式=a4+a8﹣a6÷a2=a4+a8﹣a4=a8;(2)原式=20192﹣(2019+1)×(2019﹣1)=20192﹣20192+1=1.24.解:根据题意得:(x2﹣3x+n)(x2+mx)=x4+mx3﹣3x3﹣3mx2+nx2+mnx=x4+(m﹣3)x3+(﹣3m+n)x2+mnx,∵多项式x2﹣3x+n与多项式x2+mx的乘积中的展开式中,不含x2项和x3项,∴m﹣3=0,﹣3m+n=0,解得:m=3,n=9,则原式=(4m2+4mn+n2﹣4m2+n2﹣6n)÷(﹣2n)=(4mn+2n2﹣6n)÷(﹣2n)=﹣2m﹣n+3,当m=3,n=9时,原式=﹣6﹣9+3=﹣12.25.解:(1)图1,两个阴影正方形的面积和:a2+b2,大正方形的面积减去两个长方形的面积:(a+b)2﹣2ab,故答案为:a2+b2,(a+b)2﹣2ab;(2)两个数的平方和等于这两个数和的平方减去这两个数积的2倍,即:a2+b2=(a+b)2﹣2ab;故答案为:a2+b2=(a+b)2﹣2ab;(3)如图2,阴影部分的面积为:a2+b2﹣(a+b)×b=a2﹣ab+b2=(a+b)2﹣ab=﹣=27.26.解:(1)图1、;图2、;图3、.(2)由题意可知,阴影部分的面积=大正方形面积﹣4×小长方形面积,大正方边长为(a+b),面积为(a+b)2,小长方形长为a,宽为b,面积为ab,则=a2+2ab+b2﹣4ab=a2﹣2ab+b2=(a﹣b)2,∴(a﹣b)2=(a+b)2﹣4ab.(3)由(x﹣y)2=(x+y)2﹣4xy,∴(x﹣y)2=32﹣4×(﹣10)=49,∴x﹣y=±7.27.解:(1)∵x+y=8;∴(x+y)2=82;x2+2xy+y2=64;又∵x2+y2=40;∴2xy=64﹣(x2+y2),∴2xy=64﹣40=24,xy=12.(2)①∵(4﹣x)+x=4,∴[(4﹣x)+x]2=42[(4﹣x)+x]2=(4﹣x)2+2(4﹣x)x+x2=16;又∵(4﹣x)x=5,∴(4﹣x)2+x2=16﹣2(4﹣x)x=16﹣2×5=6.②由(4﹣x)﹣(5﹣x)=﹣1,∴[(4﹣x)﹣(5﹣x)]2=(4﹣x)2﹣2(4﹣x)(5﹣x)+(5﹣x)2=(﹣1)2;又∵(4﹣x)(5﹣x)=8,∴(4﹣x)2+(5﹣x)2=1+2(4﹣x)(5﹣x)=1+2×8=17.(3)由题意可得,AC+BC=6,AC2+BC2=18;∵(AC+BC)2=62,AC2+2AC•BC+BC2=36;∴2AC•BC=36﹣(AC2+BC2)=36﹣18=18,AC•BC=9;图中阴影部分面积为直角三角形面积,∵BC=CF∴。
第一章 整式的乘除一、单选题1.若3x =4,3y =6,则3x+y 的值是( )A .24B .10C .3D .22.计算23(2)a -的结果是( )A .56a -B .66a -C .68aD .68a -3.下列计算正确的是( )A .224a a a +=B .326a a a ⋅=C .624a a a ÷=D .23249()a b a b -=4.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( )A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-35.要使()22(21)x ax x ++-的结果中不含2x 项,则常数a 的值为( ) A .0 B .12 C .1 D .-26.下列算式能用平方差公式计算的是( )A .(2+)(2)a b b a -B .(21)(21)x x +--C .()()m n m n +-D .(3)(3)x y x y --+7.如果二次三项式x 2﹣16x+m 2是一个完全平方式,那么m 的值是( )A .±8B .4C .±4D .88.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。
那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )A .()222a b a b -=-B .()2222a b a ab b +=++ C .()2222a b a ab b -=-+ D .()()22a b a b a b -=+- 9.计算:3432(2)12a b a b ⋅÷的结果是( )A .216bB .232bC .223bD .2223b a10.若3x 2﹣5x +1=0,则5x (3x ﹣2)﹣(3x +1)(3x ﹣1)=( )A .﹣1B .0C .1D .﹣2二、填空题11.若832221a -⨯⨯=,则a 的值为________.12.若()()1x x a ++展开是一个二次二项式,则a=_______.13.如图,从一个边长为a 的正方形的一角上剪去一个边长为b (a>b )的正方形,则剩余(阴影)部分正好能够表示一个乘法公式,则这个乘法公式是_____(用含a ,b 的等式表示).14.已知(2019﹣a )2+(a ﹣2017)2=7,则代数式(2019﹣a )(a ﹣2017)的值是_____.三、解答题15.(1)若4a +3b =3,求92a •27b .(2)已知3×9m ×27m =321,求m 的值 16.计算:(1)-102n ×100×(-10)2n -1;(2)[(-a )·(-b )2·a 2b 3c ]2;(3)(x 3)2÷x 2÷x -x 3÷(-x )4·(-x 4);(4)(-9)3×32()3-×353n a n ∴=-+; (5)x n +1·x n -1·x ÷x m ;(6)a 2·a 3-(-a 2)3-2a ·(a 2)3-2[(a 3)3÷a 3].17.如图是某居民小区内的一个长方形花园,花园的长为40m ,宽为30m ,在它的四个角各建一个同样大小的正方形观光休息亭,四周建有与休息亭等宽的观光大道,其余部分(图中阴影部分)种植花草.若正方形观光休息亭的边长为a m ,则种植花草部分的面积为多少?18.(1)计算并观察下列各式:(x -1)(x +1)= ;(x -1)( 2x +x +1)= ;(x -1)( 3x +2x +x +1)= ;(2)从上面的算式及计算结果,你发现了什么?请根据你发现的规律直接写下面的空格.(x -1) =6x -1; (3)利用你发现的规律计算:65432(1)(1)x x x x x x x -++++++= ;(4)利用该规律计算:2320191555...5+++++.19.图1,是一个长为2m ,宽为2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的面积为 ;(2)观察图2,三个代数式()2m n +,()2m n -,mn 之间的等量关系是 ; (3)若6x y +=-, 2.75xy =,求x y -; (4)观察图3,你能得到怎样的代数恒等式呢?答案1.A2.D3.C4.B5.B6.C7.A8.D9.C10.A11.5-12.-1或013.()()22a b a b a b -=+- 1415 416. (1) 104n +1;(2) a 6b 10c 2;(3) 2x 3;(4) 8;(5) x 2n -m +1;(6)-2a 7-a 6+a 5.17.(4a 2-140a+1200)平方米18.(1)x2−1;x3−1;x4−1(2)(x5+x4+x3+x2+x+1)(3)x7−1(4)14(52020−1)19.(1)()2m n-;(2)()()224m n m n mn+=-+;(3)5x y-=±;(4)()()22 223m n m n m mn n++=++。
北师大版第1章《整式的乘除》培优拔尖习题训练一.选择题(共10小题)1.下面计算正确的是()A.a2•a3=a5B.3a2﹣a2=2C.4a6÷2a3=2a2D.(a2)3=a52.化简(x+4)(x﹣1)+(x﹣4)(x+1)的结果是()A.2x2﹣8B.2x2﹣x﹣4C.2x2+8D.2x2+6x3.若要使4x2+mx+成为一个两数差的完全平方式,则m的值应为()A.B.C.D.4.下列计算错误的是()A.(﹣2a3)3=﹣8a9B.(ab2)3•(a2b)2=a7b8C.(xy2)2•(9x2y)=x6y6D.(5×105)×(4×104)=2×10105.已知长方形ABCD可以按图示方式分成九部分,在a,b变化的过程中,下面说法正确的有()①图中存在三部分的周长之和恰好等于长方形ABCD的周长②长方形ABCD的长宽之比可能为2③当长方形ABCD为正方形时,九部分都为正方形④当长方形ABCD的周长为60时,它的面积可能为100.A.①②B.①③C.②③④D.①③④6.若(x2+x+b)•(2x+c)=2x3+7x2﹣x+a,则a,b,c的值分别为()A.a=﹣15,b=﹣3,c=5B.a=﹣15,b=3,c=﹣5C.a=15,b=3,c=5D.a=15,b=﹣3,c=﹣57.如图1,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下部分沿图1中的虚线剪开后重新拼成一个梯形(如图2),利用这两幅图形面积,可以验证的乘法公式是()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.a(a+b)=a2+ab D.(a+b)(a﹣b)=a2﹣b28.若(a﹣c+b)2=21,(a+c+b)2=2019,则a2+b2+c2+2ab的值是()A.1020B.1998C.2019D.20409.我们知道,同底数幂的乘法法则为a m•a n=a m+n(其中a≠0,m、n为正整数),类似地我们规定关于任意正整数m、n的一种新运算:h(m+n)=h(m)•h(n);比如h(2)=3,则h(4)=h(2+2)=3×3=9,若h(2)=k(k≠0),那么h(2n)•h(2020)的结果是()A.2k+2020B.2k+1010C.k n+1010D.1022k10.观察下列各式:(x2﹣1)÷(x﹣1)=x+1.(x3﹣1)÷(x﹣1)=x2+x+1,(x4﹣1)÷(x﹣1)=x3+x2+x+1,(x5﹣1)÷(x﹣1)=x4+x3+x2+x+1,根据上述规律计算2+22+23+…+262+263的值为()A.264﹣1B.264﹣2C.264+1D.264+2二.填空题(共8小题)11.2015年诺贝尔生理学或医学奖得主中国科学家屠呦呦,发现了一种长度约为0.000000456毫米的病毒,把0.000000456用科学记数法表示为.12.已知x2﹣2(m+3)x+9是一个完全平方式,则m=.13.计算:(16x3﹣8x2+4x)÷(﹣2x)=.14.若计算(x﹣2)(3x+m)的结果中不含关于字母x的一次项,则m的值为.15.若(x﹣2)x=1,则x=.16.如图所示,如图,边长分别为a和b的两个正方形拼接在一起,则图中阴影部分的面积为.17.在我们所学的课本中,多项式与多项式相称可以用几何图形的面积来表示,例如:(2a+b)(a+b)=2a2+3ab+b2就可以用下面图中的图①来表示.请你根据此方法写出图②中图形的面积所表示的代数恒等式:18.观察下列各等式:x﹣2=x﹣2(x﹣2)(x+2)=x2﹣22(x﹣2)(x2+2x+4)=x3﹣23(x﹣2)(x3+2x2+4x+8)=x4﹣24……请你猜想:若A•(x+y)=x5+y5,则代数式A=.三.解答题(共6小题)19.先化简,再求值:(m﹣2)2﹣(n+2)(n﹣2)﹣m(m﹣1),其中2m2+12m+18+|2n﹣3|=0.20.计算:(1)(﹣4x2)﹣(1+2x)(8x﹣2)(2)(﹣2x﹣y)(y﹣2x)﹣(2x+y)2(3)先化简再求值:(12x3y2+x2y﹣x2y3)÷(﹣2x2y)﹣[2(x﹣y)]2,其中x=﹣,y=321.阅读材料:(1)1的任何次幂都为1:(2)﹣1的奇数次幂为﹣1:(3)﹣1的偶数次幂为1:(4)任何不等于零的数的零次幂为1.请问当x为何值时,代数式(2x+3)x+2020的值为1.22.(1)先化简,再求值已知:[(x﹣2y)2﹣4y2+2xy]÷2x,其中x=1,y=2.(2)先化简,再求值:(﹣3ab)2(a2+ab+b2)﹣3ab(3a3b+3a2b2﹣ab3),其中a=﹣,b=23.(1)计算:(a﹣2)(a2+2a+4)=.(2x﹣y)(4x2+2xy+y2)=.(2)上面的整式乘法计算结果很简洁,你又发现一个新的乘法公式(请用含a,b的字母表示).(3)下列各式能用你发现的乘法公式计算的是.A.(a﹣3)(a2﹣3a+9)B.(2m﹣n)(2m2+2mn+n2)C.(4﹣x)(16+4x+x2)D.(m﹣n)(m2+2mn+n2)24.如图1,在一个边长为a的正方形木板上锯掉一个边长为b的正方形,并把余下的部分沿虚线剪开拼成图2的形状.(1)请用两种方法表示阴影部分的面积:图1得:;图2得;(2)由图1与图2面积关系,可以得到一个等式:;(3)利用(2)中的等式,已知a2﹣b2=16,且a+b=8,则a﹣b=.参考答案一.选择题(共10小题)1.【解答】解:A、结果是a5,故本选项符合题意;B、结果是2a2,故本选项不符合题意;C、结果是2a3,故本选项不符合题意;D、结果是a6,故本选项不符合题意;故选:A.2.【解答】解:(x+4)(x﹣1)+(x﹣4)(x+1)=x2+3x﹣4+x2﹣3x﹣4=2x2﹣8,故选:A.3.【解答】解:∵(2x﹣)2=4x2﹣x+,或[2x﹣(﹣)]2=4x2+x+,∴m=﹣或.故选:A.4.【解答】解:A、(﹣2a3)3=﹣8a9,正确;B、(ab2)3•(a2b)2=a7b8,正确;C、(xy2)2•(9x2y)=x4y5,错误;D、(5×105)×(4×104)=2×1010,正确;故选:C.5.【解答】解:①四边形AEFG、FHKM、SKWC的周长之和等于长方形ABCD的周长;②长方形的长为a+2b,宽为2a+b,若该长方形的长宽之比为2,则a+2b=2(2a+b)解得a=0.这与题意不符,故②的说法不正确;③当长方形ABCD为正方形时,2a+b=a+2b所以a=b,所以九部分都为正方形,故③的说法正确;④当长方形ABCD的周长为60时,即2(2a+b+a+2b)=60整理,得a+b=10所以四边形GHWD的面积为100.故当长方形ABCD的周长为60时,它的面积不可能为100,故④的说法不正确.综上正确的是①③.故选:B.6.【解答】解:∵(x2+x+b)•(2x+c)=2x3+7x2﹣x+a,2x3+2x2+2bx+cx2+cx+bc=2x3+7x2﹣x+a,2x3+(2+c)x2+(2b+c)x+bc∴2+c=7,2b+c=﹣1,bc=a.解得c=5,b=﹣3,a=﹣15.故选:A.7.【解答】解:图1阴影部分的面积等于a2﹣b2,图2梯形的面积是(2a+2b)(a﹣b)=(a+b)(a﹣b)根据两者阴影部分面积相等,可知(a+b)(a﹣b)=a2﹣b2比较各选项,只有D符合题意故选:D.8.【解答】解:(a﹣c+b)2=a2+b2+c2﹣2ac﹣2bc+2ab=21①,(a+c+b)2=a2+b2+c2+2ac+2bc+2ab=2019②,①+②,得2(a2+b2+c2)+4ab=2040,a2+b2+c2+2ab=1020.故选:A.9.【解答】解:∵h(2)=k(k≠0),h(m+n)=h(m)•h(n),∴h(2n)•h(2020)=h()•h()=•=k n•k1010=k n+1010,故选:C.10.【解答】解:有上述规律可知:(x64﹣1)÷(x﹣1)=x63+x62+…+x2+x+1当x=2时,即(264﹣1)÷(2﹣1)=1+2+22+…+262+263∴2+22+23+…+262+263=264﹣2.故选:B.二.填空题(共8小题)11.【解答】解:把0.000000456用科学记数法表示为4.56×10﹣7,故答案为:4.56×10﹣7.12.【解答】解:∵x2﹣2(m+3)x+9是一个完全平方式,∴m+3=±3,解得:m=﹣6或m=0,故答案为:﹣6或013.【解答】解:(16x3﹣8x2+4x)÷(﹣2x)=﹣8x2+4x﹣2.故答案为:﹣8x2+4x﹣2.14.【解答】解:原式=3x2+(m﹣6)x﹣2m,由结果不含x的一次项,得到m﹣6=0,解得:m=6,故答案为:615.【解答】解:∵(x﹣2)x=1,∴x=0时,(0﹣2)0=1,当x=3时,(3﹣2)3=1,则x=0或3.故答案为:0或3.16.【解答】解:∵去掉△DEF,则剩余部分为一个直角梯形∴图中阴影部分的面积为:(a+a+b)b﹣(b﹣a)a﹣(a+b)a=ab+b2﹣ab+a2﹣a2﹣ab=b2故答案为:.17.【解答】解:根据图形列得:(a+2b)(2a+b)=2a2+5ab+2b2.故答案为:(a+2b)(2a+b)=2a2+5ab+2b2.18.【解答】解:(x4﹣x3y+x2y2﹣xy3+y4)(x+y)=x5+y5,故答案为:x4﹣x3y+x2y2﹣xy3+y4.三.解答题(共6小题)19.【解答】解:(m﹣2)2﹣(n+2)(n﹣2)﹣m(m﹣1)=m2﹣4m+4﹣n2+4﹣m2+m=﹣n2﹣3m+8,∵2m2+12m+18+|2n﹣3|=0,∴2(m+3)2+|2n﹣3|=0,∴m+3=0,2n﹣3=0,∴m=﹣3,n=1.5,当m=﹣3,n=1.5时,原式=﹣1.52﹣3×(﹣3)+8=﹣3.20.【解答】解:(1)(﹣4x2)﹣(1+2x)(8x﹣2)=﹣4x2﹣8x+2﹣16x2+4x=﹣20x2﹣4x+2;(2)(﹣2x﹣y)(y﹣2x)﹣(2x+y)2=4x2﹣y2﹣4x2﹣4xy﹣y2=﹣2y2﹣4xy;(3)(12x3y2+x2y﹣x2y3)÷(﹣2x2y)﹣[2(x﹣y)]2=﹣6xy+y2﹣4x2+8xy﹣4y2=2xy﹣4x2﹣y2﹣,当,y=3时,原式=2×(﹣)×3﹣4×(﹣)2﹣×32﹣=﹣36.21.【解答】解:①由2x+3=1,得x=﹣1,当x=﹣1时,代数式(2x+3)x+2020=12019=1;②由2x+3=﹣1,得x=﹣2,当x=﹣2时,代数式(2x+3)x+2020=(﹣1)2018=1;③由x+2020=0,得x=﹣2020,当x=﹣2020时,2x+3=﹣4037≠0所以(2x+3)x+2020=(﹣4037)0=1.当x=﹣2020时,代数式(2x+3)x+2020的值为1.答:当x为﹣1、﹣2、﹣2020时,代数式(2x+3)x+2020的值为1.22.【解答】解:(1)[(x﹣2y)2﹣4y2+2xy]÷2x=[x2﹣4xy+4y2﹣4y2+2xy]÷2x=[x2﹣2xy]÷2x=,当x=1,y=2时,原式=;(2)(﹣3ab)2(a2+ab+b2)﹣3ab(3a3b+3a2b2﹣ab3)=9a2b2(a2+ab+b2)﹣(9a4b2+9a3b3﹣3a2b4)=9a4b2+9a3b3+9a2b4﹣9a4b2﹣9a3b3+3a2b4=12a2b4,当a=,b=时,原式=.23.【解答】解:(1)原式=a3﹣8;原式=8x3﹣y3;(2)(a﹣b)(a2+ab+b2)=a3﹣b3;(3)能用发现的乘法公式计算的是(4﹣x)(16+4x+x2).故答案为:(1)a3﹣8;8x3﹣y3;(2)(a﹣b)(a2+ab+b2)=a3﹣b3;(3)C.24.【解答】解:(1)图1中阴影部分的面积为:a2﹣b2,图2中阴影部分的面积为:(2b+2a)(a﹣b),即(a+b)(a﹣b);故答案为:a2﹣b2,(a+b)(a﹣b);(2)由图1与图2面积关系,可以得到一个等式:a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2=(a+b)(a﹣b);(3)∵a2﹣b2=16,且a+b=8,∴(a+b)(a﹣b)=16,即8(a﹣b)=16,∴a﹣b=2.故答案为:2.。