七年级上学期期末数学试题10
- 格式:doc
- 大小:332.50 KB
- 文档页数:7
西安市高新一中2023-2024学年度第一学期期末考试试题七年级数学一、选择题(共10小题,每小题3分,计30分) 1.下列运算结果为负数的是 A.|-2|B.(-2)2C.-(-2)D.-(-2)22.某种流行性感冒病毒是依靠飞沫和直接接触传播,直接接触我们可以通过及时清洗和杀毒避免,飞沫的直径一般是在0.000003米左右.将0.000003用科学记数法表示为 A.30×10-7B.3×10-6C.3×10-5D.0.3×10-63.下列调查方式中,采用合适的是A.为了解全市中学生每周体育锻炼的时闻,选择普查方式B.调查西安市“骑电动车”头盔佩戴率,选择抽样调查方式C.神舟十七号飞船发射前的零件检查,选择抽样调查方式D.调查某批次医用外科口罩的合格率,选择普查方式4.如图是由6个相同的小正方体拼成的几何体,从左边看,得到的平面图形是5.下列等式的变形中,正确的是 A.如果|a|=|b|,那么a=b B.如果a c =bc ,那么a=bC.如果a x =ay ,那么x =yD.如果m=n ,那么mc 2−4=nc 2−46.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是 A.-5x -1B.5x +1C.13x -1D.6x 2+13x -17.下列说法:①若a 、b 互为相反数,则a b=-1;②若a b>0,且a+b <0,则|a|+|b|=第4题图-a -b ;③一个数的立方是它本身,则这个数为1或0;④若-1<a <0,则a 的倒数小于-1.其中正确的个数是 A.1个B.2个C.3个D.4个8.如图,矩形纸片ABCD ,M 为AD 边的中点,将纸片沿BM 、CM 折叠,使A 点落在A 1处,D 点落在D 1处,若∠1=30°,则∠BMC= A.75°B.150°C.120°D.105°9.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,则符合题意的方程是 A.12x =(x -5)-5B.12x =(x +5)+5C.2x =(x -5)-5D.2x =(x +5)+510.如图,点C 是线段AB 上一点,且3AC=2AB ,D 是AB 的中点,E 是CB 的中点,DE=6,则线段AB 的长是A.18B.20C.12D.24二、填空题(共7小题,每小题3分,计21分)11.多项式-2x 3y 2-3x 2y 3+x y 2-1的次数是_____,常数项是_______. 12.若2x =5,2y =3,则22x+y =_______.13.我们中午休息结束的时间是1点50分,此时钟面上时针与分针所成的夹角是第10题图第8题图ABDCM A 1D 11_______.14.关于x 的方程3-3a−x 2=0与方程2x -5=1的解相同,则常数a 是_______.15.如图是正方体的平面展开图,若AB=8,则该正方体A 、B 两点间的距离为_______. 16.如果x 2-(m+1)x +16是完全平方式,则实数m 的值是_______.17.如图,有一根木棒MN 放置在数轴上,它的两端M 、N 分别落在点A 、B 处.将木棒在数轴上水平移动,当MN 的中点移动到点B 时,点N 所对应的数为17,当MN 的三等分点移动到点A 时,点M 所对应的数为6,则木棒MN 的长度为_______.三、解答题(共8小题,计69分) 18.(14分)计算(1)-42+[32÷(-2)3-16×40](2)(-3x y 2)2·(-6x 3y)(3)先化简再求值:(3a+b)2-(b+3a)(3a -b)-6b 2,其中a=-13,b=-2. 19.(8分)解方程 (1)0.5x -0.7=6.5-1.3x(2)x+32-2=-2x−2520.(6分)如图,已知平面上四个点A ,B ,C ,D ,请按要求画图并回答问题. (1)连接AB ,延长AB 到E ,使BE=AB. (2)分别画直线AC 、射线AD.(3)在射线AD 上找点P ,使PC+PB 最小,此画图的依据是________.第15题图AB第17题图21.(7分)高新区某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成如图所示两幅统计图,请根据图中的信息,完成下列问题.(1)设学校这次调查共抽取了n 名学生,则n=________. (2)请你补全条形统计图.(3)设该校共有学生2400名,请你估计该校有多少名学生喜欢跳绳?22.(7分)某商店用3135元购进了两种新型玻璃保温杯共60个,这两种玻璃保温杯的进价、标价如表所示.(1)这两种玻璃保温杯各购进多少个?(2)若A 型玻璃保温杯按标价的9折出售,B 型玻璃保温杯按标价的8.5折出售,且篮球跳绳足球 羽毛球 乒乓球 25%20%20% 25% 10%AB D在运输过程中有2个A 型、1个B 型玻璃保温杯不慎损坏,不能进行销售,请问这批玻璃保温杯全部售出后,该商店共获利多少元?23.(7分)如图所示数表,由从1开始的连续自然数组成,观察规律并完成下列各题: (1)第六排从左往右第1个数为_______;第七排从左往右第1个数为________. (2)第a 排第1个数可以表示为_______.(用含a 的式子表示)(3)若第n 排的一个数和第(n+1)排的两个连续自然数能够放入如图所示的等边三角形中,则称该三角形为“数字三角形”,里面三个数字之和称为该数字三角形的“数字和”. 若第n 排和第(n+1)排中总共有39个“数字三角形”,其中一个“数字三角形”的“数字和”为2371,则该“数字三角形”中的三个数字分别为多少?24.(8分)如图所示,纸片甲、乙分别是长方形ABCD 和正方形EFGH ,将甲、乙纸片沿对角线AC ,EG 剪开,不重叠无空隙地拼接起来,其中间部分恰好可以放入一张正方形纸片OPQR ,与甲、乙纸片一起组成纸片丙的四边形NALM ,设AD=a ,AB=b.(1)求纸片乙的边长(用含字母a 、b 的代数式表示).A甲乙EH丙L3 26 54 7 8 9 10 1112 13 1415……1 第一排 第二排 第三排 第四排 第五排(2)探究纸片乙、丙面积之间的数量关系.25.(12分)如图,将两个完全一样的等腰直角三角尺如图叠放,∠B=∠D=90°,∠AOB=∠DOC=45°,使公共顶点与直线OF 上的点O 重合,∠DOF=10°,∠AOD=70°. (1)∠BOF=________.(2)若三角尺AOB 绕点0以每秒10°的速度顺时针旋转一周,设旋转时间为t 秒,在旋转的过程中,直线OA 恰好平分∠COF ,求t 的值.(3)在(2)的条件下另一个三角尺OCD 也绕点O 以每秒5°的速度顺时针旋转.当三角尺AOB 的边OA 平分∠COD 时,求t 的值?(自行画图分析)西安市高新一中2023-2024学年度第一学期期末考试试题七年级数学参考答案一、选择题(共10小题,每小题3分,计30分) 1.下列运算结果为负数的是 A.|-2|B. (-2)2C.-(-2)D.-(-2)21.解:|-2|=2,(-2)2=4,-(-2)=2,-(-2)2=-4,故选D 。
2023年吉林省长春市七年级上学期数学期末测试卷(含答案)一、选择题(本题共10小题,共30分)1. −5的相反数是( )A. −5B. 5C. 15D. −152. 我国天问一号火星探测器于2021年5月15日成功着陆火星表面.经测算,地球跟火星最远距离约400000000千米,其中数据400000000科学记数法表示为( )A. 4×109B. 40×107C. 4×108D. 0.4×1093. 下列几何体的展开图中,能围成圆柱的是( )A. B. C. D.4. 将多项式−9+x3+3xy2−x2y按x的降幂排列的结果为( )A. x3+x2y−3xy2−9B. −9+3xy2−x2y+x3C. −9−3xy2+x2y+x3D. x3−x2y+3xy2−95. 如图,直线AB经过点O,射线OA是北偏东40°方向,则射线OB的方位角是( )A. 南偏西50°B. 南偏西40°C. 北偏西50°D. 北偏西40°6. 下列计算正确的是( )A. 2x+4x=8x2B. 9x2y−9yx2=0C. 7x2−3x2=4D. 3x+2y=5xy7. 含30°角的直角三角板与直线a,b的位置关系如图所示,已知a//b,∠1=35°.则∠ADC的度数是( )A. 35°B. 45°C. 55°D. 65°8. 如图,点C、D为线段AB上的两点,AC:CD:BD=3:6:4,若AB=13,则CD等于( )A. 4B. 5C. 6D. 79. 如图,AB//CD,∠FGB=155°,FG平分∠EFD,则∠BEF的大小为( )A. 100°B. 110°C. 120°D. 130°10. 按下面图示的程序计算,若开始输入的值x为正数,最后输出的结果为11,则满足条件的正数x有( )A. 1个B. 2个C. 3个D. 4个二、填空题(本题共10小题,共30分)11. 若上升15米记作+15米,则下降12米记作______.12. 计算:2a2−(a2+2)=______ .13. 比较大小:−21______−2.3.(填“>”、“<”或“=”)314. 用四舍五入法,对0.2356精确到百分位得到的近似数为______.15. 已知∠A=23°9′,则∠A的余角是______(用度、分、秒表示).16. 如图,点D是线段AB的中点,C是线段AD的中点,若AB=8cm,则线段CD=______ cm.17. 某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为元.18. 若9a−3b+1=0,则3a−b+2的值是______.19. 如图是用棋子摆成的,按照这种摆法,第n个图形中共有______棋子.20. 将一张长方形纸片按如图所示的方式折叠,EN,EM为折痕,折叠后点A′,B′,E在同一直线上,已知∠AEN=32°,∠MEB′的度数为______.三、解答题(本题共6小题,共60分)21.计算:(1)(−5)×(−7)×2;(2)−14+(−2)÷(−13)−|−9|.(3)(23−14+16)×(−24);(4)(3x2+4−5x3)−(x3−3+3x2).22. 2(3ab2−a3b)−3(2ab2−a3b),其中a=−1,b=4.223. 如图,在9×6的正方形网格中,每个小正方形的顶点都称为格点,点A、B、C都在格点上.(1)画射线AC;(2)找一格点D,使得直线CD//AB,画出直线CD;(3)找一格点E,使得直线CE⊥AB于点H,画出直线CE,并注明垂足H.(保留作图痕迹,并做好必要的标注)24. 如图长方形的长为a,宽为2b,(1)用含a、b的式子表示图中阴影部分的面积S.(2)当a=5cm,b=2cm时,求阴影部分面积S的值.(其中π取3.14)25. 阅读理解,补全证明过程及推理依据.已知:如图,点E在直线DF上,点B在直线AC上,∠1=∠2,∠3=∠4.求证∠A=∠F证明:∵∠1=∠2(已知)∠2=∠DGF(______)∴∠1=∠DGF(等量代换)∴______//______(______)∴∠3+∠______=180°(______)又∵∠3=∠4(已知)∴∠4+∠C=180°(等量代换)∴______//______(______)∴∠A=∠F(______)26. 【感知】如图①,一个点从数轴上原点开始,先向右移动3个单位长度,再向左移动5个单位长度.可以看出,终点表示数−2.【应用】点A表示数−3,点M从点A开始,先向右移动10个单位长度,再向左移动15个单位长度,此时点M表示数______;A、M两点距离为______.【拓展】点B表示数b,点N从点B开始,先向右移动m(m>0)个单位长度,再向左移动n(n>0)个单位长度,此时点N表示数______;B、N两点距离为______.【探究】如图②,点C表示数−5,D表示数4.点P从点C出发,以每秒2个单位长度的速度向右移动;与此同时,点Q从点D出发,以每秒1个单位长度的速度向左移动,设点P 的运动时间为t(t>0)秒.(1)用含t的代数式表示点P和点Q表示的数;(2)求点P、Q表示的数相同时t的值;(3)求t=1和t=4时P、Q两点的距离;(4)用含t的代数式表示P、Q两点的距离.参考答案1.【答案】B【解析】【分析】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.根据相反数的定义直接求得结果.【解答】解:−5的相反数是5.故选:B.2.【答案】C【解析】解:400000000=4×108,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法,关键是确定a的值以及n的值.3.【答案】D【解析】解:A、可以围成长方体,故此选项不合题意;B、可以围成四棱锥,故此选项不合题意;C、可以围成圆锥,故此选项不合题意;D、可以围成圆柱,故此选项符合题意;故选:D.直接利用展开图折叠乘几何体的形状,分析得出答案.此题主要考查了展开图折叠成几何体,正确掌握基本图形与几何体的对应是解题关键.4.【答案】D【解析】解:−9+x3+3xy2−x2y按x的降幂排列为:x3−x2y+3xy2−9,故选:D.先确定各项中x的次数,再排列.本题考查多项式的降幂排列,搞清每项中x的次数是求解本题的关键.5.【答案】B【解析】解:(1)射线OA表示的方向是北偏东40°,射线OB表示的方向是南偏西40°.根据方向角的概念进行判断.本题考查的是方向角的确定,方位角是表示方向的角,以正北,正南方向为基准,来描述物体所处的方向、画方位角,以正南或正北方向作方位角的始边,另一边则表示对象所处的方向的射线.6.【答案】B【解析】解:A.2x+4x=6x,故本选项不合题意;B.9x2y−9yx2=0,故本选项符合题意;C.7x2−3x2=4x2,故本选项不合题意;D.3x与2y不是同类项,所以不能合并,故本选项不合题意.故选:B.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此判断即可.本题考查了合并同类项,掌握合并同类项法则是解答本题的关键.7.【答案】C【解析】解:∵a//b,∴∠BDC=∠1=35°.又∵∠ADB=90°,∴∠ADC=90°−35°=55°.故选:C.由a//b,利用“两直线平行,内错角相等”可求出∠BDC的度数,结合∠ADB=90°可求出∠ADC的度数.本题考查了平行线的性质,牢记“两直线平行,内错角相等”是解题的关键.8.【答案】C【解析】解:∵AC:CD:BD=3:6:4,∴设AC=3x,CD=6x,BD=4x,∴AB=13x,∵AB=13,∴13x=13,∴x=1,∴CD=6x=6.根据AC:CD:BD=3:6:4,可设AC=3x,CD=6x,BD=4x,所以AB=13x,根据AB=13,得方程13x=13,解得x=1,即可求出CD=6x=6.本题考查了两点间的距离,设未知数列方程是解题关键.9.【答案】D【解析】解:∵AB//CD,∠FGB=155°,∴∠BEF+∠EFD=180°,∠GFD=180°−∠FGB=180°−155°=25°,∵FG平分∠EFD,∴∠EFD=2∠GFD=2×25°=50°,∴∠BEF=180°−∠EFD=180°−50°=130°,故选:D.利用平行线的性质,角平分线的性质计算.本题考查了平行线的性质和角平分线的性质,解题的关键是掌握平行线的性质.10.【答案】C【解析】解:∵2×5+1=11,∴开始输入的值x为5时,最后输出的结果为11,由程序图可知,当第一次输出的结果为5时,再重新输入后输出的结果为11,∵2×2=1=5,∴开始输入的值x为2时,最后输出的结果为11,∵2×1+1=2,2∴开始输入的值x为1时,最后输出的结果为11,2时,最后输出的结果为11,综上,开始输入的值x为5或2或12故选:C.利用程序图计算出输出的结果为11时,输入的x的值为5,再利用程序图计算出输出的结果,由此为5时,输入的x的值为2,再利用程序图计算出输出的结果为2时,输入的x的值为12得出结论.本题主要考查了求代数式的值,有理数的混合运算,本题是操作型题目,理解程序图的操作方法并熟练运用是解题的关键.11.【答案】−12【解析】解:若上升15米记作+15米,则下降12米记作−12米.故答案为:−12.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12.【答案】a2−2【解析】解:原式=2a2−a2−2=a2−2,故答案为:a2−2.整式的加减混合运算,先去括号,然后合并同类项进行化简.本题考查整式的加减运算,掌握去括号法则是解题基础.13.【答案】<【解析】解:∵|−213|=213≈2.33,|−2.3|=2.3,2.33>2.3,∴−2.33<−2.3,∴−213<−2.3.故答案为:<.直接根据负数比较大小的法则进行比较即可.本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.14.【答案】0.24【解析】解:0.2356≈0.24(精确到百分位).故答案为:0.24.把千分位上的数字5进行四舍五入即可.本题考查了近似数:“精确到第几位”是近似数精确度常用的表示形式.15.【答案】66°51′【解析】解:∵∠A=23°9′,∴∠A的余角是:90°−23°9′=66°51′,故答案为:66°51′.利用余角的定义,角的和差计算即可.本题考查了余角的定义和角的计算,解题的关键是掌握余角的定义和角的计算,度分秒的换算.16.【答案】2【解析】解:∵点D是线段AB的中点,AB=8cm,∴AD=12AB=12×8=4cm,∵C是线段AD的中点∴CD=12AD=12×4=2cm.故答案为:2.先根据点D是线段AB的中点,AB=8cm求出线段AD的长,再根据C是线段AD的中点即可求出线段CD的长.本题考查的是两点间距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.17.【答案】1.08a【解析】【分析】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.根据题意可以得到最后打折后的零售价,从而可以解答本题.【解析】解:由题意可得,该型号洗衣机的零售价为:a(1+20%)×0.9=1.08a(元),故答案为:1.08a.18.【答案】53【解析】解:∵9a−3b+1=0,∴9a−3b=−1,∴3a−b=−13,∴3a−b+2=−13+2=53,故答案为:53.根据已知可求出3a−b=−13,然后代入式子中,进行计算即可解答.本题考查了代数式求值,熟练掌握求代数式值中的整体思想是解题的关键.19.【答案】(n2+n)【解析】解:由图形的变化可知,第1个图形有1×2个棋子,第2个图形有2×3个棋子,第3个图形有3×4个棋子,...第n个图形有n×(n+1)个棋子,即n2+n个棋子,故答案为:(n2+n).由图形的变化可知,第一个图形有1×2个棋子,第二个图有2×3个棋子,则可总结出第n个图形有n(n+1)个棋子.本题主要考查图形的变化规律,根据图形的变化规律总结出第n个图形有n(n+1)个棋子是解题的关键.20.【答案】58°【解析】解:由题意知∠AEN=∠NEA′,∠MEB=∠MEB′,则∠A′EN=12∠AEA′,∠B′EM=12∠B′EB,所以∠MEN=12∠AEB=12×180°=90°,∵∠AEN=32°,∴∠MEB′=90°−32°=58°.故答案为:58°.根据折叠的性质和角平分线的定义即可得到结论.本题考查了折叠的性质,角的计算,解决此类问题的关键,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.21.【答案】解:(1)(−5)×(−7)×2=35×2=70;(2)−14+(−2)÷(−13)−|−9|=−1+(−2)×(−3)−9=−1+6−9=−4;(3)(23−14+16)×(−24)=23×(−24)−14×(−24)+16×(−24)=−16+6−4=−14;(4)(3x2+4−5x3)−(x3−3+3x2)=3x2+4−5x3−x3+3−3x2=−6x3+7.【解析】(1)利用有理数的乘法的法则进行运算即可;(2)先算乘方,除法转为乘法,绝对值,再算乘法,最后算加减即可;(3)利用乘法的分配律进行运算即可;(4)先括号,再合并同类项即可.本题主要考查整式的加减,有理数的混合运算,解答的关键是对相应的运算法则的掌握.22.【答案】解:原式=6ab2−2a3b−6ab2+3a3b=a3b,当a=−12,b=4时,原式=−12.【解析】原式去括号合并得到最简结果吗,把a与b的值代入计算即可求出值.此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.23.【答案】解:(1)射线AC如图所示.(2)根据格点的特征找出点D,作直线CD如图所示.(3)根据格点特征找出点E,作直线EC交AB于H,如图所示.【解析】本题考查格点作图,(1)根据射线的定义作图即可;(2)(3)利用格点的特征作图即可.24.【答案】解:(1)∵长方形的长为a,宽为2b,∴S阴影=2ab−πb2;(2)a=5cm,b=2cm时,S=20−3.14×4=7.44(cm2),阴影即S阴影=7.44(cm2).【解析】(1)由图可得,阴影部分的面积是长方形的面积与两个直径为2b的半圆的面积之差,由长方形的长为a,宽为2b,从而可以表示出阴影部分的面积;(2)将a=5cm,b=2cm,代入第(1)问中求得的代数式即可求得阴影部分的面积.本题考查列代数式和代数式求值,解题的关键是明确题意,利用数形结合的思想找出所求问题需要的条件.25.【答案】解:∵∠1=∠2(已知)∠2=∠DGF(对顶角相等)∴∠1=∠DGF(等量代换)∴BD//CE(同位角相等,两直线平行)∴∠3+∠C=180°(两直线平行,同旁内角互补)又∵∠3=∠4(已知)∴∠4+∠C=180°(等量代换)∴AC//DF(同旁内角互补,两直线平行)∴∠A=∠F(两直线平行,内错角相等);故答案为:对顶角相等;BD;CE;同位角相等,两直线平行;C;两直线平行,同旁内角互补;AC,DF;同旁内角互补,两直线平行;两直线平行,内错角相等.【解析】先证明BD//CE,得出同旁内角互补∠3+∠C=180°,再由已知得出∠4+∠C=180°,证出AC//DF,即可得出结论.本题考查了平行线的判定与性质、对顶角相等的性质;熟练掌握平行线的判定与性质是解决问题的关键,注意两者的区别.26.【答案】−85b+m−n|m−n|【解析】解:【应用】点A表示数−3,点M从点A开始,先向右移动10个单位长度,再向左移动15个单位长度,那么终点M表示的数是−3+10−15=−8,A、B两点间的距离为−3−(−8)=5.故答案为:−8;5;【拓展】根据上述探究可知数轴上的点平移的规律是左减右加,数轴上的两点之间的距离可表示为两点所表示的数的差的绝对值.一般地,如果点A表示的数是b,将点A先向右移动m个单位长度,再向左移动n个单位长度,那么终点B表示的数是b+m−n,A、B两点间的距离为|a+m−n−a|=|m−n|.故答案为:b+m−n;|m−n|.【探究】(1)根据点P和点Q的运动可得,点P所对应的数为−5+2t;点Q所对应的数为4−t;(2)当点P、Q表示的数相同时,−5+2t=4−t,解得t=3;(3)当t=1时,点P所对应的数为:−3,点Q所对应的数为3,此时点P和点Q之间的距离为6;当t=4时,点P所对应的数为:3,点Q所对应的数为0,此时点P和点Q之间的距离为3;(4)根据【拓展】中两点之间的距离可知,PQ两点间的距离为:|−5+2t−(4−t)|=|3t−9|.【应用】根据数轴上的点向右平移加,向左平移减,可得B点表示的数,根据数轴上两点间的距离是大数减小数,可得答案;【拓展】根据数轴上的点向右平移加,向左平移减,可得B点表示的数,根据数轴上两点间的距离是两点所表示的数的差的绝对值,可得答案.【探究】(1)根据点P和点Q的运动可直接得到;(2)令(1)中两数相等即可;(3)分别求出两个时间P、Q所对应的数,再求距离即可;(4)根据【拓展】中两点之间的距离直接表达即可.本题考查了数轴,利用了数轴上点的平移规律:数轴上的点向右平移加,向左平移减,数轴上两点间的距离:两点所表示的数的差的绝对值.。
2022-2023学年七年级上学期数学期末检测试题(含答案)一、选择题(本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一个符合题意)1.(3分)下列选项中,是负分数的是()A.﹣5B.0C.﹣D.32.(3分)单项式x2yz2的次数为()A.B.6C.5D.33.(3分)2022年9月30日下午,成绵苍巴高速公路项目苍巴段凉水村隧道实现双线贯通,为明年建成通车奠定了坚实基础,在修公路时有时需要挖隧道,其体现的数学道理是()A.经过一点有无数条直线B.两点之间,线段最短C.两点之间,直线最短D.两点确定一条直线4.(3分)下列运用等式的性质进行变形,正确的是()A.由3m﹣1=5得到3m=5+1B.由3x=﹣6得到x=2C.由ac=bc得到a=b D.由a=b得到a+c=b﹣c5.(3分)脆香甜柚是苍溪县农业局从柚芽变中选育出来的早熟良种,平均单果重1300克左右,已种植1万余亩,商品果产量6000吨,单价一般为每千克6元,可得毛利润约为36000000元.数据36000000用科学记数法可表示为()A.3.6×107B.0.36×108C.3.6×108D.3.6×1066.(3分)一个两位数,用x表示十位数字,用y表示个位数字,则这个两位数表示为()A.xy B.x+y C.10y+x D.10x+y7.(3分)如图所示是一个正方体的展开图,图中的六个正方形内分别标有:有、志、者、事、竟、成,将其围成一个正方体后,与“有”所在面相对面上的字是()A.竟B.成C.事D.者8.(3分)如果|a+2|+|b﹣1|=0,那么(a+b)2022的值为()A.﹣1B.1C.﹣2022D.20229.(3分)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售20件的销售额,与按这种服装每件的标价降低27元销售25件的销售额相等.设这种服装每件的标价为x元,根据题意可列方程为()A.20×8x=25(x﹣27)B.20×0.8x=25(x﹣27)C.20×8x=25(x+27)D.20×0.8x=25(x+27)10.(3分)已知A,B,C三点在数轴上从左向右依次排列,且AC=3AB=6,若B为原点,则点A所表示的数是()A.﹣4B.4C.﹣2D.2二、填空题(本大题共6小题,每小题4分,共24分,把正确答案直接写在答题卡对应题目的横线上)11.(4分)2022的相反数是.12.(4分)比较大小:﹣﹣.(用“>”“=”或“<”连接)13.(4分)若x=2是关于x的方程3x﹣10=2a的解,则a=.14.(4分)已知a2+a=3,则2a2+2a+2020的值为.15.(4分)如图,∠AOC=∠DOE=90°,如果∠AOE=65°,那么∠COD的度数是.16.(4分)如图是用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍;拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;…照这样拼图,则第4个图形需要根火柴棍,第n个图形需要根火柴棍.三、解答题(本大题共10小题,共96分,要求写出必要的解题步骤或证明过程)17.(6分)计算:(1)()×(﹣63);(2)﹣22×(﹣)﹣(﹣3)3÷9.18.(8分)解方程:(1)6﹣3x=2(2﹣x);(2)﹣1=.19.(8分)先化简,再求值:3ab﹣2(ab﹣a2b)﹣3a2b,其中a=2,6=﹣1.20.(9分)如图是由8个相同的小立方体组成的几何体,请在下列方框内画出它的从三个方向所看到的平面图形(线条用黑色签字笔描黑).21.(9分)红阳猕猴桃是在苍溪野生资源中选育出的珍稀品种,为中国特有,小青买了10箱红阳猕猴桃,每箱的标准质量是5千克,将超出标准质量的千克数记为正数,不足标准质量的千克数记为负数,记录结果如下:﹣0.25,+0.15,﹣0.05,+0.2,﹣0.1,﹣0.2,﹣0.1,+0.05,0,+0.1(1)求这10箱红阳猕猴桃的质量;(2)求这10箱红阳猕猴桃的平均质量.22.(10分)(1)如图所示,已知线段a,b.①作射线AM;②在射线AM上依次截取AC=CD=a;③在线段DA上截取DB=b.由作图可知AB=.(用含a,b的式子表示)(2)在(1)的作图基础上,若a=10,b=8,E为线段AC的中点,F为线段BD的中点,求线段EF的长.23.(10分)为了全面贯彻党的教育方针,培养学生劳动技能,学校组织七年级学生乘车前往某社会实践基地进行劳动实践活动.若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量增加4辆,并空出2个座位.问:计划调配36座的新能源客车多少辆?该校七年级共有多少名学生?24.(10分)如图所示,∠AOB=90°,OD,OE分别是∠AOC和∠BOC的平分线.(1)当∠BOC=30°时,求∠DOE的度数;(2)当∠BOC为锐角a时,∠DOE 的度数是.(直接写出结果)25.(12分)为响应国家节能减排的号召,各地市先后出台了居民用电“阶梯价格”制度,下表是某市的阶梯电价收费标准(每月):阶梯用电量(单位:度)电费价格(单位:元/度)一档不超过220度的电量0.500.55二档220至420度(含420度)的电量三档超过420度的电量0.80(1)小明家八月份共用电450度,求小明家八月份应交多少电费?(2)如果某户居民某月用电a度(220<a≤420),请用含a的式子表示该户居民该月应交电费;(3)小刚家十月份的电费是176元,求小刚家该月用电多少度.26.(14分)已知数轴上两点A,B表示的数分别为﹣4,2.(1)动点P从A出发,以每秒3个单位的速度沿数轴向右匀速运动.另一动点R从B 出发,以每秒1个单位的速度沿数轴向右匀速运动,若点P、R同时出发,点P运动秒追上点R,此时点P在数轴上表示的数是.(2)若点P从A出发,以每秒2个单位的速度沿数轴向右匀速运动,点R从B出发,以每秒1个单位的速度沿数轴向左匀速运动,设点P、R同时出发,运动时间为t秒,试探究:t为何值时,点P、R两点间的距离为4个单位?参考答案一、选择题(本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一个符合题意)1.(3分)下列选项中,是负分数的是()A.﹣5B.0C.﹣D.3【解答】解:﹣是分数,且小于0,是负分数,故选:C.2.(3分)单项式x2yz2的次数为()A.B.6C.5D.3【解答】解:单项式的次数是:2+1+2=5.故选:C.3.(3分)2022年9月30日下午,成绵苍巴高速公路项目苍巴段凉水村隧道实现双线贯通,为明年建成通车奠定了坚实基础,在修公路时有时需要挖隧道,其体现的数学道理是()A.经过一点有无数条直线B.两点之间,线段最短C.两点之间,直线最短D.两点确定一条直线【解答】解:2022年9月30日下午,成绵苍巴高速公路项目苍巴段凉水村隧道实现双线贯通,为明年建成通车奠定了坚实基础,在修公路时有时需要挖隧道,其体现的数学道理是两点之间,线段最短,故选:B.4.(3分)下列运用等式的性质进行变形,正确的是()A.由3m﹣1=5得到3m=5+1B.由3x=﹣6得到x=2C.由ac=bc得到a=b D.由a=b得到a+c=b﹣c【解答】解:A、由3m﹣1=5得到3m=5+1,故A符合题意;B、由3x=﹣6得到x=﹣2,故B不符合题意;C、由ac=bc(c≠0)得到a=b,故C不符合题意;D、由a=b得到a+c=b+c,故D不符合题意;故选:A.5.(3分)脆香甜柚是苍溪县农业局从柚芽变中选育出来的早熟良种,平均单果重1300克左右,已种植1万余亩,商品果产量6000吨,单价一般为每千克6元,可得毛利润约为36000000元.数据36000000用科学记数法可表示为()A.3.6×107B.0.36×108C.3.6×108D.3.6×106【解答】解:36000000=3.6×107.故选:A.6.(3分)一个两位数,用x表示十位数字,用y表示个位数字,则这个两位数表示为()A.xy B.x+y C.10y+x D.10x+y【解答】解:个位数字是y,十位数字是x,这个两位数可表示为10x+y.故选:D.7.(3分)如图所示是一个正方体的展开图,图中的六个正方形内分别标有:有、志、者、事、竟、成,将其围成一个正方体后,与“有”所在面相对面上的字是()A.竟B.成C.事D.者【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“志”相对的字是“事”;“者”相对的字是“成”;“有”相对的字是“竟”.故选:A.8.(3分)如果|a+2|+|b﹣1|=0,那么(a+b)2022的值为()A.﹣1B.1C.﹣2022D.2022【解答】解:由题意得,a+2=0,b﹣1=0,解得a=﹣2,b=1,∴(a+b)2022=(﹣2+1)2022=1.故选:B.9.(3分)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售20件的销售额,与按这种服装每件的标价降低27元销售25件的销售额相等.设这种服装每件的标价为x元,根据题意可列方程为()A.20×8x=25(x﹣27)B.20×0.8x=25(x﹣27)C.20×8x=25(x+27)D.20×0.8x=25(x+27)【解答】解:根据题意得20×0.8x=25(x﹣27).故选:B.10.(3分)已知A,B,C三点在数轴上从左向右依次排列,且AC=3AB=6,若B为原点,则点A所表示的数是()A.﹣4B.4C.﹣2D.2【解答】解:∵3AB=6,∴AB=2,∵B为原点,A,B,C三点在数轴上从左向右排列,∴点A在原点左侧,∴点A表示的数是﹣2,故选:C.二、填空题(本大题共6小题,每小题4分,共24分,把正确答案直接写在答题卡对应题目的横线上)11.(4分)2022的相反数是﹣2022.【解答】解:2022的相反数是:﹣2022.故答案为:﹣2022.12.(4分)比较大小:﹣>﹣.(用“>”“=”或“<”连接)【解答】解:﹣=﹣,﹣=﹣,∵<,∴﹣>﹣,∴﹣>﹣.故答案为:>.13.(4分)若x=2是关于x的方程3x﹣10=2a的解,则a=﹣2.【解答】解:把x=2代入方程得6﹣10=2a,解得a=﹣2.故答案是:﹣2.14.(4分)已知a2+a=3,则2a2+2a+2020的值为2026.【解答】解:当a2+a=3,2a2+2a+2020=2(a2+a)+2020=2×3+2020=6+2020=2026.故答案为:2026.15.(4分)如图,∠AOC=∠DOE=90°,如果∠AOE=65°,那么∠COD的度数是115°.【解答】解:∵∠AOC=∠DOE=90°,∠AOE=65°,∴∠AOD=∠DOE﹣∠AOE=90°﹣65°=25°,∴∠COD=∠AOC+∠AOD=90°+25°=115°,故答案为:115°.16.(4分)如图是用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍;拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;…照这样拼图,则第4个图形需要9根火柴棍,第n个图形需要(2n+1)根火柴棍.【解答】解:设第n个图形需要a n(n为正整数)根火柴棒,观察发现规律:第1个图形需要火柴棍:3=1×2+1,第2个图形需要火柴棍:5=2×2+1;第3个图形需要火柴棍:7=3×2+1,第4个图形需要火柴棍:4×2+1=9,……,∴第n个图形需要火柴棍:2n+1.故答案为:9,(2n+1).三、解答题(本大题共10小题,共96分,要求写出必要的解题步骤或证明过程)17.(6分)计算:(1)()×(﹣63);(2)﹣22×(﹣)﹣(﹣3)3÷9.【解答】解:(1)原式=×(﹣63)﹣×(﹣63)﹣×(﹣63)=﹣7+18+12=23;(2)原式=﹣4×(﹣)﹣(﹣27)÷9=3+3=6.18.(8分)解方程:(1)6﹣3x=2(2﹣x);(2)﹣1=.【解答】解:(1)6﹣3x=2(2﹣x),去括号,得6﹣3x=4﹣2x,移项,得2x﹣3x=4﹣6,合并同类项,得﹣x=﹣2,系数化为1,得x=2;(2)﹣1=,去分母,得3(3x﹣1)﹣6=2(4x﹣7),去括号,得9x﹣3﹣6=8x﹣14,移项,得9x﹣8x=3+6﹣14,合并同类项,得x=﹣5.19.(8分)先化简,再求值:3ab﹣2(ab﹣a2b)﹣3a2b,其中a=2,6=﹣1.【解答】解:3ab﹣2(ab﹣a2b)﹣3a2b=3ab﹣2ab+3a2b﹣3a2b=ab,当a=2,b=﹣1时,原式=2×(﹣1)=﹣2.20.(9分)如图是由8个相同的小立方体组成的几何体,请在下列方框内画出它的从三个方向所看到的平面图形(线条用黑色签字笔描黑).【解答】解:从正面看从左面看从上面看21.(9分)红阳猕猴桃是在苍溪野生资源中选育出的珍稀品种,为中国特有,小青买了10箱红阳猕猴桃,每箱的标准质量是5千克,将超出标准质量的千克数记为正数,不足标准质量的千克数记为负数,记录结果如下:﹣0.25,+0.15,﹣0.05,+0.2,﹣0.1,﹣0.2,﹣0.1,+0.05,0,+0.1(1)求这10箱红阳猕猴桃的质量;(2)求这10箱红阳猕猴桃的平均质量.【解答】解:(1)10×5+(﹣0.25+0.15﹣0.05+0.2﹣0.1﹣0.2﹣0.1+0.05+0+0.1)=50+(﹣0.2)=49.8(千克),答:这10箱红阳猕猴桃的质量为49.8千克;(2)49.8÷10=4.98(千克),答:这10箱红阳猕猴桃的平均质量为4.98千克.22.(10分)(1)如图所示,已知线段a,b.①作射线AM;②在射线AM上依次截取AC=CD=a;③在线段DA上截取DB=b.由作图可知AB=2a﹣b.(用含a,b的式子表示)(2)在(1)的作图基础上,若a=10,b=8,E为线段AC的中点,F为线段BD的中点,求线段EF的长.【解答】解:(1)由作图可知,AD=2a,DB=b,∴AB=AD﹣DB=2a﹣b.故答案为:2a﹣b;(2)∵E为线段AC的中点,F为线段BD的中点,a=10,b=8,∴AE=AC=a=5,FD=BD=b=4,由(1)可知,AD=2a=20,∴EF=AD﹣AE﹣DF=20﹣5﹣4=11.23.(10分)为了全面贯彻党的教育方针,培养学生劳动技能,学校组织七年级学生乘车前往某社会实践基地进行劳动实践活动.若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量增加4辆,并空出2个座位.问:计划调配36座的新能源客车多少辆?该校七年级共有多少名学生?【解答】解:设计划调配36座的新能源客车x辆,则该校七年级共有(36x+2)名学生,根据题意得:36x+2=22(x+4)﹣2,解得:x=6,∴36x+2=36×6+2=218.答:计划调配36座的新能源客车6辆,该校七年级共有218名学生.24.(10分)如图所示,∠AOB=90°,OD,OE分别是∠AOC和∠BOC的平分线.(1)当∠BOC=30°时,求∠DOE的度数;(2)当∠BOC为锐角a时,∠DOE的度数是45°.(直接写出结果)【解答】解:(1)∵∠BOC=30°,∠AOB=90°,∴∠AOC=∠BOC+∠AOB=30°+90°=120°,又∵OD,OE平分∠AOC和∠BOC的角平分线,∴∠COD=∠AOC=×120°=60°,∠COE=∠BOC=×30°=15°,∴∠DOE=∠COD﹣∠COE=60°﹣15°=45°;即∠DOE的度数是45°;(2)45°,理由如下:∵∠BOC=α,∠AOB=90°,∴∠AOC=∠BOC+∠AOB=α+90°,又∵OD,OE平分∠AOC和∠BOC的角平分线,∴∠COD=∠AOC=×(α+90°)=α+45°,∠COE=∠BOC=α,∴∠DOE=∠COD﹣∠COE=α+45°﹣α=45°.故答案为:45°.25.(12分)为响应国家节能减排的号召,各地市先后出台了居民用电“阶梯价格”制度,下表是某市的阶梯电价收费标准(每月):阶梯用电量(单位:度)电费价格(单位:元/度)一档不超过220度的电量0.500.55二档220至420度(含420度)的电量三档超过420度的电量0.80(1)小明家八月份共用电450度,求小明家八月份应交多少电费?(2)如果某户居民某月用电a度(220<a≤420),请用含a的式子表示该户居民该月应交电费;(3)小刚家十月份的电费是176元,求小刚家该月用电多少度.【解答】解:(1)0.5×220+0.55×(420﹣220)+0.8×(450﹣420)=0.5×220+0.55×200+0.8×30=110+110+24=244(元).答:小明家八月份应交244元电费;(2)根据题意得:该户居民该月应交电费0.5×220+0.55(a﹣220)=(0.55a﹣11)元.(3)根据题意得:0.55a﹣11=176,解得:a=340.答:小刚家该月用电340度.26.(14分)已知数轴上两点A,B表示的数分别为﹣4,2.(1)动点P从A出发,以每秒3个单位的速度沿数轴向右匀速运动.另一动点R从B 出发,以每秒1个单位的速度沿数轴向右匀速运动,若点P、R同时出发,点P运动3秒追上点R,此时点P在数轴上表示的数是2.(2)若点P从A出发,以每秒2个单位的速度沿数轴向右匀速运动,点R从B出发,以每秒1个单位的速度沿数轴向左匀速运动,设点P、R同时出发,运动时间为t秒,试探究:t为何值时,点P、R两点间的距离为4个单位?【解答】解:(1)设点P、R运动时间是t秒,则运动后P表示的数是﹣4+3t,R运动后表示的数是2+t,根据题意得:﹣4+3t=2+t,解得t=3,∴点P运动3秒追上点R,此时点P在数轴上表示的数是﹣4+3×3=5,故答案为:3,5;(2)当点P、R运动时间为t秒时,点P在数轴上表示的数是﹣4+2t,点Q在数轴上表示的数是2﹣t,根据题意得:|(﹣4+2t)﹣(2﹣t)|=4,化简得:3t﹣6=4或3t﹣6=﹣4,解得t=或t=,答:当t=秒或秒时,点P、R两点间的距离为4个单位.。
人教版数学七年级上册期末考试试题一、选择题(每小题 3 分,共 30 分)1. a 、b ,在数轴上表示如图 1,下列判断正确的是()A. a + b > 0B .b + 1 > 0 C .- b - 1 < 0 D .a + 1 > 0 2. 如图 2,在下列说法中错误的是( )A. 射线OA 的方向是正西方向B. 射线OB 的方向是东北方向C. 射线OC 的方向是南偏东 60°D. 射线OD 的方向是南偏西 55°3. 下列运算正确的是( )A. 5x - 3x = 2B. 2a + 3b = 5abC. 2ab - ba = abD. - (a - b ) = b + a4. 如果有理数a , b 满足ab > 0 , a + b < 0 ,则下列说法正确的是()A. a > 0, b > 0B. a < 0, b > 0C. a < 0, b < 0D. a > 0, b < 05.若(1 - m ) 2+ | n + 2 |= 0 ,如m + n 的值为()A. -1B. - 3C.3D.不确定6.7. 平面内有三个点,过任意两点画一条直线,则可以画直线的条数是()A.2 条B.3 条C.4 条D.1 条或 3 条8.将长方形的纸ABCD 沿 AE 折叠,得到如图 3 所示的图形,已知∠CED ′=60.则∠AED 的是( ) A.60º B.50º C.75ºD.55º9.在正方体的表面上画有如图4 a 所示的粗线,图4 b 是其展开图的示意图,但只在A 面上有粗线,那么将图 4 a 中剩余两个面中的粗线画入图4 b 中,画法正确的是()若| a |> 0 ,那么() A. a > 0 B. a < 0 C. a ≠ 0D. a 为任意有理数10. 一家三口人(父亲、母亲、女儿)准备参加旅游团外出旅游,甲旅行社告知“父母全票,女儿半价优4惠”,乙旅行社告知家庭可按团体票计价,即每人均按全价 5收费。
西安西工大附中2023-2024学年第一学期期末考试七年级数学试题一、选择题(共10小题,每小题3分,计30分) 1.计算2-1的结果是( ) A.-2B.2C.-12D.122.如图所示的几何体的左视图是( )3.如图,已知点B 在点A 的北偏东65°方向,点C 在点A 的南偏西20°方向,则∠BAC 的度数为( ) A.135°B.130°C.125°D.120°4.下列计算,正确的是( ) A.a 2·a 3=a 6B.a 2+a 3=a 5C.(-a 2)3=-a 6D.a 6÷(-a)3=-a 25.点O 、A 、B 、C 在数轴上的位置如图所示,其中点A 、B 到原点O 的距离相等,点A 、C 之间的距离为2.若点C 表示的数为x ,则点B 所表示的数为( ) A.x +2B.x -2C.-x +2D.-x -26.已知a 是两位数,b 是三位数,把b 直接写在a 的右面,就成为一个五位数,这个五位数用代数式可表示成( )第3题图第5题图D.C.B.A. 第2题图A.abB.100a+bC.a+100bD.1000a+b7.若M(5x -y 2)=y 4-25x 2,那么代数式M 应为( ) A.5x 2-y 2B.5x +y 2C.-y 2+5xD.-5x -y 28.《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,则最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,则可列方程为( ) A.x+23=x 2-9B.x 3+2=x−92C.x 3-2=x+92D.x−23=x 2+99.计算24046×(-0.25)2024的结果为() A.-22022B.22022C.14D.-1410.有理数a 、b 、c 所对应的点在数轴上的位置如图所示,化简|a -b|-|2c -a|+|c -b|的结果是( ) A.cB.3c -2bC.2a -3cD.-3c二、填空题(共6小题,每小题3分,计18分)11.西安市冬季里某一天的气温为-7℃~-1℃,这一天西安市的温差是____℃. 12.科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,即0.00000000022米.将0.00000000022用科学记数法表示为________.13.小明用若干根等长的小木棒设计出如图所示的图形,则第n 个图形中有小木棒____根.第13题图第3个图形第1个图形第2个图形第4个图形…第10题图14.已知m 、n 为有理数,且4x 2+m x +9=(2x +n)2,则m+n 的值为____.15.如图,∠AOB=126°,射线OC 在∠AOB 外,且∠BOC=2∠AOC ,若OM 平分∠BOC ,ON 平分∠AOC ,则∠MON=____°.16.在如图所示的三阶幻方中,填写了一些数、代数式和汉字(其中每个代数式或汉字都表示一个数),若每一横行,每一竖列,以及每条对角线上的3个数之和都相等,则“诚实守信”这四个字表示的数之和为____. 三、解答题(共7小题,计52分) 17.计算题(每小题4分,共12分) (1)-14÷(-5)2×(-53)-|0.8-1|(2)(-2x 2)3+ x 2·x 4-(-3x 3)2(3)解方程:3+x−12=x -x+1418.(5分)先化简,再求值:[(x -2y)2-(x +3y)(x -3y)+3y 2]÷(-4y),其中x =2023,y=-14.19.(6分)列方程解决下面问题.甲、乙两人分别从A ,B 两地同时出发、沿同一条路线相向匀速行驶,已知出发后3h 两人相遇.乙的速度比甲快20km/h ,相遇后乙再经1h 到达A 地.求甲、乙两人的速度. 20.(6分)如图,B 、C 两点把线段AD 分成2︰5︰3三部分,M 为AD 的中点,BM=6,求CM 的长度.第20题图ABM C D第15题图AN BC MO0 信实守诚-8-11 x +1 -x -3第16题图21.(6分)为了解某校七年级学生数学期中考试情况,小亮随机抽取了部分学生的数学成绩(成绩都为整数)为样本,分为A(100~90分)、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果制成如下统计图,请根据图中信息解答以下问题.(1)这次抽样调查的样本容量为_____. (2)请补全条形统计图.(3)这个学校七年级共有学生1200人,若分数为80分(含80分)以上为优秀,估计这次七年级学生期中数学考试成绩为优秀的学生人数大约有多少?22.(7分)如图①,点O 为直线AB 上一点,过点O 作射线0C ,使∠AOC=60°,将一把直角三角尺的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图①中的三角尺绕点O 逆时针旋转至图②,使得点N 在OC 的反向延长线上,求∠MOB 的度数.(2)将图①中的三角尺绕点O 顺时针旋转至图③,使ON 在∠AOC 的内部,请探究∠AOM 与∠NOC 之间的数量关系,并说明理由.第21题图A B C D 25%50%10%CD 等级23.(10分)探究与实践 问题发现(1)用四个长为a ,宽为b 的长方形拼成如图所示的正方形ABCD ,由此可以得到(a+b)2、(a -b)2、ab 的等量关系是_____. 问题探究(2)如图②,将边长为a 的正方形APCD 和边长为b 正方形BPEF 拼在一起,使得A 、P 、B 共线,点E 落在PC 上,连接AB.若AB=8,△APE 的面积为7.5,求CE 的长度. 问题解决(3)如图③,某小区物业准备在小区内规划设计一块休闲娱乐区,其中BE 、CF 为两条互相垂直的道路,且BG=CG ,EG=FG ,四边形ABGF 与四边形CDEG 为长方形,现计划在两个三角形区域种植花草,两个长方形区域铺设塑胶地面,按规划要求,道路BE 的长度为80米.若种值花草每平方米需要100元,铺设塑胶地面每平方米需要30元,若物业为本次修建休闲娱乐区筹集了25万元,请你通过计算说明该物业筹集的资金是否够用?(道路的宽度均不计)第22题图图①B 图②BN 图③BM西安西工大附中2023-2024学年第一学期期末考试七年级数学试题参考答案一、选择题(共10小题,每小题3分,计30分) 1.计算2-1的结果是( ) A.-2B.2C.-12D.121.解:2-1=121=12,故选D 。
2023~2024学年度第一学期期末质量检测七年级数学试题考试时间:120分钟 试卷总分:150分第I 卷(本卷满分100分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡.上将正确答案的代号涂黑.1.2024−的倒数是( ) A .2024−B .2024C .12024−D .120242.下列各组中的两个单项式不是同类项的是( ) A .xy 与2xyB .23a b 与23abC .35与12−D .mn −与nm3.下列方程中,属于一元一次方程的是(A .3x y −=B .210x −=C .123x −=D .23x= 4.如图是由4个相同的正方体组成的几何体,从上面看这个几何体,所看到的平面图形是( )A .B .C .D .5.下列运算正确的是( )A .a b ab +=B .222a a a −=C .()2525a a +=+D .()a a b b −−=6.若1x =是方程260x m +−=的解,则m 的值是( ) A .4−B .4C .8−D .87.如图,射线OA 表示的方向是北偏西60°,若90AOB ∠=°,则射线OB 表示的方向是( )第7题 A .南偏西30°B .南偏西60°C .北偏东30°D .北偏东60°8.下列说法正确的是( ) A .射线AB 和射线BA 表示同一条射线B .已知A ,B ,C 三个点,若过其中任意两点作直线,则直线共有3条 C .若线段AP BP =,则P 是线段AB 的中点D .延长线段AB 和反向延长线段BA 的含义相同9.《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,若每3人共乘一辆车,则剩余2辆车;若每2人共乘一辆车,则剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,则可列方程是( ) A .2932x x+=− B .9232x x −+= C .9232x x +−= D .2932x x−=+ 10.如图,两个直角AOB ∠,COD ∠有公共顶点O ,下列结论:第10题①AOC BOD ∠=∠; ②AOD ∠是BOC ∠的补角;③若OC 平分AOB ∠,则OB 平分COD ∠;④AOD ∠的平分线与COB ∠的平分线是同一条射线. 其中正确的个数是( ) A .4B .3C .2D .1二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填在答卷指定的位置.11.用四舍五入法取近似值:1.804≈_________(精确到0.01). 12.计算16508432°°′′+=_________(结果用度、分表示).13.若单项式62m x y 与224n x y −的和仍是单项式,则m n +的值是_________.14.把方程534x y −=改写成用含x 的式子表示y 的形式是_________. 15.若α∠的余角比它的补角的14大15°,则α∠=_________. 16.如图,长方形纸片ABCD ,E 为边AD 上一点,将纸片沿EB ,EC 折叠,点A 落在A ′位置,点D 落在D ′位置,若10A ED ′′∠=°,则BEC ∠=_________.第16题三、解答题(共5小题,共52分)下列各题需要在答题卷指定位異写出文字说明、证明过程、计算步骤或作出图形.17.(本小题10分) 计算下列各题:(1)12(18)(7)(15)−−+−+−; (2)321832(2)(4)5+÷−−−×.18.(本小题10分) 解方程:(1)3212(1)x x −=−+; (2)3157146x x −−−=. 19.(本小题10分) 先化简再求值:()()22237427a ab a ab −+−−++,其中a ,b 满足方程组4316,215a b a b +=−=20.(本小题10分) 用方程(组)解决问题:(1)某车间有22名工人,每人每天可以生产1200个螺柱或2000个螺母.1个螺柱需要配2个螺母,为使每天生产的螺柱和螺母刚好配套,应安排生产螺柱和螺母的工人各多少名?(2)2台大收割机和5台小收割机同时工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机同时工作5小时共收割小麦8公顷.1台大收割机和1台小收割机每小时各收割小麦多少公顷? 21.(本小题12分) 如图,已知点A ,B ,C ,D .第21题(1)按要求画图: ①连接AD ; ②画射线BC ; ③画线段AB 的中点E ;④画一点F ,使点F 既在直线CD 上又在直线AB 上.(2)在(1)的基础上,若:2:3BF AB =,14EF =,求线段AB 的长,第II 卷(本卷满分50分)四、填空题(共4小题,每小题4分,共16分)下列各题不需要写出解答过程,请将结果直接填在答卷指定的位置.22.关于x ,y 的二元一次方程组432,3461x y k x y k +=++=− 的解满足5x y +=,则k =_________.23.已知110AOB ∠=°,过点O 作射线OC ,使20AOC ∠=°,OD 平分BOC ∠,则AOD ∠=_________.第23题24.现对某商品降价10%促销,为了使销售总金额增加17%,则促销后销售量比按原价销售时增加的百分比是_________. 25.下列说法: ①若a b =,则2211a bc c =++; ②若23(2)2m m x m −++=是关于x 的一元一次方程,则2m =±;③若有理数a ,b ,c 满足||a b c a b c −+=++,则0ab bc +=;④若我们用min(,)a b 表示a ,b 两数中较小的一个数,则min(,)22a b a ba b +−−=. 其中正确的是_________(填序号).五、解答题(共3小题,共34分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形.26.(本小题10分)下表是某次篮球联赛部分球队的积分表:队名 比赛场次 胜场 负场 积分 前进 16 10 6 36 光明 16 9 7 34 远大 16 12 4 40 卫星1661028备注:积分=胜场积分+负场积分(1)直接写出胜一场的积分和负一场的积分;(2)某队说他们的总积分为45分,你认为可能吗?为什么?(3)若某队的负场总积分是胜场总积分的正整数倍,胜一场奖励每个球员5000元,负一场奖励.每个球员1000元,请问这支球队的每个球员所获奖金可能是多少元? 27.(本小题12分)如图(1)所示,已知直线l 上有E ,F 两点,15cm EF =,有一根木棒AB 放在直线l 上,将木棒沿直线l 左右水平移动.当点B 与F 重合时,点A 刚好落在点B 移动前的位置,当点A 与E 重合时,点B 刚好落在点A 移动前的位置.第27题(1)直接写出木棒AB 的长;(2)木棒AB 在射线EF 上移动的过程中,当4AE BF =时,求AE 的长;(3)另一根木棒CD 长为3cm ,AB 和CD 在直线l 上的位置如图(2)所示,其中点D 与E 重合,点B 与F 重合.木棒AB 以3个单位长度/秒的速度向左移动,木棒CD 以2个单位长度/秒的速度向右移动,它们同时出发,设运动时间为t 秒,若式子AD BC +的值为定值,请直接写出此时t 的取值范围,并写出这个定值.28.(本小题12分)定义:一个正整数100010010xa b c d =+++(其中a ,b ,c ,d 均为小于10的非负整数). 若ma b mc d −=−,m 为整数,我们称x 为“m 倍数”.例如,5923:259223×−=×−,则称5923为“2倍数”;1940:319340−×−=−×−,则称1940为“3−倍数”;332548:254822×−=×−,因为32不是整数,所以2548不是“m 倍数”.(1)直接判断3274和2961是否为“m 倍数”,若是,直接写出m 的值; (2)若一个三位数x 为“2−倍数”,且个位数字为7,判断这个三位数是否能被7整除,并说明理由;(3)若一个四位数x 为“1倍数”,且各数位的数字互不相等,将它的千位数字和百位数字组成的两位数记为y (即10a b +),十位数字和个位数字组成的两位数记为z (即10c d +).若8y z−为整数,求这个四位数.(4)若一个四位数x 为“4倍数”,将它的百位数字和十位数字互换,得到的新的四位数仍为“4倍数”,6x +为“4−倍数”,直接写出满足条件的x 的最大值. 2023~2024学年度第一学期期末考试 七年级数学参考答案及评分标准卷I : 一、选择题CBCBDBADBA二、填空题11.1.80 12.10122′° 13.514.543x y −=15.40°16.85°三、解答题17.(1)解:原式1218715=+−−8=.(2)解:原式1832(8)165=+÷−−×18480=−−66=−18.(1)解:32122x x −=−−32212x x +=+−51x = 15x =(2)解:3(31)122(57)x x −−=− 93121014x x −−=−1x −= 1x =−19.解:化简整式得226214427a ab a ab −++−−21047a ab =−+.解方程组得74a b ==−.代入化简后的整式得,原式609=20.(1)解:设应安排x 名工人生产螺柱,()22x −名工人生产螺母.2000(22)21200x x −=×,解得10x =,2212 x −=,答:应安排10名工人生产螺柱,12名工人生产螺母.(2)解:设1台大收割机和1台小收割机每小时分别收割小麦x 公顷,y 公顷, 由题意得,2(25) 3.65(32)8x y x y +=+=,解得0.40.2x y = = .答:1台大收割机和1台小收割机每小时分别收割小麦0.4公顷,0.2公顷.21.(每个作图2分,共8分.) (2)(此问共4分) 解::2:3BF AB = ,∴设2BF x =,3AB x =, 点E AB 的中点,1322BE AB x ∴==, 14EF = ,14BF BE EF ∴+==,32142x x ∴+=, 解得4x =.312AB x ∴==.卷II : 四、填空题22.34723.45°或65°(对一个得2分) 24.30%25.①③④(只写一个得1分,写两个得2分,三个全对得4分,写错一个不得分) 26.(1)3,1.(2)解:设胜x 场,则负()16x −场,31645x x +−=,解得292x =.x 为非负整数,(此处若没有说明原因扣1分) 292x ∴=,不符合题意.∴得分不可能为45分.(3)解:设胜y 场,负16y −场,负场总积分是胜场总积分的m 倍,则316myy =−,1631y m =+,,y m 均为正整数,(此处若没有强调取整扣1分)∴当1m =时,4y =,此时球员的奖金为32000元; 当5m =时,1y =, 此时球员的奖金为20000元.答:每个球员奖励的金额可能有32000元或20000元. 27.(1)5.(2)解:(1)如图1,当A 、B 两点在线段EF 上时4AE BF = ,5515EF AE BF AB BF ∴=++=+=,2BF ∴=,8AE ∴=. ②如图2,当点A 在线段EF 上,点B 在F 右边时,4AE BF = ,3515EF AE AB BF BF ∴=+−=+=.103BF ∴=,403AE ∴=.③如图3,当点A 、B 都在F 右边时,同②3515EF AE AB BF BF =+−=+= 则103BF =,403AE =. 与图形不符,故舍去. 综上:AE 的长为8或403. (另解:如图,以E 为原点构造数轴)设点A 对应的数为x ,点B 对应的数为5x +,则AE x =,|10|BF x =−.4AE BF = ,4|10|x x ∴=−.解得8x =或403,8AE ∴=或403. (3)1825t ≤≤;8. 28.(1)3274不是“m 倍数”;2961是“m 倍数”,2m =−.(2)x 为三位数,0a ∴=,x 为“2−倍数”,且个位数字为7. 2027b c ∴−×−=−−,即27b c =+.10010100(27)1072107077(30101)x b c d c c c c ∴+++++++,730101x c ∴÷=+,c 为非负整数,30101c ∴+为正整数,∴这个三位数一定能被7整除.(也可以直接把三位数算出来,此三位数为917或707,少一个答案扣1分) (4) 四位数x 为“1倍数”,a b c d ∴−=−,且0a ≠,a c b d ∴−=−, 10y a b =+ ,10z c d =+,101010()()11()8888y z a b c d a c b d a c −+−−−+−−∴===, 8y z−为整数,且a ,c 均为小于10的非负整数,8a c ∴−=±或0, ,,,a b c d 互不相等,8a c ∴−=± 当8a c b d −=−=时,9810a b c d = = = = 或8901a b c d = == = .由题意知:0c ≠,9810x ∴=, 当8a c b d −=−=−时,1098a b c d = == = ,1098x ∴= 综上:这个四位数是9810或1098.(此问共4分,每个答案各2分,只要有合理的推导过程即可) (4)8888。
A .B .3.下面几何体中,左视图是圆的是(....上有天堂,下有苏杭,凭借独特的自然风光,杭州一直都是旅游热门目的地.尤其是年亚运会的到来,让这座城市更加热门.相关数据显示,“十一”黄金周期间杭州市接待游客1300万人次.将13000000用科学记数法表示为(AOB ∠AOC ∠....A .B .月的日历表,用形如的框架框住日历表中的某五个数,对于框架A .. . . 9.我国古代数学著作《增删算法统宗》记载了绳索量竿”问题一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.其大意为:现有一根竿和一条绳索,用绳AD CD AB BC=+-AC --A .①④⑤B .①②④15.如图,,16.如图,用剪刀沿直线将一个正方形剪掉一部分,发现正方形剩余部分(阴影部分)的周长比原正方形的周长要小,能正确解释这一现象的数学依据是17.已知,那么90AOC BOD ∠=∠=︒∠21a b -=(1)画射线,直线(2)在射线上取一点(3)过点作的垂线段度最短,最短距离为 BA CB BA D A BC cm故选:C .4.A【分析】本题考查科学记数法表示较大的数.将一个数表示成的形式,其中,为整数,这种记数方法叫做科学记数法,据此即可求得答案.【详解】解:将13000000用科学记数法表示为,故选:A .5.B【分析】根据角的表示方法和图形逐个进行判断即可.【详解】A 选项:不能用∠1、∠AOB 、∠O 三种方法表示同一个角,故错误;B 选项:能用∠1、∠AOB 、∠O 三种方法表示同一个角,故正确;C 选项:不能用∠1、∠AOB 、∠O 三种方法表示同一个角,故错误;D 选项:不能用∠1、∠AOB 、∠O 三种方法表示同一个角,故错误;故选:B .【点睛】考查了角的表示方法,解题关键是理解角的表示方法.6.B【分析】本题主要考查线段之间的和差关系,灵活运用线段的和、差、倍、分转化是解题的关键.根据线段之间的和差关系依次进行判断即可得出正确答案.【详解】解:A .∵ ,,∴,故A 选项不符合题意;B .∵ ,,∴,故B 符合题意;C .∵ ,,∴,故C 选项不符合题意;D .∵,,∴ , 故D 选项不符合题意.故选:B .7.D【分析】本题考查的是列代数式,代数式的值,设阴影十字框中间的数为x ,得到其余个数的代数式,把这个数相加,可得和为,再逐一分析各选项中的数即可.【详解】设阴影十字框中间的数为x ,x 为正整数,则十字框中的五个数的和:10n a ⨯1||10a ≤<n 71.310⨯AD CD AC -=AB BC AC +=AD CD AB BC -=+AC BC AB -=AC BD AB BC BD +=++AC BC AC BD ≠+-AC BC AB -=AD BD AB -=AC BC AD BD -=-AD AC CD -=BD BC CD -=AD AC BD BC -=-455x线段最短,经测量可得:24.见解析.【分析】根据已知条件和角平分线的性质据此逐项填空即可.【详解】解:因为OD 是∠AOC 的平分线,所以∠COD=∠AOC .(角平分线定义)AE AE 12(2)解:①如图1所示,,,10AB = 15BC AB ==是的角平分线,(2)解:①当在②当在内部时,BOC AOC AOB ∴∠=∠+∠=OD BOC ∠1502BOD BOC ∴∠=∠=︒OC ∠OC AOB ∠BOC ∠综上所述,或24.28.(1)(2)C 对应的数为:或或或(3),8α=2C 719-17-53∴,当时,3CB CA =3CB CA =。
2023学年第一学期期末学业水平测试七年级数学试题卷考生须知:1.本试卷满分120分,考试时间120分钟.2.答题前,在答题纸上写姓名和准考证号,并在试卷首页的指定位置写上姓名和座位号.3.必须在答题纸的对应答题位置上答题,写在其他地方无效.答题方式详见答题纸上的说明.4.如需画图作答,必须用黑色字迹的钢笔或签字笔将图形线条描黑.5.考试结束后,试题卷和答题纸一并上交.试题卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2024的相反数是( )A .2024B .C.D .2.2023年9月23日至10月8日,第19届亚运会在中国浙江杭州举行,亚运会主场馆为杭州奥体中心体育馆,又名“大莲花”.体育馆总建筑面积约为216000平方米,将数字216000用科学记数法表示为( )A .B .C .D .3.下列各数,,,中,负数有()A .1个B .2个C .3个D .4个4.在下列四个数中,最大的数是()A .B .0C .2D .5的值在( )A .8和9之间B .7和8之间C .6和7之间D .5和6之间6.如图,P 是直线l 外一点,A ,B ,C 三点在直线l 上,且于点B ,,则下列结论中正确的是()①线段BP 的长度是点P 到直线l 的距离;②线段AP 的长度是A 点到直线PC 的距离;2024-1202412024-60.21610⨯421.610⨯62.1610⨯52.1610⨯|2|-2(2)-23-3(2)-1-5-3+PB l ⊥90APC ∠=︒③在PA ,PB ,PC 三条线段中,PB 最短;④线段PC 的长度是点P 到直线l 的距离.A .①②③B .③④C .①③D .①②③④7.将一副三角板按如图所示位置摆放,其中与一定相等的是()A .B .C .D .8.古代名著《算学启蒙》中有一题:良马日行二百三十里,缀马日行一百三十里,驾马先行一十一日,问良马几何追及之?意思是:跑得快的马每天走230里,跑得慢的马每天走130里,慢马先走11天,快马几天可追上慢马?若设快马x 天可追上慢马,则可列方程为( )A .B .C .D .9.下列说法正确的是()A .若,则B .若,则C .若,则D .若,则10.把四张形状、大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形的盒子底部,按图甲和图乙两种方式摆放,若长方体盒子底部的长与宽的差a 为2,则图甲和图乙中阴影部分周长之差为()A .4B .3C .2D .1二、填空题:本大题有6个小题,每小题3分,共18分.11.单项式的系数是__________.12.若,则的补角的度数是__________.13.如果,那么的值是__________.α∠β∠230(11)13013011x x -=+⨯230(11)130130x x -=+23013011130x x =-⨯23013011130x x =+⨯a b =a c b c +=-ax ay =33ax ay -=+a b =22ac bc =22ac bc =a b=732a b c -7330α∠=︒'α∠5m n -=337m n --14.如图,直线AE 与CD 相交于点B ,,,则的度数是__________.第14题图15.若单项式与单项式的和仍是一个单项式,则的值是__________.16.设代数式,代数式为常数.观察当x 取不同值时,对应A 的值并列表如下(部分):X …123…A…567…若,则__________.三、解答题:本大题有8个小题,共72分,解答应写出文字说明、证明过程或演算步骤.17.(本题满分6分)(1);(2).18.(本题满分6分)(1);(2).19.(本题满分8分)如图,已知平面上有三点A ,B ,C .用无刻度直尺和圆规作图(请保留作图痕迹);(1)画线段AB ,直线BC ,射线CA ;(2)在线段BC 上找一点E ,使得.20.(本题满分8分)设,,(1)化简:;(2)若x 是8的立方根,求的值.60DBE ∠=︒BF AE ⊥CBF ∠15m xy +61n x y --n m 13x a A +=+33ax A a -=A B =x =(3)(7)--+33232-+÷317x x -=+3141136x x --=-CE BC AB =-223A x x =--22B x x =+-23A B -23A B -21.(本题满分10分)一根竹竿插入一水池底部的淤泥中(如图),竹竿的入泥部分占全长的,淤泥以上的入水部分比入泥部分长米,露出水面部分为米,竹竿有多长?水有多深?22.(本题满分10分)如图,点C 为线段AB 上一点,AC 与CB 的长度之比为3:4,D 为线段AC 的中点.(1)若,求BD 的长;(2)若E 是线段BD 的中点,若,求AB 的长(用含a 的代数式表示).23.(本题满分12分)综合与实践问题情境:“综合与实践”课上,老师提出如下问题:将一直角三角板的直角顶点O 放在直线AB 上,OC ,OD 是三角板的两条直角边,三角板可绕点O 任意旋转,射线OE 平分.当三角板绕点O 旋转到图1的位置时,,试求的度数;数学思考:(1)请你解答老师提出的问题.数学探究:(2)老师提出,当三角板绕点O 旋转到图2的位置时,射线OE 平分,请同学们猜想与之间有怎样的数量关系?并说明理由;深入探究:(3)老师提出,当三角板绕点O 旋转到图3的位置时,射线OE 平分,请同学们猜想与∠BOD 之间有怎样的数量关系?并说明理由.24.(本题满分12分)1512131021AB =CE a =AOD ∠35COE ∠=︒BOD ∠AOD ∠COE ∠BOD ∠AOD ∠COE ∠如图,在数轴上点A 表示数-3,点B 表示数,点C 表示数5,点A 到点B 的距离记为AB .我们规定:AB 的大小可以用位于右边的点表示的数减去左边的点表示的数来表示.例如:.(1)求线段AC 的长;(2)以数轴上某点D 为折点,将此数轴向右对折,若点A 在点C 的右边,且,求点D 表示的数;(3)若点A 以每秒1个单位长度的速度向左运动,点C 以每秒4个单位长度的速度向左运动,两点同时出发,经过t 秒时,,求出t的值.1-(1)(3)2AB =---=4AC =2AC AB =2023学年第一学期期末质量检测七年级数学参考答案一、选择题;(每小题3分,共30分)题号12345678910答案BDBCCABDCA二、填空题:(每小题3分,共18分)11.12.13.814.15.2516.三、解答题:17.解;(1)(2)18.解:(1)(2)19.解:(1)画絨后AB 直线BC 射线CA(2)在线段BC 上找一点E ,使得.20.解:(1)化简:.(2)是8的立方根,,.21.解;没竹竿有x 米,则竹竿入泥部分为米,则淤泥以上的入水部分为米,由题意可得:,解得,则,答:竹竿有3米,则水深为米.22.解:(1)由,设,,,,,解得,,,2-10630︒'()106.5︒150︒5210-7-4x =910x =CE BC AB =-()()222322332A B x x x x -=---+-2224263365x x x x x x =----+=-x 2x ∴=222352106A B x x ∴-=-=-=-15x 1152x ⎛⎫+ ⎪⎝⎭1111355210x x x +++=3x =11115210x +=1110:3:4AC BC =3AC x =4BC x =14AB = AC BC AB +=3421x x ∴+=3x =9AC ∴=12BC =为绕段AC 的中点,,.(2)如图所示.由,设,,,为线段AC 的中点,,,为BD 的中点,,,,,解得,.23.解:(1)由题可知:,,.又平分,..(2),理由如下:设,则.平分,.即.(3),理由如下:设,则,,,..24.解:(1).(2)对折后,点A 在点C 的右边,且,点A 表示的数是9,点D 表示的数是.(3)点A 以每秒1个单位长度的速度向左运动t 秒,点C 以每秒4个单位长度的速度向左运动t 秒,D 1922CD AC ∴==9331222BD CD BC ∴=+=+=:3:4AC BC =3AC m =4BC m =7AB m ∴=D 1322AD AC m ∴==311722BD AB AD a m m ∴=-=-=B 11124BE BD m ∴==115444CE BC BE m m m ∴=-=-=CE a = 54m a ∴=45m a =2875AB m a ∴==90DOC ∠=︒35COE ∠=︒ 903555DOE DOC COE ∴∠=∠-∠=︒-︒=︒OE AOD ∠2110AOD DOE ∴∠=∠=︒180********BOD AOD ∴∠=︒-∠=︒-︒=︒2BOD COE ∠=∠BOD x ∠=180AOD x ∠=︒-OE AOD ∠90DOC ∠=︒ 11909022COE DOC DOE x x ⎛⎫∴∠=∠-∠=︒-︒-= ⎪⎝⎭2BOD COE ∠=∠2360BOD COE ∠+∠=︒AOE x ∠=2AOD x ∠=902BOC x ∠=︒-1802BOD x ∴∠=︒-90COE x ∠=︒+()22901802360COE BOD x x ∴∠+∠=︒++︒-=︒5(3)8AC =--= 4AC =∴∴9(3)32+-=运动后表示的数是,运动后表示的数是.①当点C 在A 的右边时,,,,,.②当C 在A 的左边时,,,,,.(得一个答案给3分,两个答案都对给5分)A ∴3t --C ∴54t -2AB t ∴=+54(3)83AC t t t =----=-2AB AC = 2(2)83t t ∴+=-45t ∴=2AB t =+(3)(54)38AC t t t =--=-=-2AB AC = 2(2)38t t ∴+=-12t ∴=。
七年级数学考试注意事项:1、考生须诚信考试,遵守考场规则和考试纪律,并自觉服从监考教师和其他考试工作人员管理;2、监考教师发卷后,在试卷指定的地方填写本人准考证号、姓名等信息;考试中途考生不准以任何理由离开考场;3、考生答卷用笔必须使用同一规格同一颜色的笔作答(作图可使用铅笔),不准用规定以外的笔答卷,不准在答卷上作任何标记。
考生书写在答题卡规定区域外的答案无效。
4、考试开始信号发出后,考生方可开始作答。
A .优B .衡5.有理数a 、b 在数轴上的对应点的位置如图所示,下列结论不正确A .0a b +<B .0a b -<A.218︒7.我国古代著作《增删算法统宗》中记载了一首古算诗:A.2B.315.下列四个结论中:①若25-n m b a 与428a b 是同类项,则②若关于x 的多项式(23ax -三、解答题(共817.计算(1)()()34232÷-+⨯-111(1)用含有a、b的代数式表示主卧的面积为厅的面积为______平方米.(直接填写答案)(2)团团圆圆的爸爸想把主卧、次卧铺上木地板,其余部分铺瓷砖,已知每平方米木地板费用为200元,每平方米瓷砖的费用为AM=,则CD=______:(直接填写答案)①若8②线段AB运动时,试判断线段CD的长度是否发生变化?如果不变,果变化,请说明理由.(2)知识迁移:我们发现角的很多规律和线段一样,如图(1)求图1中所有线段的条数为______条:(2)若线段AB从点B开始以2个单位/秒的速度向右运动,同时线段CD从点(1)如图1,已知60AOB ∠=︒,在AOB ∠内存在一条射线OC ,使得AOC ∠是BOC ∠的“绝配角”,此时AOC ∠=______:(直接填写答案)(2)如图2,已知60AOB ∠=︒,若平面内存在射线OC 、OD (OD 在直线OB 的上方),使得AOC ∠是BOC ∠的“绝配角”,BOC ∠与BOD ∠互补,求AOD ∠大小:(3)如图3,若10AOB ∠=︒,射线OC 从OA 出发绕点O 以每秒20︒的速度逆时针旋转,射线OD【分析】本题主要考查了几何图形中角度的计算,根据平角的定义得到48COD ∠=︒,则180228AOD BOC COD ∠+∠=︒+=︒∠.【详解】解:∵58AOC ∠=︒,74BOD ∠=︒,∴18048COD APC BOD =︒--=︒∠∠∠,∴180228AOD BOC COD ∠+∠=︒+=︒∠,故选:B .7.A【分析】设孩童有x 名,根据“每人分4梨,多12梨;每人6梨,恰好分完”,列方程即可得到答案.【详解】解:设孩童有x 名,根据题意可得:4126x x +=,故选:A .【点睛】本题考查了由实际问题抽象出一元一次方程,根据题意列出一元一次方程是解决问题的关键.8.D【分析】本题主要考查了整式加减中的无关型问题,先去括号,然后合并同类项,再根据多项式的值与x 无关,则含x 的项的系数为0,求出a 、b 的值即可得到答案.【详解】解:()()22453243-+----+-x ax y bx x y 224532826x ax y bx x y =-+-++-+()()224833b x a x y =++-++,∵关于x 、y 的多项式()()22453243-+----+-x ax y bx x y 的值与字母x 的取值无关,∴24080b a +=-=,,∴82a b ==-,,∴286b a +=-+=,故选:D .9.C【分析】设“H”型框中的正中间的数为x ,则其他6个数分别为x-8,x-6,x-1,x+1,x+6,x+8,表示出这7个数之和,然后分别列出方程解答即可.-17.(1)56(2)解:当OC 在OB 下方时,∵AOC ∠是BOC ∠的“绝配角”,∴290BOC AOC ∠+=︒∠,∵60AOC AOB BOC BOC ∠=∠+∠=︒+∠,∴212090BOC BOC ++︒=︒∠∠,解得10BOC =-︒∠(舍去);当OC 在AOB ∠内部时,同(1)可得30BOC ∠=︒,∵BOC ∠与BOD ∠互补,∴150BOD ∠=︒,∴90AOD BOD AOB ∠=-=︒∠∠;当OC 在AOB ∠外部时,∵AOC ∠是BOC ∠的“绝配角”,∴290BOC AOC ∠+=︒∠,∴290AOB AOC AOC ++=︒∠∠∠,∴10AOC ∠=︒,∴70AOB A BOC OC ∠+∠=︒∠=∵BOC ∠与BOD ∠互补,∴110BOD ∠=︒,∴50AOD BOD AOB ∠=-=︒∠∠;(3)解:①当09t <≤时,由题意得,20AOC t =︒∠,∠∵OM 平分AOC ∠,ON 平分∴1102AOM AOC t ==︒∠∠,∠当917t <<时,由题意得,360AOC =∠∵OM 平分AOC ∠,ON ∴12AOM AOC ==∠∠∴MON BON ∠=∠-∠(BON AOM =∠-∠-∠②当1718t <<时,由题意得,36020AOC t =︒-∠∵OM 平分AOC ∠,ON 平分∠115当1820t <≤时,由题意得,20360AOC t =︒-︒∠,∠15。
七年级数学第一学期期末练习
一、选择题(共8个小题,每小题3分,共24分)
下列各题均有四个选项,其中只有一个..是符合题意的. 1. -5的绝对值是
A .5
B .-5
C .15
D .-15
2. 十八大报告指出:“建设生态文明,是关系人民福祉、关乎民族未来的长远大计”,这些
年党和政府在生态文明的发展进程上持续推进,在“十一五”期间,中国减少二氧化碳排放1 460 000 000吨,赢得国际社会广泛赞誉.将1 460 000 000用科学记数法表示为 A .146×107 B .1.46×107 C .1.46×109 D .1.46×1010 3. 下面四个立体图形,从正面、左面、上面观察都不可能...
看到长方形的是
A B C D 4. 把弯曲的河道改直,能够缩短船舶航行的路程,这样做的道理是 A .垂线段最短 B .两点确定一条直线 C .两点之间,直线最短 D .两点之间,线段最短 5. 已知代数式165m a b --和
212
n
ab 是同类项,则m n -的值是 A .1 B .-1 C .-2 D .-3
6. 如图所示,将一块直角三角板的直角顶点O 放在直尺的一边CD 上,如果∠AOC =28°, 那么∠BOD 等于
A .72°
B .62°
C .52°
D .28°
7. 某商场把一个双肩背书包按进价提高50%标价,然后再按八折出售,这样商场每卖出一
个书包就可赢利8元.设每个双肩背书包的进价是x 元,根据题意列一元一次方程,正确的是
A .()150%80%8x x +⋅-=
B .50%80%8x x ⋅-=
C .()150%80%8x +⋅=
D .()150%8x x +-=
D
A
B
C
O
8. 按下面的程序计算:
当输入100x =时,输出结果是299;当输入50x =时,输出结果是466;如果输入x 的值是正整数,输出结果是257,那么满足条件的x 的值最多有
A .1个
B .2个
C .3个
D .4个
二、填空题(共7个小题,每小题2分,共14分) 9. -2的倒数是 . 10. 比较大小:2-
3
1. 11. 如图,点C 是线段AB 的中点,AB =6cm ,如果点D 是线段AB 上一点,且BD =1cm ,
那么CD = cm .
12. 已知2是关于x 的方程2x -a =1的解,则a = .
13. 22013
+2+1=0+=a b a b -如果(),那么() .
14. 已知代数式2x y -的值是-2,则代数式32x y -+的值是 .
15. 如图,两条直线相交只有1个交点,三条直线相交最多有3个交点,四条直线相交最多
有6个
交点,五条直线相交最多有10个交点,六条直线相交最多有 个交点,二十条直线相
交最多有 个交点.
…
1个交点 3个交点 6个交点 10个交点
三、解答题(共4个小题,每小题4分,共16分) 16. 计算:()()91121--+-.
A B
C D
17. 计算:1512412246⎛⎫--⨯
⎪⎝⎭
. 18. 计算:()3
11233
-+-+-÷
.
19. 计算:2
2323223⎡⎤⎛⎫
-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦
.
四、解答题(共3个小题,每小题5分,共15分) 20. 解方程:6+1=45x x -. 21. 解方程:()()23311x x ---=. 22. 解方程:
+221
=132
x x --. 五、解答题(共4个小题,第23题5分,第24题6分,第25题5分,第26题8分,共24分)
23. 已知13
a =-,求代数式()
226213a a a a +-+-的值.
24. 已知OC 是∠AOB 内部的一条射线,∠AOC =30°,
OE 是∠COB 的平分线.
(1)如图1,当∠COE =40°时,求∠AOB 的度数; (2)当OE ⊥OA 时,请在图2中画出射线OE ,OB ,并直接
写出∠AOB 的度数.
25. 列方程解应用题:
据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,如果11片银杏树叶一年的平均滞尘量与20片国槐树叶一年的平均滞尘量相同,那么一片国槐树叶一年的平均滞尘量是多少毫克?
26. 已知数轴上三点M ,O ,N 对应的数分别为-3,0,1,点P 为数轴上任意一点,其对
C
A
O
图1
O
A
B C
E
图2
应的数为x .
(1)如果点P 到点M ,点N 的距离相等,那么x 的值是______________;
(2)数轴上是否存在点P ,使点P 到点M ,点N 的距离之和是5?若存在,请直接写
出x 的值;若不存在,请说明理由
(3)如果点P 以每分钟3个单位长度的速度从点O 向左运动时,点M 和点N 分别以每
分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P 到点M ,点N 的距离相等?
初一数学评分标准及参考答案
一、选择题(本题共24分,每小题3分)
题号
1 2 3 4 5 6 7
8 答案
A C C D
B B A
C 二、填空题(本题共21分,每小题3分)
题号
9 10 11 12 13 14 15 答案
12
- < 2 3 -1
5
15
190
三、解答题(共4小题,每小题4分,满分16分) 16.解:原式=91121+- ……2分 =2021- ……3分 =1-. ……4分 17.解:原式=
151
24242412246
⨯-⨯-⨯ ……1分 =254-- ……3分
=7-. ……4分
18.解:原式=()1
1833
-+-+÷
……2分 =()189-+-+ ……3分 =99-+
=0. ……4分 19.解:原式=349229⎛⎫
-
⨯-⨯- ⎪⎝⎭
……2分 =()3
422-
⨯-- ……3分 =()3
62
-⨯-
=9. ……4分
四、解答题(共3个小题,每小题5分,共15分) 20.解:64=51x x --- ……2分 2=6x - ……4分
=3x - .
∴=3x -是原方程的解. ……5分 21.解:26311x x --+= ……2分
23161x x -=+- ……3分
6x -= ……4分 6x =-.
∴=6x -是原方程的解. ……5分 22.解:()()2+23216x x --= ……1分
24636x x +-+= ……2分 26643x x -=-- ……3分 41x -=- ……4分
14
x =
. ∴1
4
x =
是原方程的解. ……5分 五、解答题(共4个小题,第23题5分,第24题6分,第25题5分,第26题8分,共24分)
23.解:原式=226262a a a a +--+……2分 =232a -. ……3分
当13
a =-时,
原式=2
1323⎛⎫
⨯-- ⎪⎝⎭ ……4分
=1329⨯
- =2
13
- . ……5分
24.解:(1)∵OE 是∠COB 的平分线(已知),
∴∠COB =2∠COE (角平分线定义).……1分 ∵∠COE =40°,
∴∠COB =80°. ……2分 ∵∠AOC =30°,
∴∠AOB =∠AOC +∠COB =110°. ……3分 (2)如右图: ……5分
∠AOB =150°. ……6分
25.解:设一片国槐树叶一年的平均滞尘量为x 毫克,则一片银杏树叶一年的平均滞尘量为
()24x -毫克.根据题意列方程,得 ……1分
()112420x x -=. ……3分
解这个方程,得 22x =. ……4分 答:一片国槐树叶一年的平均滞尘量为22毫克. ……5分
26.解:(1)-1. ……1分
(2)存在符合题意的点P ,此时 3.5x =-或1.5. ……4分
(3)设运动分钟时,点P 对应的数是3t -,点M 对应的数是3t --,点N 对应的
数是14t -.
①当点M 和点N 在点P 同侧时,因为PM =PN ,所以点M 和点N 重合,
所以314t t --=-,解得4
3
t =
,符合题意. ……6分 ②当点M 和点N 在点P 两侧时,有两种情况.
情况1:如果点M 在点N 左侧,()3332PM t t t =----=-.
()()1431PN t t t =---=-.
因为PM =PN ,所以321t t -=-,解得2t =.
此时点M 对应的数是5-,点N 对应的数是7-,点M 在点N 右侧,不符
合题意,舍去.
情况2:如果点M 在点N 右侧,()()31423PM t t t =---=-.
()3141PN t t t =--+=-.
因为PM =PN ,所以231t t -=-,解得2t =.
此时点M 对应的数是5-,点N 对应的数是7-,点M 在点N 右侧,符合
题意.
综上所述,三点同时出发,4
3
分钟或2分钟时点P到点M,点N的距离相
等.……8分。