Abstract Guardians in a Generation-Based Garbage Collector
- 格式:pdf
- 大小:169.52 KB
- 文档页数:10
理论与方法 / Theoretical and Method86国际非物质文化遗产研究知识图谱可视化分析吴晓晨,王春燕(塔里木大学经济与管理学院,新疆 阿拉尔 843300)摘 要: 非遗是以非物质形态存在于民间、世代相承的传统文化表现形式。
文章通过梳理国际非遗研究文献,客观掌握国际非遗研究方向,以“Web of science核心集合”为数据库,利用Cite Space软件对索引出来的1 304篇文献进行国际、地区、机构、作者网路共现、文献共被引以及关键词聚类等系统化分析,得出国际有关于“intangible cultural heritage”的研究知识图谱。
研究发现,非遗的研究内容方向可以分为3类:民族非遗文化产业管理研究(主要包括区域历史文化、专业科目以及原生态识别)、传承创新与保护政策研究(包括传播表达以及可持续发展保护)、文化旅游的研究(包括标志地区、地方性艺术、空间市场分析)。
研究涉及的学科领域广、分布不均衡、科研力量地域空间上不平衡。
研究的热点随着时间变化,主要有3个研究热点:有非遗概念界定、非遗保存、非遗开发管理。
通过得到的知识图谱可以掌握非遗研究的现状与发展趋势,为今后的研究方向提供数据支持。
关键词:非物质文化遗产;Cite Space软件;文化旅游;可视化中图分类号:G122 文献标志码:AVisualization Analysis of Knowledge Map of International Intangible Cultural HeritageWU Xiaochen, WANG Chunyan(College of Economics and Management, Tarim University, Alar Xinjiang 843300, China)Abstract: Intangible cultural heritage is a form of traditional culture, which exists in non-material form in folk and generation by generation. Through combing the research literature of international non-material cultural heritage, the research direction of international intangible cultural heritage is grasps objectively, and some objective data are provided for future research.This paper uses "Web of science core collection" as the database, and uses Cite Space software to study the 1304 documents which are indexed by international, regional, organization, author network co-occurrence, literature co citation, and keyword cluster analysis.It is concluded that there is an international knowledge map of "intangible cultural heritage". The research found that the research content of intangible cultural heritage can be divided into three categories: the study of national cultural heritage, the research of heritage innovation and protection policy, and the study of cultural tourism. The research covers a wide range of disciplines, uneven distribution, and uneven geographical distribution of research forces. With the change of time, there are three main research hot spots: the definition of intangible cultural heritage, the protection and preservation of intangible cultural heritage, and the development and management of intangible cultural heritage. Through the knowledge map, we can grasp the current situation and development trend of intangible cultural heritage research, so as to provide data support for future research directions.Keywords: intangible cultural heritage; Cite Space software; culture travel; visualization作者简介:吴晓晨(1998-),女,本科,主要研究方向为旅游管理。
由于我国经济的高速发展,计算机科学技术在当前各个科技领域中迅速发展,成为了应用最广泛的技术之一.其中数据库又是计算机科学技术中发展最快,应用最广泛的重要分支之一.它已成为计算机信息系统和计算机应用系统的重要技术基础和支柱。
下面是数据库英文参考文献的分享,希望对你有所帮助。
数据库英文参考文献一:[1]Nú?ez Matías,Weht Ruben,Nú?ez Regueiro Manuel. Searching for electronically two dimensional metals in high-throughput ab initio databases[J]. Computational Materials Science,2020,182.[2]Izabela Karsznia,Marta Przychodzeń,Karolina Sielicka. Methodology of the automatic generalization of buildings, road networks, forests and surface waters: a case study based on the Topographic Objects Database in Poland[J]. Geocarto International,2020,35(7).[3]Alankrit Chaturvedi. Secure Cloud Migration Challenges and Solutions[J]. Journal of Research in Science and Engineering,2020,2(4).[4]Ivana Nin?evi? Pa?ali?,Maja ?uku?i?,Mario Jadri?. Smart city research advances in Southeast Europe[J]. International Journal of Information Management,2020.[5]Jongseong Kim,Unil Yun,Eunchul Yoon,Jerry Chun-Wei Lin,Philippe Fournier-Viger. One scan based high average-utility pattern mining in static and dynamic databases[J]. Future Generation Computer Systems,2020.[6]Jo?o Peixoto Martins,António Andrade-Campos,Sandrine Thuillier. Calibration of Johnson-Cook Model Using Heterogeneous Thermo-Mechanical Tests[J]. Procedia Manufacturing,2020,47.[7]Anna Soriani,Roberto Gemignani,Matteo Strano. A Metamodel for the Management of Large Databases: Toward Industry 4.0 in Metal Forming[J]. Procedia Manufacturing,2020,47.[8]Ayman Elbadawi,Karim Mahmoud,Islam Y. Elgendy,Mohammed Elzeneini,Michael Megaly,Gbolahan Ogunbayo,Mohamed A. Omer,Michelle Albert,Samir Kapadia,Hani Jneid. Racial disparities in the utilization and outcomes of transcatheter mitral valve repair: Insights from a national database[J]. Cardiovascular Revascularization Medicine,2020.[9]Maurizio Boccia,Antonio Sforza,Claudio Sterle. Simple Pattern Minimality Problems: Integer Linear Programming Formulations and Covering-Based Heuristic Solving Approaches[J]. INFORMS Journal on Computing,2020.[10]. Inc.; Patent Issued for Systems And User Interfaces For Dynamic Access Of Multiple Remote Databases And Synchronization Of Data Based On User Rules (USPTO 10,628,448)[J]. Computer Technology Journal,2020.[11]. Bank of America Corporation; Patent Issued for System For Electronic Data Verification, Storage, And Transfer (USPTO 10,628,058)[J]. Computer Technology Journal,2020.[12]. Information Technology - Database Management; Data from Technical University Munich (TU Munich) Advance Knowledge in Database Management (Make the most out of your SIMD investments: counter control flow divergence in compiled query pipelines)[J]. Computer Technology Journal,2020.[13]. Information Technology - Database Management; Studies from Pontifical Catholic University Update Current Data on Database Management (General dynamic Yannakakis: conjunctive queries with theta joins under updates)[J]. Computer Technology Journal,2020.[14]Kimothi Dhananjay,Biyani Pravesh,Hogan James M,Soni Akshay,Kelly Wayne. Learning supervised embeddings for large scale sequence comparisons.[J]. PloS one,2020,15(3).[15]. Information Technology; Studies from University of California San Diego (UCSD) Reveal New Findings on Information Technology (A Physics-constrained Data-driven Approach Based On Locally Convex Reconstruction for Noisy Database)[J]. Information Technology Newsweekly,2020.[16]. Information Technology; Researchers from National Institute of Information and Communications Technology Describe Findings in Information Technology (Efficient Discovery of Weighted Frequent Neighborhood Itemsets in Very Large Spatiotemporal Databases)[J]. Information Technology Newsweekly,2020.[17]. Information Technology; Investigators at Gdansk University of Technology Report Findings in Information Technology (A Framework for Accelerated Optimization of Antennas Using Design Database and Initial Parameter Set Estimation)[J]. Information Technology Newsweekly,2020.[18]. Information Technology; Study Results from Palacky University Update Understanding of Information Technology (Evaluation of Replication Mechanisms on Selected Database Systems)[J]. Information Technology Newsweekly,2020.[19]Runfola Daniel,Anderson Austin,Baier Heather,Crittenden Matt,Dowker Elizabeth,Fuhrig Sydney,Goodman Seth,Grimsley Grace,Layko Rachel,MelvilleGraham,Mulder Maddy,Oberman Rachel,Panganiban Joshua,Peck Andrew,Seitz Leigh,Shea Sylvia,Slevin Hannah,Youngerman Rebecca,Hobbs Lauren. geoBoundaries: A global database of political administrative boundaries.[J]. PloS one,2020,15(4).[20]Dupré Damien,Krumhuber Eva G,Küster Dennis,McKeown Gary J. A performance comparison of eight commercially available automatic classifiers for facial affect recognition.[J]. PloS one,2020,15(4).[21]Partha Pratim Banik,Rappy Saha,Ki-Doo Kim. An Automatic Nucleus Segmentation and CNN Model based Classification Method of White Blood Cell[J]. Expert Systems With Applications,2020,149.[22]Hang Dong,Wei Wang,Frans Coenen,Kaizhu Huang. Knowledge base enrichment by relation learning from social tagging data[J]. Information Sciences,2020,526.[23]Xiaodong Zhao,Dechang Pi,Junfu Chen. Novel trajectory privacy-preserving method based on clustering using differential privacy[J]. Expert Systems With Applications,2020,149.[24]. Information Technology; Researchers at Beijing University of Posts and Telecommunications Have Reported New Data on Information Technology (Mining top-k sequential patterns in transaction database graphs)[J]. Internet Weekly News,2020.[25]Sunil Kumar Sharma. An empirical model (EM: CCO) for clustering, convergence and center optimization in distributive databases[J]. Journal of Ambient Intelligence and Humanized Computing,2020(prepublish).[26]Naryzhny Stanislav,Klopov Nikolay,Ronzhina Natalia,Zorina Elena,Zgoda Victor,Kleyst Olga,Belyakova Natalia,Legina Olga. A database for inventory of proteoform profiles: "2DE-pattern".[J]. Electrophoresis,2020.[27]Noel Varela,Jesus Silva,Fredy Marin Gonzalez,Pablo Palencia,Hugo Hernandez Palma,Omar Bonerge Pineda. Method for the Recovery of Images in Databases of Rice Grains from Visual Content[J]. Procedia Computer Science,2020,170.[28]Ahmad Rabanimotlagh,Prabhu Janakaraj,Pu Wang. Optimal Crowd-Augmented Spectrum Mapping via an Iterative Bayesian Decision Framework[J]. Ad Hoc Networks,2020.[29]Ismail Boucherit,Mohamed Ould Zmirli,Hamza Hentabli,Bakhtiar Affendi Rosdi. Finger vein identification using deeply-fused Convolutional Neural Network[J]. Journal of King Saud University - Computer and Information Sciences,2020.[30]Sachin P. Patel,S.H. Upadhyay. Euclidean Distance based Feature Ranking andSubset Selection for Bearing Fault Diagnosis[J]. Expert Systems With Applications,2020.[31]Julia Fomina,Denis Safikanov,Alexey Artamonov,Evgeniy Tretyakov. Parametric and semantic analytical search indexes in hieroglyphic languages[J]. Procedia Computer Science,2020,169.[32]Selvine G. Mathias,Sebastian Schmied,Daniel Grossmann. An Investigation on Database Connections in OPC UA Applications[J]. Procedia Computer Science,2020,170.[33]Abdourrahmane Mahamane Atto,Alexandre Benoit,Patrick Lambert. Timed-image based deep learning for action recognition in video sequences[J]. Pattern Recognition,2020.[34]Yonis Gulzar,Ali A. Alwan,Abedallah Zaid Abualkishik,Abid Mehmood. A Model for Computing Skyline Data Items in Cloud Incomplete Databases[J]. Procedia Computer Science,2020,170.[35]Xiaohan Yang,Fan Li,Hantao Liu. Deep feature importance awareness based no-reference image quality prediction[J]. Neurocomputing,2020.[36]Dilana Hazer-Rau,Sascha Meudt,Andreas Daucher,Jennifer Spohrs,Holger Hoffmann,Friedhelm Schwenker,Harald C. Traue. The uulmMAC Database—A Multimodal Affective Corpus for Affective Computing in Human-Computer Interaction[J]. Sensors,2020,20(8).[37]Tomá? Pohanka,Vilém Pechanec. Evaluation of Replication Mechanisms on Selected Database Systems[J]. ISPRS International Journal of Geo-Information,2020,9(4).[38]Verheggen Kenneth,Raeder Helge,Berven Frode S,Martens Lennart,Barsnes Harald,Vaudel Marc. Anatomy and evolution of database search engines-a central component of mass spectrometry based proteomic workflows.[J]. Mass spectrometry reviews,2020,39(3).[39]Moscona Leon,Casta?eda Pablo,Masrouha Karim. Citation analysis of the highest-cited articles on developmental dysplasia of the hip.[J]. Journal of pediatric orthopedics. Part B,2020,29(3).[40]Nasseh Daniel,Schneiderbauer Sophie,Lange Michael,Schweizer Diana,Heinemann Volker,Belka Claus,Cadenovic Ranko,Buysse Laurence,Erickson Nicole,Mueller Michael,Kortuem Karsten,Niyazi Maximilian,Marschner Sebastian,Fey Theres. Optimizing the Analytical Value of Oncology-Related Data Based on an In-Memory Analysis Layer: Development and Assessment of the Munich OnlineComprehensive Cancer Analysis Platform.[J]. Journal of medical Internet research,2020,22(4).数据库英文参考文献二:[41]Meiling Chai,Changgeng Li,Hui Huang. A New Indoor Positioning Algorithm of Cellular and Wi-Fi Networks[J]. Journal of Navigation,2020,73(3).[42]Mandy Watson. How to undertake a literature search: a step-by-step guide[J]. British Journal of Nursing,2020,29(7).[43]. Patent Application; "Memorial Facility With Memorabilia, Meeting Room, Secure Memorial Database, And Data Needed For An Interactive Computer Conversation With The Deceased" in Patent Application Approval Process (USPTO 20200089455)[J]. Computer Technology Journal,2020.[44]. Information Technology; Data on Information Technology Detailed by Researchers at Complutense University Madrid (Hr-sql: Extending Sql With Hypothetical Reasoning and Improved Recursion for Current Database Systems)[J]. Computer Technology Journal,2020.[45]. Science - Metabolomics; Study Data from Wake Forest University School of Medicine Update Knowledge of Metabolomics (Software tools, databases and resources in metabolomics: updates from 2018 to 2019)[J]. Computer Technology Journal,2020.[46]. Sigma Computing Inc.; Researchers Submit Patent Application, "GeneratingA Database Query To Dynamically Aggregate Rows Of A Data Set", for Approval (USPTO 20200089796)[J]. Computer Technology Journal,2020.[47]. Machine Learning; Findings on Machine Learning Reported by Investigators at Tongji University (Comparing Machine Learning Algorithms In Predicting Thermal Sensation Using Ashrae Comfort Database Ii)[J]. Computer Technology Journal,2020.[48]. Sigma Computing Inc.; "Generating A Database Query Using A Dimensional Hierarchy Within A Graphical User Interface" in Patent Application Approval Process (USPTO 20200089794)[J]. Computer Technology Journal,2020.[49]Qizhi He,Jiun-Shyan Chen. A physics-constrained data-driven approach based on locally convex reconstruction for noisy database[J]. Computer Methods in Applied Mechanics and Engineering,2020,363.[50]José A. Delgado-Osuna,Carlos García-Martínez,JoséGómez-Barbadillo,Sebastián Ventura. Heuristics for interesting class association rule mining a colorectal cancer database[J]. Information Processing andManagement,2020,57(3).[51]Edival Lima,Thales Vieira,Evandro de Barros Costa. Evaluating deep models for absenteeism prediction of public security agents[J]. Applied Soft Computing Journal,2020,91.[52]S. Fareri,G. Fantoni,F. Chiarello,E. Coli,A. Binda. Estimating Industry 4.0 impact on job profiles and skills using text mining[J]. Computers in Industry,2020,118.[53]Estrela Carlos,Pécora Jesus Djalma,Dami?o Sousa-Neto Manoel. The Contribution of the Brazilian Dental Journal to the Brazilian Scientific Research over 30 Years.[J]. Brazilian dental journal,2020,31(1).[54]van den Oever L B,Vonder M,van Assen M,van Ooijen P M A,de Bock G H,Xie X Q,Vliegenthart R. Application of artificial intelligence in cardiac CT: From basics to clinical practice.[J]. European journal of radiology,2020,128.[55]Li Liu,Deborah Silver,Karen Bemis. Visualizing events in time-varying scientific data[J]. Journal of Visualization,2020,23(2–3).[56]. Information Technology - Database Management; Data on Database Management Discussed by Researchers at Arizona State University (Architecture of a Distributed Storage That Combines File System, Memory and Computation In a Single Layer)[J]. Information Technology Newsweekly,2020.[57]. Information Technology - Database Management; New Findings from Guangzhou Medical University Update Understanding of Database Management (GREG-studying transcriptional regulation using integrative graph databases)[J]. Information Technology Newsweekly,2020.[58]. Technology - Laser Research; Reports from Nicolaus Copernicus University in Torun Add New Data to Findings in Laser Research (Nonlinear optical study of Schiff bases using Z-scan technique)[J]. Journal of Technology,2020.[59]Loeffler Caitlin,Karlsberg Aaron,Martin Lana S,Eskin Eleazar,Koslicki David,Mangul Serghei. Improving the usability and comprehensiveness of microbial databases.[J]. BMC biology,2020,18(1).[60]Caitlin Loeffler,Aaron Karlsberg,Lana S. Martin,Eleazar Eskin,David Koslicki,Serghei Mangul. Improving the usability and comprehensiveness of microbial databases[J]. BMC Biology,2020,18(1).[61]Dean H. Barrett,Aderemi Haruna. Artificial intelligence and machine learningfor targeted energy storage solutions[J]. Current Opinion in Electrochemistry,2020,21.[62]Chenghao Sun. Research on investment decision-making model from the perspective of “Internet of Things + Big data”[J]. Future Generation Computer Systems,2020,107.[63]Sa?a Adamovi?,Vladislav Mi?kovic,Nemanja Ma?ek,Milan Milosavljevi?,Marko ?arac,Muzafer Sara?evi?,Milan Gnjatovi?. An efficient novel approach for iris recognition based on stylometric features and machine learning techniques[J]. Future Generation Computer Systems,2020,107.[64]Olivier Pivert,Etienne Scholly,Grégory Smits,Virginie Thion. Fuzzy quality-Aware queries to graph databases[J]. Information Sciences,2020,521.[65]Javier Fernando Botía Valderrama,Diego José Luis Botía Valderrama. Two cluster validity indices for the LAMDA clustering method[J]. Applied Soft Computing Journal,2020,89.[66]Amer N. Kadri,Marie Bernardo,Steven W. Werns,Amr E. Abbas. TAVR VS. SAVR IN PATIENTS WITH CANCER AND AORTIC STENOSIS: A NATIONWIDE READMISSION DATABASE REGISTRY STUDY[J]. Journal of the American College of Cardiology,2020,75(11).[67]. Information Technology; Findings from P. Sjolund and Co-Authors Update Knowledge of Information Technology (Whole-genome sequencing of human remains to enable genealogy DNA database searches - A case report)[J]. Information Technology Newsweekly,2020.[68]. Information Technology; New Findings from P. Yan and Co-Researchers in the Area of Information Technology Described (BrainEXP: a database featuring with spatiotemporal expression variations and co-expression organizations in human brains)[J]. Information Technology Newsweekly,2020.[69]. IDERA; IDERA Database Tools Expand Support for Cloud-Hosted Databases[J]. Information Technology Newsweekly,2020.[70]Adrienne Warner,David A. Hurley,Jonathan Wheeler,Todd Quinn. Proactive chat in research databases: Inviting new and different questions[J]. The Journal of Academic Librarianship,2020,46(2).[71]Chidentree Treesatayapun. Discrete-time adaptive controller based on IF-THEN rules database for novel architecture of ABB IRB-1400[J]. Journal of the Franklin Institute,2020.[72]Tian Fang,Tan Han,Cheng Zhang,Ya Juan Yao. Research and Construction of the Online Pesticide Information Center and Discovery Platform Based on Web Crawler[J]. Procedia Computer Science,2020,166.[73]Dinusha Vatsalan,Peter Christen,Erhard Rahm. Incremental clustering techniques for multi-party Privacy-Preserving Record Linkage[J]. Data & Knowledge Engineering,2020.[74]Ying Xin Liu,Xi Yuan Li. Design and Implementation of a Business Platform System Based on Java[J]. Procedia Computer Science,2020,166.[75]Akhilesh Kumar Bajpai,Sravanthi Davuluri,Kriti Tiwary,Sithalechumi Narayanan,Sailaja Oguru,Kavyashree Basavaraju,Deena Dayalan,Kavitha Thirumurugan,Kshitish K. Acharya. Systematic comparison of the protein-protein interaction databases from a user's perspective[J]. Journal of Biomedical Informatics,2020,103.[76]P. Raveendra,V. Siva Reddy,G.V. Subbaiah. Vision based weed recognition using LabVIEW environment for agricultural applications[J]. Materials Today: Proceedings,2020,23(Pt 3).[77]Christine Rosati,Emily Bakinowski. Preparing for the Implementation of an Agnis Enabled Data Reporting System and Comprehensive Research Level Data Repository for All Cellular Therapy Patients[J]. Biology of Blood and Marrow Transplantation,2020,26(3).[78]Zeiser Felipe André,da Costa Cristiano André,Zonta Tiago,Marques Nuno M C,Roehe Adriana Vial,Moreno Marcelo,da Rosa Righi Rodrigo. Segmentation of Masses on Mammograms Using Data Augmentation and Deep Learning.[J]. Journal of digital imaging,2020.[79]Dhaked Devendra K,Guasch Laura,Nicklaus Marc C. Tautomer Database: A Comprehensive Resource for Tautomerism Analyses.[J]. Journal of chemical information and modeling,2020,60(3).[80]Pian Cong,Zhang Guangle,Gao Libin,Fan Xiaodan,Li Fei. miR+Pathway: the integration and visualization of miRNA and KEGG pathways.[J]. Briefings in bioinformatics,2020,21(2).数据库英文参考文献三:[81]Marcello W. M. Ribeiro,Alexandre A. B. Lima,Daniel Oliveira. OLAP parallel query processing in clouds with C‐ParGRES[J]. Concurrency and Computation: Practice and Experience,2020,32(7).[82]Li Gao,Peng Lin,Peng Chen,Rui‐Zhi Gao,Hong Yang,Yun He,Jia‐Bo Chen,Yi ‐Ge Luo,Qiong‐Qian Xu,Song‐Wu Liang,Jin‐Han Gu,Zhi‐Guang Huang,Yi‐Wu Dang,Gang Chen. A novel risk signature that combines 10 long noncoding RNAs to predict neuroblastoma prognosis[J]. Journal of Cellular Physiology,2020,235(4).[83]Julia Krzykalla,Axel Benner,Annette Kopp‐Schneider. Exploratory identification of predictive biomarkers in randomized trials with normal endpoints[J]. Statistics in Medicine,2020,39(7).[84]Jianye Ching,Kok-Kwang Phoon. Measuring Similarity between Site-Specific Data and Records from Other Sites[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering,2020,6(2).[85]Anne Kelly Knowles,Justus Hillebrand,Paul B. Jaskot,Anika Walke. Integrative, Interdisciplinary Database Design for the Spatial Humanities: the Case of the Holocaust Ghettos Project[J]. International Journal of Humanities and Arts Computing,2020,14(1-2).[86]Sheng-Feng Sung,Pei-Ju Lee,Cheng-Yang Hsieh,Wan-Lun Zheng. Medication Use and the Risk of Newly Diagnosed Diabetes in Patients with Epilepsy: A Data Mining Application on a Healthcare Database[J]. Journal of Organizational and End User Computing (JOEUC),2020,32(2).[87]Rashkovits Rami,Lavy Ilana. Students' Difficulties in Identifying the Use of Ternary Relationships in Data Modeling[J]. International Journal of Information and Communication Technology Education (IJICTE,2020,16(2).[88]Yusuf Akhtar,Dipti Prasad Mukherjee. Context-based ensemble classification for the detection of architectural distortion in a digitised mammogram[J]. IET Image Processing,2020,14(4).[89]Gurpreet Kaur,Sukhwinder Singh,Renu Vig. Medical fusion framework using discrete fractional wavelets and non-subsampled directional filter banks[J]. IET Image Processing,2020,14(4).[90]Qian Liu,Bo Jiang,Jia-lei Zhang,Peng Gao,Zhi-jian Xia. Semi-supervised uncorrelated dictionary learning for colour face recognition[J]. IET Computer Vision,2020,14(3).[91]Yipo Huang,Leida Li,Yu Zhou,Bo Hu. No-reference quality assessment for live broadcasting videos in temporal and spatial domains[J]. IET Image Processing,2020,14(4).[92]Panetta Karen,Wan Qianwen,Agaian Sos,Rajeev Srijith,Kamath Shreyas,Rajendran Rahul,Rao Shishir Paramathma,Kaszowska Aleksandra,Taylor Holly A,Samani Arash,Yuan Xin. A Comprehensive Database for Benchmarking Imaging Systems.[J]. IEEE transactions on pattern analysis and machine intelligence,2020,42(3).[93]Rahnev Dobromir,Desender Kobe,Lee Alan L F,Adler William T,Aguilar-Lleyda David,Akdo?an Ba?ak,Arbuzova Polina,Atlas Lauren Y,Balc? Fuat,Bang Ji Won,Bègue Indrit,Birney Damian P,Brady Timothy F,Calder-Travis Joshua,Chetverikov Andrey,Clark Torin K,Davranche Karen,Denison Rachel N,Dildine Troy C,Double Kit S,Duyan Yaln A,Faivre Nathan,Fallow Kaitlyn,Filevich Elisa,Gajdos Thibault,Gallagher Regan M,de Gardelle Vincent,Gherman Sabina,Haddara Nadia,Hainguerlot Marine,Hsu Tzu-Yu,Hu Xiao,Iturrate I?aki,Jaquiery Matt,Kantner Justin,Koculak Marcin,Konishi Mahiko,Ko? Christina,Kvam Peter D,Kwok Sze Chai,Lebreton Ma?l,Lempert Karolina M,Ming Lo Chien,Luo Liang,Maniscalco Brian,Martin Antonio,Massoni Sébastien,Matthews Julian,Mazancieux Audrey,Merfeld Daniel M,O'Hora Denis,Palser Eleanor R,Paulewicz Borys?aw,Pereira Michael,Peters Caroline,Philiastides Marios G,Pfuhl Gerit,Prieto Fernanda,Rausch Manuel,Recht Samuel,Reyes Gabriel,Rouault Marion,Sackur Jér?me,Sadeghi Saeedeh,Samaha Jason,Seow Tricia X F,Shekhar Medha,Sherman Maxine T,Siedlecka Marta,Skóra Zuzanna,Song Chen,Soto David,Sun Sai,van Boxtel Jeroen J A,Wang Shuo,Weidemann Christoph T,Weindel Gabriel,WierzchońMicha?,Xu Xinming,Ye Qun,Yeon Jiwon,Zou Futing,Zylberberg Ariel. The Confidence Database.[J]. Nature human behaviour,2020,4(3).[94]Taipalus Toni. The Effects of Database Complexity on SQL Query Formulation[J]. Journal of Systems and Software,2020(prepublish).[95]. Information Technology; Investigators from Deakin University Target Information Technology (Conjunctive query pattern structures: A relational database model for Formal Concept Analysis)[J]. Computer Technology Journal,2020.[96]. Machine Learning; Findings from Rensselaer Polytechnic Institute Broaden Understanding of Machine Learning (Self Healing Databases for Predictive Risk Analytics In Safety-critical Systems)[J]. Computer Technology Journal,2020.[97]. Science - Library Science; Investigators from Cumhuriyet University Release New Data on Library Science (Scholarly databases under scrutiny)[J]. Computer Technology Journal,2020.[98]. Information Technology; Investigators from Faculty of Computer Science and Engineering Release New Data on Information Technology (FGSA for optimal quality of service based transaction in real-time database systems under different workload condition)[J]. Computer Technology Journal,2020.[99]Muhammad Aqib Javed,M.A. Naveed,Azam Hussain,S. Hussain. Integrated data acquisition, storage and retrieval for glass spherical tokamak (GLAST)[J]. Fusion Engineering and Design,2020,152.[100]Vinay M.S.,Jayant R. Haritsa. Operator implementation of Result Set Dependent KWS scoring functions[J]. Information Systems,2020,89.[101]. Capital One Services LLC; Patent Issued for Computer-Based Systems Configured For Managing Authentication Challenge Questions In A Database And Methods Of Use (USPTO 10,572,653)[J]. Journal of Robotics & Machine Learning,2020.[102]Ikawa Fusao,Michihata Nobuaki. In Reply to Letter to the Editor Regarding "Treatment Risk for Elderly Patients with Unruptured Cerebral Aneurysm from a Nationwide Database in Japan".[J]. World neurosurgery,2020,135.[103]Chen Wei,You Chao. Letter to the Editor Regarding "Treatment Risk for Elderly Patients with Unruptured Cerebral Aneurysm from a Nationwide Database in Japan".[J]. World neurosurgery,2020,135.[104]Zhitao Xiao,Lei Pei,Lei Geng,Ying Sun,Fang Zhang,Jun Wu. Surface Parameter Measurement of Braided Composite Preform Based on Faster R-CNN[J]. Fibers and Polymers,2020,21(3).[105]Xiaoyu Cui,Ruifan Cai,Xiangjun Tang,Zhigang Deng,Xiaogang Jin. Sketch‐based shape‐constrained fireworks simulation in head‐mounted virtual reality[J]. Computer Animation and Virtual Worlds,2020,31(2).[106]Klaus B?hm,Tibor Kubjatko,Daniel Paula,Hans-Georg Schweiger. New developments on EDR (Event Data Recorder) for automated vehicles[J]. Open Engineering,2020,10(1).[107]Ming Li,Ruizhi Chen,Xuan Liao,Bingxuan Guo,Weilong Zhang,Ge Guo. A Precise Indoor Visual Positioning Approach Using a Built Image Feature Database and Single User Image from Smartphone Cameras[J]. Remote Sensing,2020,12(5).[108]Matthew Grewe,Phillip Sexton,David Dellenbach. Use Risk‐Based Asset Prioritization to Develop Accurate Capital Budgets[J]. Opflow,2020,46(3).[109]Jose R. Salvador,D. Mu?oz de la Pe?a,D.R. Ramirez,T. Alamo. Predictive control of a water distribution system based on process historian data[J]. Optimal Control Applications and Methods,2020,41(2).[110]Esmaeil Nourani,Vahideh Reshadat. Association extraction from biomedicalliterature based on representation and transfer learning[J]. Journal of Theoretical Biology,2020,488.[111]Ikram Saima,Ahmad Jamshaid,Durdagi Serdar. Screening of FDA approved drugs for finding potential inhibitors against Granzyme B as a potent drug-repurposing target.[J]. Journal of molecular graphics & modelling,2020,95.[112]Keiron O’Shea,Biswapriya B. Misra. Software tools, databases and resources in metabolomics: updates from 2018 to 2019[J]. Metabolomics,2020,16(D1).[113]. Information Technology; Researchers from Virginia Polytechnic Institute and State University (Virginia Tech) Describe Findings in Information Technology (A database for global soil health assessment)[J]. Energy & Ecology,2020.[114]Moosa Johra Muhammad,Guan Shenheng,Moran Michael F,Ma Bin. Repeat-Preserving Decoy Database for False Discovery Rate Estimation in Peptide Identification.[J]. Journal of proteome research,2020,19(3).[115]Huttunen Janne M J,K?rkk?inen Leo,Honkala Mikko,Lindholm Harri. Deep learning for prediction of cardiac indices from photoplethysmographic waveform: A virtual database approach.[J]. International journal for numerical methods in biomedical engineering,2020,36(3).[116]Kunxia Wang,Guoxin Su,Li Liu,Shu Wang. Wavelet packet analysis for speaker-independent emotion recognition[J]. Neurocomputing,2020.[117]Fusao Ikawa,Nobuaki Michihata. In Reply to Letter to the Editor Regarding “Treatment Risk for Elderly Patients with Unruptured Cerebral Aneurysm from a Nationwide Database in Japan”[J]. World Neurosurgery,2020,135.[118]Wei Chen,Chao You. Letter to the Editor Regarding “Treatment Risk for Elderly Patients with Unruptured Cerebral Aneurysm from a Nationwide Database in Japan”[J]. World Neurosurgery,2020,135.[119]Lindsey A. Parsons,Jonathan A. Jenks,Andrew J. Gregory. Accuracy Assessment of National Land Cover Database Shrubland Products on the Sagebrush Steppe Fringe[J]. Rangeland Ecology & Management,2020,73(2).[120]Jing Hua,Yilu Xu,Jianjun Tang,Jizhong Liu,Jihao Zhang. ECG heartbeat classification in compressive domain for wearable devices[J]. Journal of Systems Architecture,2020,104.以上就是关于数据库英文参考文献的全部内容,希望看完后对你有所启发。
第47卷第4期Vol.47No.4计算机工程Computer Engineering2021年4月April 2021图神经网络综述王健宗,孔令炜,黄章成,肖京(平安科技(深圳)有限公司联邦学习技术部,广东深圳518063)摘要:随着互联网和计算机信息技术的不断发展,图神经网络已成为人工智能和大数据处理领域的重要研究方向。
图神经网络可对相邻节点间的信息进行有效传播和聚合,并将深度学习理念应用于非欧几里德空间的数据处理中。
简述图计算、图数据库、知识图谱、图神经网络等图结构的相关研究进展,从频域和空间域角度分析与比较基于不同信息聚合方式的图神经网络结构,重点讨论图神经网络与深度学习技术相结合的研究领域,总结归纳图神经网络在动作检测、图系统、文本和图像处理任务中的具体应用,并对图神经网络未来的发展方向进行展望。
关键词:图神经网络;图结构;图计算;深度学习;频域;空间域开放科学(资源服务)标志码(OSID ):中文引用格式:王健宗,孔令炜,黄章成,等.图神经网络综述[J ].计算机工程,2021,47(4):1-12.英文引用格式:WANG Jianzong ,KONG Lingwei ,HUANG Zhangcheng ,et al.Survey of graph neural network [J ].Computer Engineering ,2021,47(4):1-12.Survey of Graph Neural NetworkWANG Jianzong ,KONG Lingwei ,HUANG Zhangcheng ,XIAO Jing(Federated Learning Technology Department ,Ping An Technology (Shenzhen )Co.,Ltd.,Shenzhen ,Guangdong 518063,China )【Abstract 】With the continuous development of the computer and Internet technologies ,graph neural network has become an important research area in artificial intelligence and big data.Graph neural network can effectively transmit and aggregate information between neighboring nodes ,and applies the concept of deep learning to the data processing of non-Euclidean space.This paper briefly introduces the research progress of graph computing ,graph database ,knowledge graph ,graph neural network and other graph-based techniques.It also analyses and compares graph neural network structures based on different information aggregation modes in the spectral and spatial domain.Then the paper discusses research fields that combine graph neural network with deep learning ,and summarizes the specific applications of graph neural networks in action detection ,graph systems ,text and image processing tasks.Finally ,it prospects the future development research directions of graph neural networks.【Key words 】graph neural network ;graph structure ;graph computing ;deep learning ;spectral domain ;spatial domain DOI :10.19678/j.issn.1000-3428.00583820概述近年来,深度学习技术逐渐成为人工智能领域的研究热点和主流发展方向,主要应用于高维特征规则分布的非欧几里德数据处理中,并且在图像处理、语音识别和语义理解[1]等领域取得了显著成果。
收稿日期:2014-09-30 修回日期:2014-12-02基金项目:教育部人文社会科学研究青年基金项目 专利流氓型态与特征及其影响研究”(编号:13YJC630222);国家自然科学基金 基于专利布局战略与社会网络分析观点探讨影响专利价值的因素研究”(编号:71403191)作者简介:张克群(1980-),男,博士,副教授,研究方向:技术创新管理和技术策略管理;夏伟伟(1991-),男,硕士研究生,研究方向:技术创新管理;郝 娟(1990-),女,硕士研究生,研究方向:技术创新管理;张 曦(1981-),男,硕士,高级工程师,研究方向:专利竞争情报分析㊂专利价值的影响因素分析 专利布局战略观点*张克群1 夏伟伟1 郝 娟1 张 曦2(1.武汉大学经济与管理学院 武汉 430072;2.工业和信息化部电子知识产权咨询服务中心 北京 100040)摘 要 以专利诉讼作为专利价值的代理变量,以专利权利要求数㊁先前技艺数作为自变量,同时引入专利家族深度和专利家族强度作为反映企业专利布局战略的代理指标,结合7146件Thomson Innovation 数据库收录的截至2011年5月31日美国授权的LED 专利文献信息,采用Logistic 回归方法探索专利价值的影响因素㊂实证结果显示:专利权利要求数㊁先前技艺数㊁专利家族深度和专利家族强度对专利价值有显著的正向影响㊂关键词 专利价值 专利布局 企业战略 专利诉讼 专利家族中图分类号 F273.1 文献标识码 A 文章编号 1002-1965(2015)01-0072-05DOI 10.3969/j.issn.1002-1965.2015.01.014The Influencing Factors of Patent Value :A Patent Deployment Strategy ViewZhang Kequn 1 Xia Weiwei 1 Hao Juan 1 Zhang Xi 2(1.School of Economics and Management ,Wuhan University ,Wuhan 430072;2.Intellectual Property Center ,Ministry of Industry and Information Technology ,Beijing 100040)Abstract Patent litigation is utilized as the proxy variable of patent value ,and number of patent claims and number of backward citations are defined as the independent variables ,combining with patent family depth and earn plan ration representative for company 's patent de⁃ployment strategy.With 7146pieces of USA -authorized LED patent literature information collected from Thomson Innovation database up to May 31st ,2011,a logistic regression model is built to explore the influencing factors of patent value.The empirical results demonstrate that patent value has significant positive relationships with number of patent claims ,number of backward citations ,patent family depth and earn plan ratio.Key words patent value patent deployment enterprise strategy patent litigation patent family0 引 言LED 是一种能将电能转换为光能的半导体,其技术领域广泛,涉及衬底㊁外延㊁芯片㊁封装㊁应用等部分㊂LED 企业的主要竞争力体现在技术水平上,因此申请专利是各企业保护自身产品的有效机制㊂专利作为企业的一项无形资产,不仅是一种能将竞争对手排除在自身所属技术领域之外的隔绝机制,更是一种能够增强企业竞争力㊁提升企业价值的战略武器㊂专利诉讼作为企业重要的战略工具,其实施与否在很大程度上受到专利价值的影响[1]㊂当侵权行为发生时,有两条途径可供专利权人选择:一是达成庭外和解,二是通过专利诉讼解决侵权问题㊂与达成庭外和解相比,提起诉讼的成本很高,其中不仅包括巨额的法律费用,而且一般来说,法院审判历时较长,这无疑会分散企业的人力㊁物力㊁财力,并且带来一系列不确定性,从而对企业的经营产生一定程度的负面影响㊂所以,如果专利不能为企业带来足够价值,企业不会选择诉讼,专利诉讼就可以成为评判专利是否具有价值的标准[2]㊂专利权利人和侵权者在诉讼前会对结果进行预期,二者对胜诉概率有不同的期望㊂在专利权人获胜第34卷 第1期2015年1月 情 报 杂 志JOURNAL OF INTELLIGENCE Vol.34 No.1Jan. 2015的情况下,其从该专利中获得利润和损害赔偿费;若专利权人败诉,该专利发明就不再只有一个企业使用,因此企业利润会降低,且专利权利人要支付自身和侵权人的法律费用㊂所以,企业选择诉讼的原因可能是诉讼的收益大于诉讼的成本㊂对于侵权者来说,其也会进行类似的考量㊂由此可见,专利诉讼行为的发生取决于双方当事人通过该专利所获得的利润和双方当事人对判决结果的不同预期㊂当双方当事人对判决结果的预期越趋于一致时,他们越倾向于达成和解[3]㊂利润与专利价值密切相关,一个具有价值的专利能给企业带来更高利润㊂因此,专利价值对于实施专利诉讼行为的动机具有正向影响[1,4]㊂专利价值越高,专利侵权的概率越高,同时双方当事人选择通过诉讼而不是达成和解的概率也越高㊂另外,专利诉讼对专利价值也有反向作用关系,专利诉讼的结果影响了专利价值,专利诉讼败诉会使得该专利前景最小化专利价值,而当专利可以维护企业市场份额并胜诉时,其价值就会大幅上升[5]㊂因此,Allison et al.认为有足够强烈的相信涉讼专利能够作为专利价值的代理变量[2]㊂另外在实务上,凡是能够被专利权人挑选出来参与诉讼的专利,通常在其心目中一定具有相当的分量,同时能够经过司法考验的专利,相较于一般的专利必定更具备在专利有效性方面的稳定性,当然也就是具有更高的为专利权人创造价值的潜力㊂随着商业活动全球化的发展,企业试图利用专利法律价值优势,通过基于法律的商业策略来防止竞争对手进入市场,所以从法律视角上,专利诉讼就成为一种评估专利价值的方式[6],先前学者也通常将专利是否涉讼视为专利是否具有价值的代理变量㊂在以往的文献中,专利权利要求数和先前技艺数通常被当作衡量专利价值的标准,专利权利要求数和先前技艺数越高,专利价值也就越大[2,7]㊂但是除此之外,专利的价值还体现在企业战略上㊂专利家族是一件专利在不同国家的申请集合,也是其后续衍生专利的申请集合,反映了企业对某市场区域和专利的重视程度㊂专利被引证数代表了该专利对后续创新者和竞争者的吸引程度,在一定意义上反映了专利的市场价值㊂如果一项专利的被引证次数越多,则说明该专利所蕴含的技术知识是该技术领域的基础知识或核心知识,能够对后续创新产生积极影响[8]㊂专利被引证数越高意味着该专利的吸引力越大,市场价值越高㊂由此,本文根据专利家族和专利被引证数引申出了两个变量 专利家族深度和专利家族强度,分别反映企业对市场的重视程度和企业战略的正确程度㊂首先,本文对已有文献进行回顾并提出相关假设;其次,本文对所选取的样本进行了描述性统计分析,使用T检验比较诉讼专利和未诉讼专利的区别,初步验证假设㊂最后,本文对样本的诉讼概率进行了回归分析以进一步验证假设㊂最后提出建议以提供企业进行有效的专利管理㊂1 文献探讨与研究假说 1.1 价值专利与涉讼专利 在价值专利与涉讼专利的关联方面,过去已有许多学者发现这两者之间的确具有密切的相关性㊂Allison et al.进一步主张价值专利与涉讼专利之间的关系是相当强固且具有双向性的[2]㊂这是因为一般而言,涉讼专利往往比其他非涉讼专利要来得更有价值;反之,价值专利也要比其他专利更容易被用来进行诉讼㊂为什么涉讼专利往往比其他非涉讼专利要来得更有价值?从实务的角度而言,诉讼的成本绝对远远高于仅仅获得专利的成本,如果涉讼并不能够表明该专利是有价值的,那么这意味着专利权人在使用专利主张权利的机制上是不合理的㊂再者,也正是因为专利诉讼是极其昂贵,对于一个理性的专利权人而言,除非他预期能够从中获得的回报率至少有几百万元美金,否则并不会轻易提起诉讼㊂此外,Lanjouw and Schankerman也认为大部份价值专利都很有可能成为涉讼专利[1]㊂当然,价值的专利并不一定必须非要藉由诉讼的手段才能够为专利权人创造私有价值,还可以透过其他授权或者让与等方式来产生获利,甚至这些方式有可能会比藉由诉讼手段获得更高的利益,因此必定也存在一些非涉讼专利仍然能够为专利权人创造私有价值㊂也就是说,涉讼专利是价值专利的子集合㊂然而专利价值并不是正态分布,而是呈现高度不对称分布,只有少数约10%的专利能够产生80%~ 90%以上的价值㊂大多数专利为专利权人带来的价值是非常小的,甚至不足以支付其专利本身的维护费用㊂因此,本研究也认为涉讼专利是价值专利中最具代表的子集合㊂ 1.2 专利价值决定因素 为了识别出专利价值的决定因素并找出最具价值的专利,先前学者已经开发了多种模型,主要是将自变量划分为四大类别,包括专利特征(向前引证数㊁向后引证数㊁IPC分类数和发明者人数等)㊁专利所有权(联合申请㊁跨界申请㊁专利组合规模㊁市场规模等)㊁内部信息(专利申请动机和发明背景)㊁申请策略(专利优先权数和权利要求数等)[9]㊂从这些变量中,可以提取诸多有价值的专利信息,比如技术重要性10㊁现存技术背景㊁创新与基础研究间的联系[11]㊁技术范围[12]㊁研究努力程度[13]㊁法律保护范围等[14]㊂㊃37㊃ 第1期 张克群,等:专利价值的影响因素分析 专利布局战略观点同样,专利价值的指标可以分为两类:基于市场的指标和基于专利的指标[9]㊂最著名的基于市场的专利价值指标Tobin’s q和股票市值(企业层面),以及赔偿款㊁发明者和管理者对专利价值的评估和收购活动(专利层面)㊂相比而言,基于专利的专利价值指标则更加多元化,可以分为五类:技术重要性(专利向前引证)㊁地理重要性(专利家族)㊁长度(续期)㊁授权决定(授权专利)和法律争端(诉讼概率㊁反对概率)㊂经过检验,这五类专利价值指标与专利价值正相关[9]㊂基于对专利价值指标和专利价值决定因素的不同选择,学者们做了各种实证研究来预测专利的潜在价值㊂先前研究都一致地发现专利向前引证数㊁专利家族㊁续期㊁法律争端和专利申请策略指标与专利价值正相关,然而,其他的专利价值决定因素与专利价值的关系是模糊的[9]㊂这种现象需要我们从新的视角进一步研究专利价值的决定因素㊂ 1.3 专利权利要求数与专利价值 在知识经济时代,专利法律问题显得尤为重要㊂为了衡量专利价值,可以从专利文件中获取相应指标以进行分析㊂其中,专利权利要求㊁先前技艺数㊁专利被引证数以及专利家族数是最基本的专利指标㊂Allison et al.发现有价值的专利包含了更多的权利要求㊁被引证数和先前技艺[2]㊂Nerkar et al.认为专利包含的权利要求数越多,知识产权的价值也越大[15]㊂专利权利要求是以专利申请书为依据,说明专利技术特征,清楚并简要地写出要求专利保护范围,并在一定条件下提出的一项或几项专利权项㊂其作用在于确定申请人请求的专利保护范围和判定他人是否侵权㊂对于专利权人来说,越多的专利权利要求意味着越广泛的专利保护范围,专利保护范围最大化既有利于对专利权人的保护又有利于鼓励发明创造,但可能会妨碍技术的传播和应用,因而会引发更多的侵权案件㊂Lanjouw and Schankerman(2001)发现权利要求数上升10%,意味着样本中专利诉讼数量会增加1. 4%[1]㊂因此,专利权利要求数越多,专利保护范围越广,专利也就越有价值㊂因此,本研究提出假说1:假说1:专利权利要求数对专利价值有正向影响㊂ 1.4 先前技艺数与专利价值 先前技艺是对已存在的相关专利文献和非专利文献的引用,体现了该专利的技术基础[16]㊂Lanjouw and Schankerman研究发现,先前技艺数与权利要求数之比每增加1,专利诉讼概率就提高22%[1]㊂Allison et al.的研究结论显示,诉讼专利比未诉讼专利引用了更多的先前技艺,而且也更可能被其他人引用[2]㊂一般来说,专利引证方式越复杂,揭示的背景技术越充分㊂因此,先前技艺越多,代表该专利是在那些已有技术的基础上进一步研发或改进的专利,也表明该专利的技术实在,针对性强,其专利价值越大,专利诉讼的概率越大㊂同时,先前技艺显示了相关企业在该技术领域的活动积极性,技术领域的拥挤也可能导致侵权和诉讼行为㊂另外,通过研究该专利提供的现有技术,其他企业可能重新组合现有技术而模仿该发明,从而可能导致侵权和诉讼行为㊂因此,本研究提出假说2:假说2:先前技艺数对专利价值有正向影响㊂ 1.5 专利布局战略与专利价值 除了专利本身的特征外,企业在专利上的战略部署也能反映专利价值,而专利家族是反映企业专利战略的基本指标[17]㊂专利家族是一件专利在不同国家申请的集合和其后续衍生专利不同申请的集合㊂专利家族意味着企业对技术和市场的重视程度,企业可以在几个重要的国家申请专利来获得足够保护,以防止竞争对手通过模仿其技术削弱竞争优势和市场份额㊂当企业申请更多的专利家族时,也要相应地支付更多费用㊂所以,除非该项专利技术能够为企业带来更多的盈利,否则企业不会投资去扩大专利家族[9]㊂故可以从专利家族布局中预测企业的潜在销售市场,因此专利家族数量代表了该技术和未来市场的重要性[18]㊂专利被引证数代表了该专利对后续创新者和竞争者的吸引程度,其不仅是衡量知识溢出效应的指标,也是衡量企业市场价值的指标㊂如果一项专利具有更多的被引证数,则说明该专利的独特技术更有能力影响后续创新并吸引更多竞争者,在企业外部享有更高的声誉㊂而竞争源于销售市场,所以专利的被引证数越多,意味着该专利越有市场价值㊂因此专利被引证数提供了检验该项技术是否重要以及是否能够影响和吸引竞争者的重要指标[18]㊂从专利家族和专利被引证数中,我们可以引申出两个指标来衡量企业的战略部署㊂一是专利家族深度,其是专利家族数与专利家族申请国数之比,代表每个专利家族国家平均所拥有的专利家族数量,反映了企业对该区域市场的重视程度㊂专利家族深度越深,代表企业越重视该区域的市场,说明企业在该区域的投资能够获得高额回报,该专利是有很高价值的㊂因此,本研究提出假说3:假说3:专利家族深度对专利价值有正向影响㊂专利家族强度,表示企业基于专利家族申请战略而使得专利能够被后续创新者和竞争者引证的程度㊂专利家族强度越大,意味着企业将资源合理投入到了具有较高竞争力的专利中,因而企业的战略越正确,该专利越有价值㊂因此,本研究提出假说4:假说4:专利家族强度对专利价值有正向影响㊂㊃47㊃ 情 报 杂 志 第34卷2 研究方法 2.1 样本选取与数据收集 本文的专利数据来源于Thomson Innovation数据库收录的截至2011年5月31日美国授权专利文献信息㊂检索的技术领域包括外延生长㊁LED芯片制作以及LED芯片封装技术,不包括终端产品应用技术㊂经过初步检索共检得40330件专利,人工筛选后属于本次分析范围内技术主题专利共计7164件㊂为了找出符合LED行业的技术领域,本研究组织了深度访谈,我们分别访谈了十位在LED行业参与过项目研发且具有超过十年研发经验的高级专家㊂通过专家访谈,我们确定了专利检索的关键词(见表1),得到了本次研究所需的数据㊂本研究采用了Westlaw专利诉讼数据库根据样本中的专利编号来识别每笔专利是否涉讼㊂最终纳入分析的样本包含未诉讼专利7100笔,诉讼专利64笔㊂ 2.2 变量操作型定义2.2.1 因变量 诉讼/未诉讼专利:因变量是分类变量,当专利发生过诉讼时,该变量取值为1;当专利未曾发生诉讼时,该变量取值为0㊂根据先前文献,本研究使用 诉讼专利”作为 价值专利”的代理变量㊂数据来源于Westlaw,该数据库可以提供各国的法律资料,通过输入样本的专利编号可以确保本研究所取样本的专利是否涉讼㊂2.2.2 自变量 专利权利要求数:独立权利要求数和非独立权利要求数之和㊂该变量是离散变量,为大于或等于1的整数㊂数据来源于美国专利和商标局USPTO提供的Patent Full-Text and Image数据库,该数据库包括了所有美国授权专利的申请书文案,专利权利要求数可通过在该数据库中搜索专利编号获得㊂先前技艺数:专利文献数和非专利文献数之和,其中专利文献数包括美国专利文献数和外国专利文献数㊂该变量是离散变量,为大于或等于0的整数㊂数据来源于USPTO提供的Patent Full-Text and Image 数据库,该数据可以通过提供样本的专利编号搜索获得㊂专利家族深度:专利家族数与专利家族申请国数之比㊂该变量是大于或等于1的连续变量,数据来源于欧洲专利局网站esp@cenet提供的国际专利文献中心INPADOC专利数据库,该数据库可以提供世界范围的专利家族信息㊂专利家族数和专利家族申请国数可以通过在该数据库中提供样本的专利编号搜索获得㊂专利家族强度:专利被引证数与专利家族数之比㊂该变量是大于或等于0的连续变量,数据来源于USP⁃TO提供的Patent Full-Text and Image数据库(通过搜索专利编号以获得专利被引证数)和欧洲专利局网站esp@cenet提供的INPADOC专利数据库(通过搜索专利编号以获得专利家族数)㊂表1 专利检索关键词技术领域检索关键词外延LED㊁light-emitting diode㊁light emitting diode㊁Solid statelight㊁epitaxy㊁substrate㊁GaN㊁Nitride㊁Group III㊁MBE㊁LPE㊁HVPE㊁MOCVD㊁MOVPE㊁OMVPE㊁Metal OrganicChemical Vapor Deposition芯片LED㊁light-emitting diode㊁light emitting diode㊁Solid statelight㊁chip㊁electrode㊁Flip chip㊁Flip-chip㊁vertical electrode㊁vertical structure surface rough㊁Lithography㊁passivate㊁bond⁃ing㊁ITO㊁transparent conductive oxide layer㊁light reflectinglayer㊁reflector㊁annealing㊁sputtering㊁LED array㊁PBG㊁Photon⁃ic Band-Gap㊁photo crystal㊁Imprint Nano㊁wet etching㊁RIE㊁Reactive Ion Etching㊁IBE㊁Ion beam etch㊁ICP㊁inductivelycoupled plasma㊁laser scribe㊁diamond scribe㊁diamond dicing 封装LED㊁light-emitting diode㊁light emitting diode㊁Solid statelight㊁package㊁encapsulate㊁piranha㊁SMD㊁SMT㊁SurfaceMounted Device㊁Surface Mount Technology㊁array㊁heat sink㊁Phospho㊁Fluorescent Powder㊁epoxy resin㊁glue㊁holder㊁wire㊁coat㊁dispens㊁Die bond㊁wire bond 2.3 实证结果与分析 表2显示了模型中所有变量的描述性统计分析,包括最小值㊁最大值㊁均值和标准差㊂数据显示除了样本专利的先前技艺数标准差较大,为37.5089外,其他变量的标准差都较小㊂说明从整体上看,各变量的分布比较集中㊂表2 描述性统计量 变量最小值最大值均值标准差诉讼/未诉讼专利010.00890.0941专利权利要求数122816.867513.8459先前技艺数074720.215437.5089专利家族深度0.5531.82902.3972专利家族强度02413.796411.2474 本研究使用相关分析㊁T检验㊁Logistic回归分析方法充分地应证所提出的假设㊂相关分析:表3分析了该模型所有变量的相关关系㊂由表3可知,专利权利要求数㊁先前技艺数㊁专利家族深度和专利家族强度与专利价值在1%的显著性水平上呈正相关关系,这说明模型中的所有自变量可能对专利价值有正向影响㊂表3 相关系数矩阵 变量1.2.3.4.诉讼/未诉讼专利1专利权利要求数0.0455**1先前技艺数0.0457**0.1894**1专利家族深度0.0600**0.1833**0.3064**1专利家族强度0.0319**0.0348**-0.0628**-0.0793** T检验:本文对诉讼专利样本和未诉讼专利样本的四个变量进行了T检验,结果如表4所示㊂四个变量在两组样本中均存在显著性差异,其P值都小于㊃57㊃ 第1期 张克群,等:专利价值的影响因素分析 专利布局战略观点0.01㊂诉讼专利中,专利权利要求数㊁先前技艺数㊁专利家族深度和专利家族强度的均值都显著高于未诉讼专利,这与之前的假设是一致的㊂专利权利要求数㊁先前技艺数通常是衡量专利价值的标准,而专利家族深度和专利家族强度反映了企业的战略,进而体现了专利价值㊂因为诉讼专利更具价值,所以其在这四个变量上的均值更高㊂表4 诉讼专利与未诉讼专利的特征变量诉讼专利未诉讼专利t值p值专利权利要求数23.5016.81-3.85310.0001先前技艺数38.2720.05-3.87090.0001专利家族深度3.34281.8153-5.08330.0000专利家族强度7.57563.7623-2.70140.0069 Logistic回归分析:本文以专利诉讼是否涉讼为因变量,以专利权利要求数㊁先前技艺数㊁专利家族深度和专利家族强度为自变量进行Logistic回归分析,回归结果如表5所示㊂回归结果支持了先前假设,所有自变量都对专利价值有显著的正向影响,其中专利家族深度和专利家族强度在1%的显著性水平上对专利价值产生正向影响,专利权利要求数和先前技艺数在5%的显著性水平上对专利价值产生正向影响㊂从各变量的系数和显著性水平可看出,专利家族深度和专利家族强度对专利价值的影响程度大于专利权利要求数和先前技艺数㊂表5 回归分析结果变量模型截距-5.299**专利权利要求数0.014*先前技艺数0.004*专利家族深度0.066**专利家族强度0.014**Log Likelihood-353.3196Prob>χ20.0001 注:Note:**p<0.01,*p<0.053 研究结论与建议本文根据Thomson Innovation数据库收录的截至2011年5月31日的美国授权专利文献信息,选取LED领域中的专利为样本,进行专利分析,其中未诉讼专利7100笔,诉讼专利64笔㊂通过对未诉讼专利和诉讼专利进行描述性统计分析,该两种专利在权利要求数㊁先前技艺数㊁专利家族深度和专利家族强度上有显著性差别㊂本文构建了回归模型,上述四个变量对专利价值有正向影响㊂企业可以根据本文研究结果评价专利价值㊁改进专利组合并采取相应应对措施㊂由于专利权利要求数和先前技艺数对专利价值有正向影响,本文建议企业在申请专利时,应该尽量具体化专利权利要求,增加专利权利要求数量,并尽可能多引用先前技艺,为所申请专利打好坚实的理论基础,提高专利价值㊂专利家族深度和专利家族强度是两个衡量企业战略的指标,本文研究表明这两个指标对专利价值也产生正向影响㊂专利家族深度表示企业对某区域市场的重视程度,此指标越大表明该市场能够给企业带来越高回报,因而该市场的地位在战略上对企业越重要㊂所以本文建议企业在能够占有较大市场份额并获得高额回报的区域申请专利及后续专利,以防止竞争对手进入该技术领域并挤占市场,最终提高专利价值㊂而专利家族强度表示企业的专利家族申请战略能够赢得后续创新者和竞争者追随的能力,该指标低则表明企业将过多资源投入到了具有较小竞争力的专利上,因此该专利对外部竞争者的吸引程度不够,专利价值较低㊂所以本文建议企业在申请专利时,要仔细考虑专利布局规划因素,包括该技术在目标市场的新颖程度㊁相关产品在目标市场的销售情况等,以此判断该专利能否在当地获得竞争者的追随,以提高专利价值㊂最后,对于竞争者来说,只有将具有价值的专利进行商业化推广,才能提升企业价值㊂所以,竞争者可以根据本模型评估专利价值以寻找潜在的目标专利,并与专利权人协商通过专利授权以获得专利使用权㊂而且,竞争者也可以通过分析双方的专利布局策略以寻求潜在的合作机会,以交互授权的方式实现资源互补式发展㊂参考文献[1] Lanjouw J O,Schankerman M.Characteristics of Patent Litiga⁃tion:A Window on Competition[J].The Rand Journal of Eco⁃nomics,2001,32(1):129-151.[2] Allison J R,Lemley M A,Moore K A,et al.Valuable Patents[J].Georgetown Law Journal,2004,92(3):435-480. [3] Cremers K.2004.Determinants of Patent litigation in Germany[EB/OL].Work Paper./sol3/papers.cfm?abstract_id=604467.[4] Priest G L,Klein B.The Selection of Disputes for Litigation[J].The Journal of Legal Studies,1984,13(1):1-56. [5] Gibbs A.Application of Multiple Known Determinants to Evalu⁃ate Legal[J].Commercial and Technical Value of a Patent,2005.[6] Sun C C.A Conceptual Framework for R&D Strategic AllianceAssessment for Taiwan's Biotechnology Industry[J].Quality& Quantity,2014,48:259-279.[7] Allison J R,Lemley M A,Walker J.Extreme Value or Trolls onTop?The Characteristics of the Most Litigated Patents[J].Uni⁃versity of Pennsylvania Law Review,2009,158(1):101-137.[8] Trajtenberg M.A Penny for Your Quotes:Patent Citations and(下转第82页)㊃67㊃ 情 报 杂 志 第34卷。
——当代美国史学的曲折反映程群(华东理工大学哲学与政治学院讲师,上海 200237)摘要:史学“碎化”是美国史学重建中面临的一大难题。
史学“综合”几乎是大多数美国史学家的心愿。
但也有史学家提出,关键并不在于史学“综合”,而在于重建史学的宏大叙事。
关于宏大叙事的各种解读有助于我们理解史学中的“宏大叙事”。
美国史学中的宏大叙事在不同的历史阶段有着不同的曲折反映。
由于各种因素的影响,二战后的美国史学出现疏离宏大叙事的趋势。
史学家们惊叹宏大叙事的缺失,呼吁和设计宏大叙事的重建与复归。
当代美国史学宏大叙事的重建面临种种难题。
这些难题从理论上讲是由于宏观社会理论的缺失与后现代理论的瓦解作用造成的,这是当代西方史学乃至整个世界史学需要直面的问题。
而宏观社会理论的缺失、后现代理论的产生与宏大叙事的缺失一样都可以追溯到更深层的社会历史根源。
关于美国历史的宏大叙事的前景如何,只有将来的美国史学家能够回答。
关键词:宏大叙事;美国史学;缺失;重建Loss and Reconstruction of Grand Narrative?——In the Current American HistoriographyCHENG Qun(Philosophy and Politics School, East China University of Science and Technology, Shanghai, China)Key Words: Grand Narrative American Historiography Loss ReconstructionAbstract:As fragmentation was a main problem for reconstruction of American historiography, most American historians appealed for the synthesis of history. But some historians considered that the resolution was not to do the synthesis but to reconstruct the grand narrative of history. Grand narrative in American historiography revealed itself differently on different historical stages. For the influence of various ingredients, American historiography after World War II tended to be alien from the grand narrative. So historians lamented the loss of grand narrative and gave a lot of designs of reconstruction of it. These designs confronted some problems, which theoretically resulted from the lack of grand social theory and the deconstruction of postmodernism, which like the loss of grand narrative have their social and historical roots. As for the future of the grand narrative in American historiography, it is waiting the future American historians to answer.——当代美国史学的曲折反映程群史学“碎化”是美国史学重建面临的一大难题,史学“综合”是大多数美国史学家的心愿。
扩展巴科斯范式(转⾃维基)https:///wiki/%E6%89%A9%E5%B1%95%E5%B7%B4%E7%A7%91%E6%96%AF%E8%8C%83%E5%BC%8F扩展巴科斯范式[]维基百科,⾃由的百科全书扩展巴科斯-瑙尔范式(EBNF, Extended Backus–Naur Form)是表达作为描述计算机和的正规⽅式的的(metalanguage)符号表⽰法。
它是基本(BNF)元语法符号表⽰法的⼀种扩展。
它最初由开发,最常⽤的 EBNF 变体由标准,特别是 ISO-14977 所定义。
⽬录[隐藏]基本[],如由即可视字符、数字、标点符号、空⽩字符等组成的的。
EBNF 定义了把各符号序列分别指派到的:digit excluding zero = "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;digit = "0" | digit excluding zero ;这个产⽣规则定义了在这个指派的左端的⾮终结符digit。
竖杠表⽰可供选择,⽽终结符被引号包围,最后跟着分号作为终⽌字符。
所以digit是⼀个 "0"或可以是 "1或2或3直到9的⼀个digit excluding zero"。
产⽣规则还可以包括由逗号分隔的⼀序列终结符或⾮终结符:twelve = "1" , "2" ;two hundred one = "2" , "0" , "1" ;three hundred twelve = "3" , twelve ;twelve thousand two hundred one = twelve , two hundred one ;可以省略或重复的表达式可以通过花括号 { ... } 表⽰:natural number = digit excluding zero , { digit } ;在这种情况下,字符串1, 2, ...,10,...,12345,... 都是正确的表达式。
人工智能是一门新兴的具有挑战力的学科。
自人工智能诞生以来,发展迅速,产生了许多分支。
诸如强化学习、模拟环境、智能硬件、机器学习等。
但是,在当前人工智能技术迅猛发展,为人们的生活带来许多便利。
下面是搜索整理的人工智能英文参考文献的分享,供大家借鉴参考。
人工智能英文参考文献一:[1]Lars Egevad,Peter Str?m,Kimmo Kartasalo,Henrik Olsson,Hemamali Samaratunga,Brett Delahunt,Martin Eklund. The utility of artificial intelligence in the assessment of prostate pathology[J]. Histopathology,2020,76(6).[2]Rudy van Belkom. The Impact of Artificial Intelligence on the Activities ofa Futurist[J]. World Futures Review,2020,12(2).[3]Reza Hafezi. How Artificial Intelligence Can Improve Understanding in Challenging Chaotic Environments[J]. World Futures Review,2020,12(2).[4]Alejandro Díaz-Domínguez. How Futures Studies and Foresight Could Address Ethical Dilemmas of Machine Learning and Artificial Intelligence[J]. World Futures Review,2020,12(2).[5]Russell T. Warne,Jared Z. Burton. Beliefs About Human Intelligence in a Sample of Teachers and Nonteachers[J]. Journal for the Education of the Gifted,2020,43(2).[6]Russell Belk,Mariam Humayun,Ahir Gopaldas. Artificial Life[J]. Journal of Macromarketing,2020,40(2).[7]Walter Kehl,Mike Jackson,Alessandro Fergnani. Natural Language Processing and Futures Studies[J]. World Futures Review,2020,12(2).[8]Anne Boysen. Mine the Gap: Augmenting Foresight Methodologies with Data Analytics[J]. World Futures Review,2020,12(2).[9]Marco Bevolo,Filiberto Amati. The Potential Role of AI in Anticipating Futures from a Design Process Perspective: From the Reflexive Description of “Design” to a Discussion of Influences by the Inclusion of AI in the Futures Research Process[J]. World Futures Review,2020,12(2).[10]Lan Xu,Paul Tu,Qian Tang,Dan Seli?teanu. Contract Design for Cloud Logistics (CL) Based on Blockchain Technology (BT)[J]. Complexity,2020,2020.[11]L. Grant,X. Xue,Z. Vajihi,A. Azuelos,S. Rosenthal,D. Hopkins,R. Aroutiunian,B. Unger,A. Guttman,M. Afilalo. LO32: Artificial intelligence to predict disposition to improve flow in the emergency department[J]. CJEM,2020,22(S1).[12]A. Kirubarajan,A. Taher,S. Khan,S. Masood. P071: Artificial intelligence in emergency medicine: A scoping review[J]. CJEM,2020,22(S1).[13]L. Grant,P. Joo,B. Eng,A. Carrington,M. Nemnom,V. Thiruganasambandamoorthy. LO22: Risk-stratification of emergency department syncope by artificial intelligence using machine learning: human, statistics or machine[J]. CJEM,2020,22(S1).[14]Riva Giuseppe,Riva Eleonora. OS for Ind Robots: Manufacturing Robots Get Smarter Thanks to Artificial Intelligence.[J]. Cyberpsychology, behavior and social networking,2020,23(5).[15]Markus M. Obmann,Aurelio Cosentino,Joshy Cyriac,Verena Hofmann,Bram Stieltjes,Daniel T. Boll,Benjamin M. Yeh,Matthias R. Benz. Quantitative enhancement thresholds and machine learning algorithms for the evaluation of renal lesions using single-phase split-filter dual-energy CT[J]. Abdominal Radiology,2020,45(1).[16]Haytham H. Elmousalami,Mahmoud Elaskary. Drilling stuck pipe classification and mitigation in the Gulf of Suez oil fields using artificial intelligence[J]. Journal of Petroleum Exploration and Production Technology,2020,10(10).[17]Rüdiger Schulz-Wendtland,Karin Bock. Bildgebung in der Mammadiagnostik –Ein Ausblick <trans-title xml:lang="en">Imaging in breast diagnostics—an outlook [J]. Der Gyn?kologe,2020,53(6).</trans-title>[18]Nowakowski Piotr,Szwarc Krzysztof,Boryczka Urszula. Combining an artificial intelligence algorithm and a novel vehicle for sustainable e-waste collection[J]. Science of the Total Environment,2020,730.[19]Wang Huaizhi,Liu Yangyang,Zhou Bin,Li Canbing,Cao Guangzhong,Voropai Nikolai,Barakhtenko Evgeny. Taxonomy research of artificial intelligence for deterministic solar power forecasting[J]. Energy Conversion and Management,2020,214.[20]Kagemoto Hiroshi. Forecasting a water-surface wave train with artificial intelligence- A case study[J]. Ocean Engineering,2020,207.[21]Tomonori Aoki,Atsuo Yamada,Kazuharu Aoyama,Hiroaki Saito,Gota Fujisawa,Nariaki Odawara,Ryo Kondo,Akiyoshi Tsuboi,Rei Ishibashi,Ayako Nakada,Ryota Niikura,Mitsuhiro Fujishiro,Shiro Oka,Soichiro Ishihara,Tomoki Matsuda,Masato Nakahori,Shinji Tanaka,Kazuhiko Koike,Tomohiro Tada. Clinical usefulness of a deep learning‐based system as the first screening on small‐bowel capsule endoscopy reading[J]. Digestive Endoscopy,2020,32(4).[22]Masashi Fujii,Hajime Isomoto. Next generation of endoscopy: Harmony with artificial intelligence and robotic‐assisted devices[J]. Digestive Endoscopy,2020,32(4).[23]Roberto Verganti,Luca Vendraminelli,Marco Iansiti. Innovation and Design in the Age of Artificial Intelligence[J]. Journal of Product Innovation Management,2020,37(3).[24]Yuval Elbaz,David Furman,Maytal Caspary Toroker. Modeling Diffusion in Functional Materials: From Density Functional Theory to Artificial Intelligence[J]. Advanced Functional Materials,2020,30(18).[25]Dinesh Visva Gunasekeran,Tien Yin Wong. Artificial Intelligence in Ophthalmology in 2020: A Technology on the Cusp for Translation and Implementation[J]. Asia-Pacific Journal of Ophthalmology,2020,9(2).[26]Fu-Neng Jiang,Li-Jun Dai,Yong-Ding Wu,Sheng-Bang Yang,Yu-Xiang Liang,Xin Zhang,Cui-Yun Zou,Ren-Qiang He,Xiao-Ming Xu,Wei-De Zhong. The study of multiple diagnosis models of human prostate cancer based on Taylor database by artificial neural networks[J]. Journal of the Chinese Medical Association,2020,83(5).[27]Matheus Calil Faleiros,Marcello Henrique Nogueira-Barbosa,Vitor Faeda Dalto,JoséRaniery Ferreira Júnior,Ariane Priscilla Magalh?es Tenório,Rodrigo Luppino-Assad,Paulo Louzada-Junior,Rangaraj Mandayam Rangayyan,Paulo Mazzoncini de Azevedo-Marques. Machine learning techniques for computer-aided classification of active inflammatory sacroiliitis in magnetic resonance imaging[J]. Advances in Rheumatology,2020,60(1078).[28]Balamurugan Balakreshnan,Grant Richards,Gaurav Nanda,Huachao Mao,Ragu Athinarayanan,Joseph Zaccaria. PPE Compliance Detection using Artificial Intelligence in Learning Factories[J]. Procedia Manufacturing,2020,45.[29]M. Stévenin,V. Avisse,N. Ducarme,A. de Broca. Qui est responsable si un robot autonome vient à entra?ner un dommage ?[J]. Ethique et Santé,2020.[30]Fatemeh Barzegari Banadkooki,Mohammad Ehteram,Fatemeh Panahi,Saad Sh. Sammen,Faridah Binti Othman,Ahmed EL-Shafie. Estimation of Total Dissolved Solids (TDS) using New Hybrid Machine Learning Models[J]. Journal of Hydrology,2020.[31]Adam J. Schwartz,Henry D. Clarke,Mark J. Spangehl,Joshua S. Bingham,DavidA. Etzioni,Matthew R. Neville. Can a Convolutional Neural Network Classify Knee Osteoarthritis on Plain Radiographs as Accurately as Fellowship-Trained Knee Arthroplasty Surgeons?[J]. The Journal of Arthroplasty,2020.[32]Ivana Nizetic Kosovic,Toni Mastelic,Damir Ivankovic. Using Artificial Intelligence on environmental data from Internet of Things for estimating solar radiation: Comprehensive analysis[J]. Journal of Cleaner Production,2020.[33]Lauren Fried,Andrea Tan,Shirin Bajaj,Tracey N. Liebman,David Polsky,Jennifer A. Stein. Technological advances for the detection of melanoma: Part I. Advances in diagnostic techniques[J]. Journal of the American Academy of Dermatology,2020.[34]Mohammed Amoon,Torki Altameem,Ayman Altameem. Internet of things Sensor Assisted Security and Quality Analysis for Health Care Data Sets Using Artificial Intelligent Based Heuristic Health Management System[J]. Measurement,2020.[35]E. Lotan,C. Tschider,D.K. Sodickson,A. Caplan,M. Bruno,B. Zhang,Yvonne W. Lui. Medical Imaging and Privacy in the Era of Artificial Intelligence: Myth, Fallacy, and the Future[J]. Journal of the American College of Radiology,2020.[36]Fabien Lareyre,Cédric Adam,Marion Carrier,Juliette Raffort. Artificial Intelligence in Vascular Surgery: moving from Big Data to Smart Data[J]. Annals of Vascular Surgery,2020.[37]Ilesanmi Daniyan,Khumbulani Mpofu,Moses Oyesola,Boitumelo Ramatsetse,Adefemi Adeodu. Artificial intelligence for predictive maintenance in the railcar learning factories[J]. Procedia Manufacturing,2020,45.[38]Janet L. McCauley,Anthony E. Swartz. Reframing Telehealth[J]. Obstetrics and Gynecology Clinics of North America,2020.[39]Jean-Emmanuel Bibault,Lei Xing. Screening for chronic obstructive pulmonary disease with artificial intelligence[J]. The Lancet Digital Health,2020,2(5).[40]Andrea Laghi. Cautions about radiologic diagnosis of COVID-19 infection driven by artificial intelligence[J]. The Lancet Digital Health,2020,2(5).人工智能英文参考文献二:[41]K. Orhan,I. S. Bayrakdar,M. Ezhov,A. Kravtsov,T. ?zyürek. Evaluation of artificial intelligence for detecting periapical pathosis on cone‐beam computed tomography scans[J]. International Endodontic Journal,2020,53(5).[42]Avila A M,Mezi? I. Data-driven analysis and forecasting of highway traffic dynamics.[J]. Nature communications,2020,11(1).[43]Neri Emanuele,Miele Vittorio,Coppola Francesca,Grassi Roberto. Use of CT andartificial intelligence in suspected or COVID-19 positive patients: statement of the Italian Society of Medical and Interventional Radiology.[J]. La Radiologia medica,2020.[44]Tau Noam,Stundzia Audrius,Yasufuku Kazuhiro,Hussey Douglas,Metser Ur. Convolutional Neural Networks in Predicting Nodal and Distant Metastatic Potential of Newly Diagnosed Non-Small Cell Lung Cancer on FDG PET Images.[J]. AJR. American journal of roentgenology,2020.[45]Coppola Francesca,Faggioni Lorenzo,Regge Daniele,Giovagnoni Andrea,Golfieri Rita,Bibbolino Corrado,Miele Vittorio,Neri Emanuele,Grassi Roberto. Artificial intelligence: radiologists' expectations and opinions gleaned from a nationwide online survey.[J]. La Radiologia medica,2020.[46]?. ? ? ? ? [J]. ,2020,25(4).[47]Savage Rock H,van Assen Marly,Martin Simon S,Sahbaee Pooyan,Griffith Lewis P,Giovagnoli Dante,Sperl Jonathan I,Hopfgartner Christian,K?rgel Rainer,Schoepf U Joseph. Utilizing Artificial Intelligence to Determine Bone Mineral Density Via Chest Computed Tomography.[J]. Journal of thoracic imaging,2020,35 Suppl 1.[48]Brzezicki Maksymilian A,Bridger Nicholas E,Kobeti? Matthew D,Ostrowski Maciej,Grabowski Waldemar,Gill Simran S,Neumann Sandra. Artificial intelligence outperforms human students in conducting neurosurgical audits.[J]. Clinical neurology and neurosurgery,2020,192.[49]Lockhart Mark E,Smith Andrew D. Fatty Liver Disease: Artificial Intelligence Takes on the Challenge.[J]. Radiology,2020,295(2).[50]Wood Edward H,Korot Edward,Storey Philip P,Muscat Stephanie,Williams George A,Drenser Kimberly A. The retina revolution: signaling pathway therapies, genetic therapies, mitochondrial therapies, artificial intelligence.[J]. Current opinion in ophthalmology,2020,31(3).[51]Ho Dean,Quake Stephen R,McCabe Edward R B,Chng Wee Joo,Chow Edward K,Ding Xianting,Gelb Bruce D,Ginsburg Geoffrey S,Hassenstab Jason,Ho Chih-Ming,Mobley William C,Nolan Garry P,Rosen Steven T,Tan Patrick,Yen Yun,Zarrinpar Ali. Enabling Technologies for Personalized and Precision Medicine.[J]. Trends in biotechnology,2020,38(5).[52]Fischer Andreas M,Varga-Szemes Akos,van Assen Marly,Griffith L Parkwood,Sahbaee Pooyan,Sperl Jonathan I,Nance John W,Schoepf U Joseph. Comparison of Artificial Intelligence-Based Fully Automatic Chest CT Emphysema Quantification to Pulmonary Function Testing.[J]. AJR. American journal ofroentgenology,2020,214(5).[53]Moore William,Ko Jane,Gozansky Elliott. Artificial Intelligence Pertaining to Cardiothoracic Imaging and Patient Care: Beyond Image Interpretation.[J]. Journal of thoracic imaging,2020,35(3).[54]Hwang Eui Jin,Park Chang Min. Clinical Implementation of Deep Learning in Thoracic Radiology: Potential Applications and Challenges.[J]. Korean journal of radiology,2020,21(5).[55]Mateen Bilal A,David Anna L,Denaxas Spiros. Electronic Health Records to Predict Gestational Diabetes Risk.[J]. Trends in pharmacological sciences,2020,41(5).[56]Yao Xiang,Mao Ling,Lv Shunli,Ren Zhenghong,Li Wentao,Ren Ke. CT radiomics features as a diagnostic tool for classifying basal ganglia infarction onset time.[J]. Journal of the neurological sciences,2020,412.[57]van Assen Marly,Banerjee Imon,De Cecco Carlo N. Beyond the Artificial Intelligence Hype: What Lies Behind the Algorithms and What We Can Achieve.[J]. Journal of thoracic imaging,2020,35 Suppl 1.[58]Guzik Tomasz J,Fuster Valentin. Leaders in Cardiovascular Research: Valentin Fuster.[J]. Cardiovascular research,2020,116(6).[59]Fischer Andreas M,Eid Marwen,De Cecco Carlo N,Gulsun Mehmet A,van Assen Marly,Nance John W,Sahbaee Pooyan,De Santis Domenico,Bauer Maximilian J,Jacobs Brian E,Varga-Szemes Akos,Kabakus Ismail M,Sharma Puneet,Jackson Logan J,Schoepf U Joseph. Accuracy of an Artificial Intelligence Deep Learning Algorithm Implementing a Recurrent Neural Network With Long Short-term Memory for the Automated Detection of Calcified Plaques From Coronary Computed Tomography Angiography.[J]. Journal of thoracic imaging,2020,35 Suppl 1.[60]Ghosh Adarsh,Kandasamy Devasenathipathy. Interpretable Artificial Intelligence: Why and When.[J]. AJR. American journal of roentgenology,2020,214(5).[61]M.Rosario González-Rodríguez,M.Carmen Díaz-Fernández,Carmen Pacheco Gómez. Facial-expression recognition: An emergent approach to the measurement of tourist satisfaction through emotions[J]. Telematics and Informatics,2020,51.[62]Ru-Xi Ding,Iván Palomares,Xueqing Wang,Guo-Rui Yang,Bingsheng Liu,Yucheng Dong,Enrique Herrera-Viedma,Francisco Herrera. Large-Scale decision-making: Characterization, taxonomy, challenges and future directions from an Artificial Intelligence and applications perspective[J]. Information Fusion,2020,59.[63]Abdulrhman H. Al-Jebrni,Brendan Chwyl,Xiao Yu Wang,Alexander Wong,Bechara J. Saab. AI-enabled remote and objective quantification of stress at scale[J]. Biomedical Signal Processing and Control,2020,59.[64]Gillian Thomas,Elizabeth Eisenhauer,Robert G. Bristow,Cai Grau,Coen Hurkmans,Piet Ost,Matthias Guckenberger,Eric Deutsch,Denis Lacombe,Damien C. Weber. The European Organisation for Research and Treatment of Cancer, State of Science in radiation oncology and priorities for clinical trials meeting report[J]. European Journal of Cancer,2020,131.[65]Muhammad Asif. Are QM models aligned with Industry 4.0? A perspective on current practices[J]. Journal of Cleaner Production,2020,258.[66]Siva Teja Kakileti,Himanshu J. Madhu,Geetha Manjunath,Leonard Wee,Andre Dekker,Sudhakar Sampangi. Personalized risk prediction for breast cancer pre-screening using artificial intelligence and thermal radiomics[J]. Artificial Intelligence In Medicine,2020,105.[67]. Evaluation of Payer Budget Impact Associated with the Use of Artificial Intelligence in Vitro Diagnostic, Kidneyintelx, to Modify DKD Progression:[J]. American Journal of Kidney Diseases,2020,75(5).[68]Rohit Nishant,Mike Kennedy,Jacqueline Corbett. Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda[J]. International Journal of Information Management,2020,53.[69]Hoang Nguyen,Xuan-Nam Bui. Soft computing models for predicting blast-induced air over-pressure: A novel artificial intelligence approach[J]. Applied Soft Computing Journal,2020,92.[70]Benjamin S. Hopkins,Aditya Mazmudar,Conor Driscoll,Mark Svet,Jack Goergen,Max Kelsten,Nathan A. Shlobin,Kartik Kesavabhotla,Zachary A Smith,Nader S Dahdaleh. Using artificial intelligence (AI) to predict postoperative surgical site infection: A retrospective cohort of 4046 posterior spinal fusions[J]. Clinical Neurology and Neurosurgery,2020,192.[71]Mei Yang,Runze Zhou,Xiangjun Qiu,Xiangfei Feng,Jian Sun,Qunshan Wang,Qiufen Lu,Pengpai Zhang,Bo Liu,Wei Li,Mu Chen,Yan Zhao,Binfeng Mo,Xin Zhou,Xi Zhang,Yingxue Hua,Jin Guo,Fangfang Bi,Yajun Cao,Feng Ling,Shengming Shi,Yi-Gang Li. Artificial intelligence-assisted analysis on the association between exposure to ambient fine particulate matter and incidence of arrhythmias in outpatients of Shanghai community hospitals[J]. Environment International,2020,139.[72]Fatemehalsadat Madaeni,Rachid Lhissou,Karem Chokmani,Sebastien Raymond,Yves Gauthier. Ice jam formation, breakup and prediction methods based on hydroclimatic data using artificial intelligence: A review[J]. Cold Regions Science and Technology,2020,174.[73]Steve Chukwuebuka Arum,David Grace,Paul Daniel Mitchell. A review of wireless communication using high-altitude platforms for extended coverage and capacity[J]. Computer Communications,2020,157.[74]Yong-Hong Kuo,Nicholas B. Chan,Janny M.Y. Leung,Helen Meng,Anthony Man-Cho So,Kelvin K.F. Tsoi,Colin A. Graham. An Integrated Approach of Machine Learning and Systems Thinking for Waiting Time Prediction in an Emergency Department[J]. International Journal of Medical Informatics,2020,139.[75]Matteo Terzi,Gian Antonio Susto,Pratik Chaudhari. Directional adversarial training for cost sensitive deep learning classification applications[J]. Engineering Applications of Artificial Intelligence,2020,91.[76]Arman Kilic. Artificial Intelligence and Machine Learning in Cardiovascular Health Care[J]. The Annals of Thoracic Surgery,2020,109(5).[77]Hossein Azarmdel,Ahmad Jahanbakhshi,Seyed Saeid Mohtasebi,Alfredo Rosado Mu?oz. Evaluation of image processing technique as an expert system in mulberry fruit grading based on ripeness level using artificial neural networks (ANNs) and support vector machine (SVM)[J]. Postharvest Biology and Technology,2020,166.[78]Wafaa Wardah,Abdollah Dehzangi,Ghazaleh Taherzadeh,Mahmood A. Rashid,M.G.M. Khan,Tatsuhiko Tsunoda,Alok Sharma. Predicting protein-peptide binding sites with a deep convolutional neural network[J]. Journal of Theoretical Biology,2020,496.[79]Francisco F.X. Vasconcelos,Róger M. Sarmento,Pedro P. Rebou?as Filho,Victor Hugo C. de Albuquerque. Artificial intelligence techniques empowered edge-cloud architecture for brain CT image analysis[J]. Engineering Applications of Artificial Intelligence,2020,91.[80]Masaaki Konishi. Bioethanol production estimated from volatile compositions in hydrolysates of lignocellulosic biomass by deep learning[J]. Journal of Bioscience and Bioengineering,2020,129(6).人工智能英文参考文献三:[81]J. Kwon,K. Kim. Artificial Intelligence for Early Prediction of Pulmonary Hypertension Using Electrocardiography[J]. Journal of Heart and Lung Transplantation,2020,39(4).[82]C. Maathuis,W. Pieters,J. van den Berg. Decision support model for effects estimation and proportionality assessment for targeting in cyber operations[J]. Defence Technology,2020.[83]Samer Ellahham. Artificial Intelligence in Diabetes Care[J]. The American Journal of Medicine,2020.[84]Yi-Ting Hsieh,Lee-Ming Chuang,Yi-Der Jiang,Tien-Jyun Chang,Chung-May Yang,Chang-Hao Yang,Li-Wei Chan,Tzu-Yun Kao,Ta-Ching Chen,Hsuan-Chieh Lin,Chin-Han Tsai,Mingke Chen. Application of deep learning image assessment software VeriSee? for diabetic retinopathy screening[J]. Journal of the Formosan Medical Association,2020.[85]Emre ARTUN,Burak KULGA. Selection of candidate wells for re-fracturing in tight gas sand reservoirs using fuzzy inference[J]. Petroleum Exploration and Development Online,2020,47(2).[86]Alberto Arenal,Cristina Armu?a,Claudio Feijoo,Sergio Ramos,Zimu Xu,Ana Moreno. Innovation ecosystems theory revisited: The case of artificial intelligence in China[J]. Telecommunications Policy,2020.[87]T. Som,M. Dwivedi,C. Dubey,A. Sharma. Parametric Studies on Artificial Intelligence Techniques for Battery SOC Management and Optimization of Renewable Power[J]. Procedia Computer Science,2020,167.[88]Bushra Kidwai,Nadesh RK. Design and Development of Diagnostic Chabot for supporting Primary Health Care Systems[J]. Procedia Computer Science,2020,167.[89]Asl? Bozda?,Ye?im Dokuz,?znur Begüm G?k?ek. Spatial prediction of PM 10 concentration using machine learning algorithms in Ankara, Turkey[J]. Environmental Pollution,2020.[90]K.P. Smith,J.E. Kirby. Image analysis and artificial intelligence in infectious disease diagnostics[J]. Clinical Microbiology and Infection,2020.[91]Alklih Mohamad YOUSEF,Ghahfarokhi Payam KAVOUSI,Marwan ALNUAIMI,Yara ALATRACH. Predictive data analytics application for enhanced oil recovery in a mature field in the Middle East[J]. Petroleum Exploration and Development Online,2020,47(2).[92]Omer F. Ahmad,Danail Stoyanov,Laurence B. Lovat. Barriers and pitfalls for artificial intelligence in gastroenterology: Ethical and regulatory issues[J]. Techniques and Innovations in Gastrointestinal Endoscopy,2020,22(2).[93]Sanne A. Hoogenboom,Ulas Bagci,Michael B. Wallace. Artificial intelligence in gastroenterology. The current state of play and the potential. How will it affect our practice and when?[J]. Techniques and Innovations in Gastrointestinal Endoscopy,2020,22(2).[94]Douglas K. Rex. Can we do resect and discard with artificial intelligence-assisted colon polyp “optical biopsy?”[J]. Techniques and Innovations in Gastrointestinal Endoscopy,2020,22(2).[95]Neal Shahidi,Michael J. Bourke. Can artificial intelligence accurately diagnose endoscopically curable gastrointestinal cancers?[J]. Techniques and Innovations in Gastrointestinal Endoscopy,2020,22(2).[96]Michael Byrne. Artificial intelligence in gastroenterology[J]. Techniques and Innovations in Gastrointestinal Endoscopy,2020,22(2).[97]Piet C. de Groen. Using artificial intelligence to improve adequacy of inspection in gastrointestinal endoscopy[J]. Techniques and Innovations in Gastrointestinal Endoscopy,2020,22(2).[98]Robin Zachariah,Andrew Ninh,William Karnes. Artificial intelligence for colon polyp detection: Why should we embrace this?[J]. Techniques and Innovations in Gastrointestinal Endoscopy,2020,22(2).[99]Alexandra T. Greenhill,Bethany R. Edmunds. A primer of artificial intelligence in medicine[J]. Techniques and Innovations in Gastrointestinal Endoscopy,2020,22(2).[100]Tomohiro Tada,Toshiaki Hirasawa,Toshiyuki Yoshio. The role for artificial intelligence in evaluation of upper GI cancer[J]. Techniques and Innovations in Gastrointestinal Endoscopy,2020,22(2).[101]Yahui Jiang,Meng Yang,Shuhao Wang,Xiangchun Li,Yan Sun. Emerging role of deep learning‐based artificial intelligence in tumor pathology[J]. Cancer Communications,2020,40(4).[102]Kristopher D. Knott,Andreas Seraphim,Joao B. Augusto,Hui Xue,Liza Chacko,Nay Aung,Steffen E. Petersen,Jackie A. Cooper,Charlotte Manisty,Anish N. Bhuva,Tushar Kotecha,Christos V. Bourantas,Rhodri H. Davies,Louise A.E. Brown,Sven Plein,Marianna Fontana,Peter Kellman,James C. Moon. The Prognostic Significance of Quantitative Myocardial Perfusion: An Artificial Intelligence–Based Approach Using Perfusion Mapping[J]. Circulation,2020,141(16).[103]Muhammad Asad,Ahmed Moustafa,Takayuki Ito. FedOpt: Towards Communication Efficiency and Privacy Preservation in Federated Learning[J]. Applied Sciences,2020,10(8).[104]Wu Wenzhi,Zhang Yan,Wang Pu,Zhang Li,Wang Guixiang,Lei Guanghui,Xiao Qiang,Cao Xiaochen,Bian Yueran,Xie Simiao,Huang Fei,Luo Na,Zhang Jingyuan,Luo Mingyan. Psychological stress of medical staffs during outbreak of COVID-19 and adjustment strategy.[J]. Journal of medical virology,2020.[105]. Eyenuk Fulfills Contract for Artificial Intelligence Grading of Retinal Images[J]. Telecomworldwire,2020.[106]Kim Tae Woo,Duhachek Adam. Artificial Intelligence and Persuasion: A Construal-Level Account.[J]. Psychological science,2020,31(4).[107]McCall Becky. COVID-19 and artificial intelligence: protecting health-care workers and curbing the spread.[J]. The Lancet. Digital health,2020,2(4).[108]Alca?iz Mariano,Chicchi Giglioli Irene A,Sirera Marian,Minissi Eleonora,Abad Luis. [Autism spectrum disorder biomarkers based on biosignals, virtual reality and artificial intelligence].[J]. Medicina,2020,80 Suppl 2.[109]Cong Lei,Feng Wanbing,Yao Zhigang,Zhou Xiaoming,Xiao Wei. Deep Learning Model as a New Trend in Computer-aided Diagnosis of Tumor Pathology for Lung Cancer.[J]. Journal of Cancer,2020,11(12).[110]Wang Fengdan,Gu Xiao,Chen Shi,Liu Yongliang,Shen Qing,Pan Hui,Shi Lei,Jin Zhengyu. Artificial intelligence system can achieve comparable results to experts for bone age assessment of Chinese children with abnormal growth and development.[J]. PeerJ,2020,8.[111]Hu Wenmo,Yang Huayu,Xu Haifeng,Mao Yilei. Radiomics based on artificial intelligence in liver diseases: where we are?[J]. Gastroenterology report,2020,8(2).[112]Batayneh Wafa,Abdulhay Enas,Alothman Mohammad. Prediction of the performance of artificial neural networks in mapping sEMG to finger joint angles via signal pre-investigation techniques.[J]. Heliyon,2020,6(4).[113]Aydin Emrah,Türkmen ?nan Utku,Namli G?zde,?ztürk ?i?dem,Esen Ay?e B,Eray Y Nur,Ero?lu Egemen,Akova Fatih. A novel and simple machine learning algorithm for preoperative diagnosis of acute appendicitis in children.[J]. Pediatric surgery international,2020.[114]Ellahham Samer. Artificial Intelligence in Diabetes Care.[J]. The Americanjournal of medicine,2020.[115]David J. Winkel,Thomas J. Weikert,Hanns-Christian Breit,Guillaume Chabin,Eli Gibson,Tobias J. Heye,Dorin Comaniciu,Daniel T. Boll. Validation of a fully automated liver segmentation algorithm using multi-scale deep reinforcement learning and comparison versus manual segmentation[J]. European Journal of Radiology,2020,126.[116]Binjie Fu,Guoshu Wang,Mingyue Wu,Wangjia Li,Yineng Zheng,Zhigang Chu,Fajin Lv. Influence of CT effective dose and convolution kernel on the detection of pulmonary nodules in different artificial intelligence software systems: A phantom study[J]. European Journal of Radiology,2020,126.[117]Georgios N. Kouziokas. A new W-SVM kernel combining PSO-neural network transformed vector and Bayesian optimized SVM in GDP forecasting[J]. Engineering Applications of Artificial Intelligence,2020,92.[118]Qingsong Ruan,Zilin Wang,Yaping Zhou,Dayong Lv. A new investor sentiment indicator ( ISI ) based on artificial intelligence: A powerful return predictor in China[J]. Economic Modelling,2020,88.[119]Mohamed Abdel-Basset,Weiping Ding,Laila Abdel-Fatah. The fusion of Internet of Intelligent Things (IoIT) in remote diagnosis of obstructive Sleep Apnea: A survey and a new model[J]. Information Fusion,2020,61.[120]Federico Caobelli. Artificial intelligence in medical imaging: Game over for radiologists?[J]. European Journal of Radiology,2020,126.以上就是关于人工智能参考文献的分享,希望对你有所帮助。
2014年1月第7卷第1期文化艺术研究Studies in Culture &Art Jan.,2014Vol.7No.1收稿日期:2013-12-12作者简介:张经武(1974—),男,湖北黄冈人,博士研究生,副教授,主要从事新媒体艺术产业和文艺传播研究。
*基金项目:本文系2013年度国家社科基金艺术学项目“数码艺术潜学科群研究”(批准号:13BA008)研究成果之一。
文章编号:1674-3180(2014)01-0111-08恐怖谷理论及其对于数码影像艺术角色设计的意义*张经武(1.厦门大学人文学院,厦门361005; 2.广西财经学院文化传播学院,南宁530003)摘要:1970年,日本机器人专家森政弘提出了“恐怖谷理论”,它推测,机器人及其他类人仿真物的外观和动作越逼真,人们对其亲和度也会越高,当逼真性到达一个较高的临界点,亲和度会陡然下降直至最低点。
近几年,恐怖谷理论成为西方新的研究热点,越来越多的研究成果支持这一理论的合理性。
恐怖谷理论对于数码影像艺术角色设计有显著的指导意义。
设计者应该注意规避和利用恐怖谷效应,既要防止跌入恐怖谷,又要利用恐怖谷曲线去追求特定的角色虚拟效果。
关键词:恐怖谷理论;数码影像艺术;角色设计;规避与利用中图分类号:TP242文献标识码:AThe Uncanny Valley Theory and Its Significance to theRole Design in Digital Video ArtsZHANG Jing-wuAbstract :In 1970,the uncanny valley theory was proposed by a Japanese robotic expert namedMasahiro Mori.It hypothesizes that the more human-like robots and other hominine simulation ob-jects become in appearance and motion ,the more positive the humans'emotional reactions towardsthem become.This trend continues until a certain point is reached beyond which the emotional re-sponses quickly drop to the lowest.In recent years ,the uncanny valley theory has become a newhotspot in the Western academic circle ,and more and more researches support the rationality of thistheory.To the role design in the digital video arts ,the uncanny valley theory has an obvious guidingsignificance.Creators should pay more attentions ,avoiding falling into the uncanny valley on the one文化艺术研究第7卷hand while pursuing the specific effects of virtual roles according to the uncanny valley curve on theother.Key words :uncanny valley theory ;digital video arts ;role design ;evasion and utilization1970年,日本东京工业大学著名机器人专家森政弘教授(Masahiro Mori )在日本一家很不起眼的杂志《能源》(Energy )上发表了一篇名为《恐怖谷》(The uncanny valley )的文章[1]。
Guardians in a Generation-Based Garbage Collector R.Kent Dybvig,Carl Bruggeman,and David EbyIndiana UniversityComputer Science DepartmentLindley Hall215Bloomington,Indiana47405{dyb,bruggema,deby}@AbstractThis paper describes a new language feature that allows dynamically allocated objects to be saved from deallo-cation by an automatic storage management system so that clean-up or other actions can be performed using the data stored within the objects.The program has full control over the timing of clean-up actions,which eliminates several potential problems and often elim-inates the need for critical sections in code that in-teracts with clean-up actions.Our implementation is “generation-friendly”in the sense that the additional overhead within a generation-based garbage collector is proportional to the work already done there,and the overhead within the mutator is proportional to the num-ber of clean-up actions actually performed.1IntroductionMany programming systems,such as Scheme,Common Lisp,ML,and Prolog,support dynamic allocation and automatic deallocation of objects.Within these sys-tems,some form of storage manager takes responsi-bility for handling both requests to allocate new ob-jects and automatic deallocation of objects that are no longer needed.Most current automatic storage man-agers employ a garbage collector[8]to deallocate un-needed objects,although some also employ reference counting mechanisms1[2].Automatic storage management is useful for several reasons.First,it simplifies the programmer’s job,elim-inating the burden of freeing dynamically-allocated ob-1Although the ideas presented in this paper can be extended to reference counting systems,we limit our discussion to collector-based systems.Proceedings of the SIGPLAN’93Conference onProgramming Language Design and Implementa-tion,pp.207–216.Copyright c 1993ACM.jects and the need to decide which part of a possibly complex system is responsible for freeing shared stor-age.Second,it can be more efficient than explicit free-ing of objects.Modern garbage collectors run in time proportional to the amount of data retained in the sys-tem rather than the amount freed;in most cases,this results in far less overhead than explicit freeing,which is proportional to the amount of data freed.Third,it eliminates the possibility of storage leaks.Finally,most importantly,it eliminates the possibility of dangling ref-erences,i.e.,references to deallocated storage.This is especially important in systems that purport to guar-antee the type safety of all memory references.The collector considers an object to be unneeded when no pointers to the object remain,i.e.,when the object is no longer accessible from within the rest of the program,conventionally called the mutator.In most cases,this is ideal;if an object is inaccessible,how could any part of the mutator still need the storage associated with it,or more particularly,the information contained within that storage?In fact,however,there are cases in which the object or the information contained within the object may still be needed or may at least be use-ful.Often,these cases concern the need to clean up or deallocate some resource(perhaps external)associated with the object.For example,files in Scheme are represented by ports. Ports encapsulate afile identifier,used to perform op-erating system requests for primitive I/O operations,a buffer containing unread or unwritten data,and various other items of information relating to thefile or buffer. Because of exceptions and nonlocal exits,a port may not be closed explicitly by a user program before the last reference to it is dropped.This can tie up system resources and may result in data associated with output ports remaining unwritten until the system exits.It is important,therefore,for a Scheme implementation to arrange toflush unwritten data and close a port when the port becomes inaccessible.Scheme programs that employ external library rou-tines must often cope with external resources requiredby those routines,in particular,with external memory managed with the Unix malloc and free procedures or their equivalent.In order to simplify deallocation of external memory,a Scheme header can be created for each block of storage,and a clean-up action associated with the Scheme header could then be used to free the storage.Similar mechanisms can be used to free other external resources,such as temporaryfiles and subpro-cesses.A different but related problem arises in the manage-ment of hash tables.Hash tables provide a convenient and efficient way of attaching values to a set of keys, where each key is an arbitrary Scheme object.Hash tables can be used to represent symbol tables and to support shared structure detection during the printing of directed acyclic and cyclic graph structures.While a hash table must retain both the key and value as long as some possibility exists for the value to be accessed through the key in the table,the key/value association should be dropped from the table whenever the key be-comes inaccessible outside of the table.Weak pairs, which are discussed in the following section,can be used to construct the hash table in such a way that the keys are dropped automatically by the collector,but they do not support removal of the values associated with dropped keys without a periodic scan of the entire ta-ble.Sometimes it is useful to maintain an internal“free list”of objects that are expensive to allocate or initial-ize.Support for automatically returning such objects to the free list when they would otherwise be reclaimed can lead to a simpler,more efficient,and more robust implementation.This might be true,for example,of a set of large objects(such as a set of bit maps represent-ing graphical displays)whose structure and/or contents remainfixed once they are initialized.In order to save the cost of rebuilding or reinitializing new storage loca-tions,it may be less time consuming to reuse a freed object if one exists.These problems all have in common the need for an object to be saved from destruction once it becomes inaccessible so thatfinalization2actions involving the object can be performed.Essentially,we would like to extend the benefits derived from automatic storage management,as described above,to external resources and higher level internal storage management.There are four important issues to consider in the design of afinalization mechanism:•When doesfinalization occur?Iffinalization is done by the collector,then all access to structures shared by the mutator andfinalization routines must be done within a critical section because the collector may interrupt the mutator at any point.2Following traditional usage,we use the term“finalization”even though the actions may not really be“final.”For example,if the mutator is updating a hash ta-ble when a garbage collection occurs(with the table in an inconsistent state),restructuring the hash ta-ble at the end of the collection to remove unneeded bindings would corrupt the table.•In what order are objectsfinalized?For cyclic or shared structures it may be important tofinalize related objects in a particular order.•Is the full range of language features available to finalization routines?For example,can allocation be done?Can another collection occur?What hap-pens if a afinalization routine signals an error?•Is the object beingfinalized available to thefinal-ization routine?If so,can it be let loose into the system again?Can objects beingfinalized be re-registered forfinalization?There is afifth issue to consider for generation-based garbage collectors,which segregate objects based on their ages and scan older objects less frequently than newer objects[9].A“generation-friendly”finalization mechanism must insure that the overhead forfinaliza-tion is(at worst)proportional to the amount of work already done by the collector.Among other things,this means that there should be no additional overhead for older objects that are not being collected during a par-ticular collection cycle.Furthermore,overhead in the mutator should be proportional to the number of ob-jects for which clean-up actions are actually performed; it does no good to eliminate the overhead of scanning older objects in the collector if the mutator must do so. In particular,scanning through an entire hash table, as described above,in order to eliminate the values for keys that have disappeared is unacceptable.The ideal answers to thefirst two questions above,“when doesfinalization occur”and“in what order”,de-pend on the particular application.This led us to design a mechanism that gives the program complete control over when and in what orderfinalization occurs.The guardian mechanism that resulted also permits unre-stricted access to all language features and makes the object available to thefinalization routine without re-strictions.Guardians provide a means to protect objects from destruction by the garbage collector.A guardian is an object with which objects can be registered for preser-vation and from which objects actually saved from de-struction can be retrieved,one at a time,at the con-venience of the program.New guardians are created dynamically using make-guardian,the single new prim-itive required by this mechanism.An object may be registered with more than one guardian or registered multiple times with a guardian.Finalization of a groupof objects can be canceled by simply dropping all refer-ences to the guardian.We have added guardians to our generation-based col-lector.The cost for handling guardians in both the col-lector and mutator is very small,and there is no over-head for older objects except when they are subject to collection.The collector also supports weak pairs(men-tioned above and described in the following section), which complement the guardian mechanism.The remainder of this paper is organized as follows: Section2discusses existing mechanisms.Section3de-scribes the guardian mechanism and gives examples of its use.Section4discusses the implementation of guardians and weak pairs within the framework of a generation-based garbage collector.Section5summa-rizes the paper and presents a somewhat more general interface to the same basic mechanism.2BackgroundGuardians are related to the weak sets3provided by the T language[11].A weak set is a data structure contain-ing a set of objects.Operations are provided to add new objects,remove objects,and retrieve a list of the objects in the set.Weak sets are so-called since they maintain “weak”pointers to the objects in their sets.A weak pointer to an object is treated like a normal pointer by the garbage collector as long as nonweak pointers to the object exist.If only weak pointers to an object exist, however,the pointers are“broken”and the object is released.As a result,an object that is not accessible except by way of one or more weak sets is ultimately discarded and removed from the weak sets to which it belonged.MultiScheme[10]provides a similar,more primitive feature,weak pairs.Weak pairs are like normal pairs except that the“car”(data)field of the pair is a weak pointer.The“cdr”(link)field is a normal pointer. MIT Scheme and recent versions of T support a“weak hashing”feature that provides a form of weak pointer. The primitive hash accepts an object and returns an in-teger that is unique to that object,i.e.,the same integer is never returned for a different object.The primitive unhash accepts an integer and returns the associated ob-ject,if the object has not be reclaimed by the garbage collector.If the object has been reclaimed,unhash re-turns false.The integer can be used as a weak pointer to the object.Weak sets,weak pointers,and weak hashing are es-sentially equivalent for our purposes;each allows the program to maintain a pointer to an object that is ul-timately broken once the object becomes otherwise in-accessible.Any data contained within the object,how-ever,is lost when the pointer is broken.In spite of 3Weak sets were originally called populations.this,weak pointers can be employed to solve the sorts of problems described in the preceding section if we are willing to introduce an extra level of indirection.Instead of maintaining a pointer directly to the data,the pro-gram can maintain a weak pointer to an object header containing a nonweak pointer to the data.If a sepa-rate nonweak pointer to the data is maintained,then when the weak pointer to the header is broken the data needed to perform the clean-up action is still available. There are several problems with this solution.The extra level of indirection causes additional complexity since any part of a program that might receive the ob-ject must know about the indirection and adjust for it. For this reason,it is inherently unsafe,since it is pos-sible for some part of a program to keep a pointer to the data itself even after the header has been dropped. This problem is addressed by Atkins[1],who proposes the use of a forwarding object that causes the indirec-tion to be performed automatically.Also,the overhead caused by the extra level of indirection is unacceptable in some cases.In the case of ports,for example,it significantly increases the cost of reading or writing a character,since these operations otherwise involve only two or three memory references.Finally,if a list of weak pointers is maintained(say to the set of objects in a large hash table or to a set of externally allocated objects),the entire list must be traversed tofind the pointers that have been broken,even if none or only a few of the elements have been dropped by the collec-tor.This is especially undesirable in a system with a generation-based collector,since some or all of the ele-ments may be located in older generations not recently subject to collection.A number of Lisp and Scheme systems contain a prim-itivefinalization mechanism that is not made available to the user but is used internally by the runtime system. MultiScheme,T,and Chez Scheme(among others)use such a mechanism tofinalizefiles.Chez Scheme also supports the elimination of unnecessary oblist entries, as proposed by Friedman and Wise[6].Dickey[3]has proposed a user-level mechanism that allows a program to register objects forfinalization. The procedure register-for-finalization accepts two ar-guments:an object and a thunk(zero-arity procedure). The thunk is invoked automatically during garbage col-lection if the object has been reclaimed.If implemented properly,this mechanism can eliminate the overhead of searching through a list of weak pointers.Since the ob-ject itself is not preserved,however,this solution suffers from the other problems associated with weak pointers. In addition,the thunk is not permitted to cause heap allocation since it is invoked as part of the garbage col-lection process and must not cause another garbage col-lection.This is an unfortunate restriction,both because it eliminates a useful set of tools and because it forcesthe programmer to be aware of all sources of alloca-tion,some of which may not be obvious.Furthermore, since garbage collections can happen at arbitrary times, the programmer has no control over when the actions are invoked.Errors that occur within the thunk are problematic as well;since they must not be allowed to prevent the invocation of otherfinalization thunks,er-ror signals must be suppressed or somehow delayed until allfinalization is complete.A discussion of variousfinalization mechanisms found in other languages and operating systems such as ob-ject destructors in C++,final actions for modules in Euclid,andfinalization actions for limited types in Ada 9X,can be found in[7].None of the mechanisms de-scribed there,however,provide a general solution to the problems mentioned in Section1.3GuardiansGuardians are created using the zero-arity primitive make-guardian:(make-guardian)→ guardianA guardian is represented by a procedure that encap-sulates a group of objects registered for preservation. When a guardian is created,the group of registered ob-jects is empty.An object is registered with a guardian by passing the object as an argument to the guardian: >(define G(make-guardian))>(define x(cons’a’b))>(G x)The group of registered objects associated with a guardian is logically subdivided into two disjoint sub-groups:a subgroup that we shall refer to as“accessible”objects,and one that we shall refer to as“inaccessible”objects.Inaccessible objects are objects that have been proven to be inaccessible(except through the guardian mechanism itself),and accessible objects are objects that have not been proven so.The word“proven”is important here;it may be that some objects in the ac-cessible group are indeed inaccessible,but that this has not yet been proven.Depending upon the implemen-tation,this proof may not be made in some cases until long after the object actually becomes inaccessible. Objects registered with a guardian are initially placed in the accessible group,and are moved into the inacces-sible group at some point after they become inacces-sible.Objects in the inaccessible group are retrieved by invoking the guardian without arguments.If there are no objects in the inaccessible group,false(#f)is returned.Continuing the above example:>(G)#f>(set!x#f)...>(G)(a.b)>(G)#fThe initial call to G returns#f since the pair bound to x is the only object registered with G,and the pair is still accessible through that binding.At some point after this binding is nullified,however,the object shifts into the inaccessible group and is therefore returned by the later call to G.Although an object returned from a guardian has been proven otherwise inaccessible,it has not yet been reclaimed by the storage management system and will not be reclaimed until after the last reference to it within or outside of the guardian system has been dropped.In fact,objects that have been retrieved from a guardian have no special status in this or in any other regard.This feature circumvents the problems associ-ated withfinalization of shared or cyclic objects.A shared or cyclic structure consisting of inaccessible ob-jects is preserved in its entirety and each piece registered for preservation with any guardian is placed in the in-accessible set for that guardian.The programmer then has complete control over the order in which pieces of the structure are processed.An object may be registered with a guardian more than once,in which case it is retrievable more than once: >(define G(make-guardian))>(define x(cons’a’b))>(G x)>(G x)>(set!x#f)...>(G)(a.b)>(G)(a.b)It may also be registered with more than one guardian: >(define G(make-guardian))>(define H(make-guardian))>(define x(cons’a’b))>(G x)>(H x)>(set!x#f)...>(G)(a.b)>(H)(a.b)One can even register one guardian with another:>(define G(make-guardian))>(define H(make-guardian))>(define x(cons’a’b))>(G H)>(H x)>(set!x#f)>(set!H#f)...>((G))(a.b)(Of course,the last expression is dangerous,since there is no guarantee that(G)will not return#f.)At what point does an inaccessible object become available for retrieval from a guardian?In general,the storage management system responsible for reclaiming the storage from inaccessible objects is also responsi-ble for moving otherwise inaccessible objects from the accessible group to the inaccessible group.In a system such as ours that employs a garbage collector to reclaim inaccessible objects,the garbage collector maintains a list of registered objects with their associated guardians. This list is traversed after collection and any objects that have not been marked or forwarded are forwarded at that time(saved from destruction)and placed into the inaccessible group.The example below demonstrates how guardians may be used in Scheme to ensure that dropped ports are closed.New“guarded”open operations are defined in terms of the existing operations(open-input-file and open-output-file),and a new exit procedure is defined in terms of the existing exit procedure.(define port-guardian(make-guardian))(define close-dropped-ports(lambda()(let([p(port-guardian)])(if p(begin(if(output-port?p)(begin(flush-output-port p)(close-output-port p))(close-input-port p))(close-dropped-ports))))))(define guarded-open-input-file(lambda(pathname)(close-dropped-ports)(let([p(open-input-file pathname)])(port-guardian p)p)))(define guarded-open-output-file(lambda(pathname)(close-dropped-ports)(let([p(open-output-file pathname)])(port-guardian p)p)))(define guarded-exit(lambda()(close-dropped-ports)(exit)))In this implementation,dropped ports are closed when-ever an open operation is performed or upon exit from the system.In many Scheme and Lisp systems it is pos-sible to cause the garbage collection handler to perform arbitrary actions after collection completes(with the caveats mentioned in Section1);in such systems it may make sense to cause close-dropped-ports to be invoked after collection instead.In Chez Scheme,a program does this by installing a new“collect-request”handler: (collect-request-handler(lambda()(collect)(close-dropped-ports)))Guardians are also useful in conjunction with weak pairs.Weak pairs are like normal pairs except that the carfield of a weak pair is a weak pointer,as described in Section2.Weak pairs are created using weak-cons and manipulated using normal list processing opera-tions,car,cdr,pair?,map,etc.4The existence of a weak pointer to an object in the carfield of a weak pair does not prevent the object from being transferred from the accessible list of a guardian to the inaccessible list, and the weak pointer is not broken when such a transfer is made.Figure1contains a simple hash table implementation that demonstrates how guardians and weak pairs can be used together to allow removal of useless entries.Sup-port for removing useless entries is entirely contained within the shaded areas of thefigure.When a key/value pair is added to the table,key is registered with a guardian associated with the hash table.This guardian is checked for keys to remove each time the hash-table access procedure is called.Since the key/value pair is a weak pair,the pointer to key is weak and does not prevent key from being transferred to the inaccessible list of the guardian.Many Scheme and Lisp systems provide“eq”hash ta-bles.Eq hash tables permit arbitrary objects to be used as keys with fast hashing based on the virtual memory address(the name“eq”comes from the name of the ad-dress equality predicate eq?).Since an object may be 4Some Scheme and Lisp systems have a distinct weak-pair type and related operations such as weak-car and weak-cdr.(define make-guarded-hash-table(lambda(hash size)(let([g(make-guardian)][v(make-vector size’())])(lambda(key value)(let loop([x(g)])(if x(let([h(hash key size)])(let([bucket(vector-ref v h)])(vector-set!v h(remq(assq x bucket)bucket))(loop(g))))))(let([h(hash key size)])(let([bucket(vector-ref v h)])(let([a(assq key bucket)])(if a(cdr a)(let([a(weak-cons key value)])(g key)(vector-set!v h(cons a bucket))value)))))))))Figure1.make-guarded-hash-table accepts a hash procedure and a table size and returns a hash-table access procedure.The access procedure accepts a key and a value.If the key is already present in the table,the existing value is returned;otherwise,the key is added to the table along with the value provided.Sometime after a key becomes inaccessible it is returned by the guardian g,and the corresponding key-value pair is removed from the table.The definition of an“unguarded”hash table is obtained by deleting the shaded areas.moved during a garbage collection,however,its address and hence its hash value may change.This problem is often solved by rehashing such tables after a collection or,more commonly,after a lookup has failed following a collection.In a generation-based collector much of this work is wasted for keys that are no longer forwarded during every collection because they have survived long enough to have advanced to older generations.One solution to this problem is to use a“transport guardian”that returns an object when it has been moved(transported)rather than when it has become inaccessible.The system could then rehash only those objects that have been moved since the last rehash.A useful conservative form of transport guardian may be implemented in terms of ordinary guardians and weak pairs.A conservative transport guardian returns all objects that have moved but may also return some objects that have not moved.The code for implementing conservative transport guardians is given below.The approach is to allocate a fresh“marker”that is guaranteed to be no older than the object to be guarded(since the marker is newly al-located),register the marker with a guardian,and drop the reference to the marker so that it will be returned by the guardian after any collection to which the marker has been subjected.When the marker is returned by the guardian,the object may also have been subject to the same collection and thus is returned by the trans-port guardian.Since the same marker is re-registered with the guardian each time it is returned,it will grad-ually“age”along with the object providing the desired “generation-friendly”behavior.In order to prevent the transport guardian from holding onto an otherwise in-accessible object,the marker is a weak-pair whose car field contains the object.(define make-transport-guardian(lambda()(let([g(make-guardian)])(case-lambda[(x)(g(weak-cons x’∗))][()(let loop([m(g)])(and m(if(car m)(begin(g m)(car m))(loop(g)))))]))))4ImplementationAdding guardians and weak pointers to our generation-based garbage collector was surprisingly straightfor-ward.This section describes briefly the basic collectionempty tconc Objecttconc with one elementFigure 2.An empty tconc and a tconc with one element are shown above.Empty cells represent “don’t care”values;neither collector nor mutator references such cells.algorithm and the modifications necessary to incorpo-rate guardians and weak pointers.The number of generations and the promotion and tenure strategies supported by the collector are under programmer control.In order to simplify the discussion,however,we assume a fixed number of generations 0through n (0being youngest)with the following simple promotion and tenure strategy:•New objects are placed in generation 0.•Objects in generations less than or equal to g that survive a collection of generation g ,g <n are placed in generation g +1.•Objects that survive a collection of generation n are placed in generation n .•Generation 0is collected each time there is a collec-tion;older generations are collected less frequently (the older the generation,the less frequently it is collected).•When a generation is collected,all younger gener-ations are collected as well.The generation into which objects are copied during a particular collection is referred to as the target genera-tion.The collector performs a stop-and-copy collection from the generations being collected into the target gen-eration.The actual guardian interface described in Section 3is a packaging of a lower-level interface.In the low-level interface,the garbage collector maintains a protected list of object/guardian pairs for each generation.Each time an object is registered with a guardian,a new pair (of the object and guardian)is added to the protected list for generation 0.After a collection of generation g ,each element in the protected list of each generation i ,i ≤g is visited (the protected lists themselves are not forwarded during collection).If the object has been forwarded,it must be accessible (via a nonweak pointer)outside of the protected list,and the object/guardian pair is placed in the protected list of the target generation.If not,it is placed in the inaccessible group of the guardian and dropped from the protected list.In either case,both the element and the guardian are forwarded.Although guardians are procedures at the user level,internally they are represented as a form of queue called a tconc (the name comes from an old Lisp construct of the same name).A tconc consists of a list and a header;the header is an ordinary pair whose car field points to the first cell in the list and whose cdr field points to the last cell in the list (see Figure 2).In our mechanism,the tconc representing a guardian holds the list of inac-cessible objects;the garbage collector adds elements to the end of this list while the mutator removes elements from the front of the list.We have chosen to use the tconc representation and designed the protocols for manipulating the tconc so that critical sections are unnecessary in both the mu-tator and collector (see Figures 3and 4).Since the collector cannot be interrupted by the mutator in our current implementation,we do not presently rely on the fact that the collector does not require critical sections;however,since the collector can interrupt the mutator at any point,we do avoid the need for a critical section in the guardian code that returns inaccessible objects to the mutator.An empty tconc is one in which both fields of the header point to the same pair;what the fields of this pair contain is unimportant.The mutator is permit-ted to manipulate the car field of the header;it is also allowed to compare the car field with the cdr field to determine if the tconc contains any elements.The col-lector is permitted to manipulate the cdr field of the header and the pair to which the cdr field points.In order to avoid the need for critical sections,the collec-。