∴(-3)3>(-π)3.
探究点四
幂函数性质的综合应用
【例4】 已知幂函数f(x)=
- 2 -2+3(-2<m<2,m∈Z)满足:
①f(x)在(0,+∞)上单调递增;
②对∀x∈R,都有f(-x)-f(x)=0.
求同时满足①②的幂函数f(x)的解析式,并求出x∈[1,4]时,f(x)的值域.
(2)函数f(x)=(m2-m-5)xm-1是幂函数,且在区间(0,+∞)上单调递增,试确定m的
值.
解 根据幂函数的定义,得m2-m-5=1,
解得m=3或m=-2.
当m=3时,f(x)=x2在区间(0,+∞)上单调递增;
当m=-2时,f(x)=x-3在区间(0,+∞)上单调递减,不符合要求.故m=3.
比较大小的两个实数必须在同一个函数的同一个单调区间内,否则无法比
较大小.
变式训练3 比较下列各组数的大小:
(1)
2 0.5
3 0.5
与
;
3
4
解 ∵y=x
0.5
3
在定义域上为增函数,又
4
>
2
2 0.5
3 0.5
,∴
<
.
3
3
4
(2)(-3)3与(-π)3.
解 ∵y=x3在定义域R上为增函数,又-3>-π,
值域
奇偶性
R
奇函数
在R上单
单调性
调递增
公共点 (1,1)
[0,+∞)
偶函数
奇函数
y=
既不是奇函数,
也不是偶函数
在[0,+∞)
上单调递增, 在R上单 在[0,+∞)上单