稀溶液法测定极性分子的偶极矩0109(精)
- 格式:doc
- 大小:67.50 KB
- 文档页数:6
实验二十二稀溶液法测偶极矩一、目的要求1.用溶液法测定极性分子的偶极矩,了解偶极矩与分子电性质的关系。
2.掌握稀溶液法测定偶极矩的实验技术。
二、原理偶极矩是表示分子中电荷分布情况的物理量,它的数值大小可以量度分子的极性。
偶极矩是一个向量,规定其方向由正到负,定义为分子正负电荷中心所带的电荷量q与正负电荷中心之间的距离d的乘积:μ = q ² d(1)从分子的偶极矩数据的大小可以了解分子的对称性、空间构型等结构特征。
由于分子中原子间距离数量级是10-8cm,电子电量数量级是10-10静电单位,故分子偶极矩的单位习惯上用"德拜(Debye)"表示,记为D,它与国际单位库仑²米(c²m)的关系为:1D=1³10-18静电单位²厘米=3.336³10-30C²m (2)偶极矩的大小与配合物中的原子排列的对称性有关。
对于[M A2B2]或[M A4B2]型配合物,他们的反式构型应具有对称中心,其偶极矩为0或者比较小,而顺式构型要大得多。
应用这一方法的必要条件是配合物在非极性溶剂中要有一定的溶解度。
分子偶极矩通常可采用微波波谱法、分子束法、介电常数法等几种方法进行测量。
由于受仪器和样品的局限,前两种方法使用极少,文献上发表的偶极矩数据均来自介电常数法。
介电常数的测定又主要分频率谐振法和直接电容法,本实验采用小电容测量仪直接测溶液的介电常数--严格地从物理学的意义上讲是与真空相比的相对介电常数,同时也介绍谐振法的实验原理。
偶极矩理论最初由Debye于1912年提出,在Debye方程的理论体系中,通常采用溶液法,先将被测物质与非极性溶剂配制成不同浓度的稀溶液,再通过测量这些溶液的介电常数,折射率和密度来计算溶质分子的偶极矩。
对于由极性溶质和非极性溶剂所组成的溶液,Debye提出它的摩尔极化度公式为:(3)式中:P为摩尔极化度;M为分子量;X为摩尔分数;表示密度;符号下标l表示溶剂,2表示溶质,12表示溶液。
稀溶液法测定极性分子的偶极矩摘要本实验依据分子的分子偶极矩与极化之间的关系,通过将正丁醇溶于环己烷中以达到模拟理想气体的状态,并且忽略原子极化度,通过测定了正丁醇—环己烷溶液的密度、介电常数及纯正丁醇的折射率,计算得到正丁醇的偶极矩为(1.560.05)()D μσμ±=±,实验值相对误差3%;与文献值1.66(D )误差6%。
引言1. 理论概念物质的分子尺度中普遍存在分子间偶极矩,它是由分子正负电荷中心偏移而产生的;用以表征分子的极性大小。
其定义为分子正负电荷中心所带电荷q 和分子正负电荷中心之间的距离l 的乘积μ=ql 。
μ的单位是Debye ,1D =3.33564×10-30C m ⋅。
在电场存在的条件下,分子会产生诱导极化,包括由电子相对原子核位移产生的电子极化和由原子核间相对位移产生的原子极化。
诱导极化大小为二者的加和。
同时,极性分子在电场中会出现一定的取向有规律排列现象,以降低势能;这称为分子的转向极化,用摩尔转向极化度P μ衡量。
这一过程也会产生偶极矩,大小可通过下式计算2019AP N kTμμε=……(1) 其中A N 为Avogadro 常数,k 为Boltzmann 常数,0ε为真空介电常数,T 为热力学温度,μ为分子的永久偶极矩。
总摩尔极化度为电子、原子、转向极化度之和。
E A P P P P μ=++ (2)在外电场方向发生改变时,偶极矩方向也会随之改变,这一改变时间称为弛豫时间。
不同类型的极化弛豫时间不同:极性分子转向极化:10-11~10-12 s 原子极化:10-14 s 电子极化:10-15 s在明确了弛豫时间概念后,可以通过改变外电场频率,有针对性地对各种极化进行测量。
2. 实际测量摩尔极化度与物质介电常数有关,通过进行稀溶液假设忽略分子间作用力时,关系可以用Clausius-Mosotti-Debye 方程表示12MP εερ-=⋅+……(3) 其中M 为摩尔质量,ρ为密度。
溶液法测定极性分子的偶极矩偶极矩是描述分子极性程度的指标之一,在化学研究和生产中有着广泛的应用,如分子的结构确定、溶解度的计算、反应活性的预测等。
测定偶极矩的方法有很多种,其中一种重要的方法是溶液法测定。
本文将对溶液法测定极性分子的偶极矩进行详细介绍。
一、基本原理分子的偶极矩是描述分子极性和分子中心对称性的物理量,它是由分子中正、负电荷分布不均匀而引起的。
在外电场的作用下,极性分子会发生偶极矩与电场方向相同的取向,这种取向是分子能量最低的状态。
偶极矩p与电场强度E之间的关系可以用下式表示:p = kE式中k为比例常数,被称为偶极极化率。
偶极矩的单位通常是D (戴括林)。
1D = 3.336 × 10-30 库仑米。
在溶液中,极性分子会与分子间作用力相互作用,分子取向受到周围分子的干扰。
但是随着电场强度的增加,溶液中的极性分子的取向会出现相应的改变。
假设极性分子的取向只有二种取向,即与电场方向相同或相反,这种取向称为取向相干。
电场强度E的变化范围非常小,足以保证溶液中极性分子的取向相对稳定。
根据统计学原理,对于一大量具有取向相干的分子,它们的平均取向相同。
根据Maxwell-Boltzmann分布函数,溶液中分子的偶极矩分布在一个分子取向分布函数与电场强度之积的函数上。
分子取向分布函数可以表示为:f(θ) = sinθ e - (epE cosθ) / (kT)式中θ为分子的取向角度,ep为分子的偶极极化率,T为温度,k为玻尔兹曼常数。
二、实验步骤1. 准备溶液选择一个具有已知浓度的极性分子溶解于一个电介质中,制备极性分子溶液。
通常使用丙酮、正己烷、四氯化碳、氯仿等非极性溶剂溶解极性分子。
使用电介质可以基本消除电场强度产生的影响。
2. 进行偶极矩测定将溶液装入两个平行的电极板中。
两个电极板之间应保持足够的距离,使得在两板之间的电场强度趋于均匀。
控制电场强度E保持不变,并测量极间电位差V0。
结构化学实验报告——溶液法测定极性分子的偶极矩一、实验目的1.用溶液法测定正丁醇的偶极矩2.了解偶极矩与分子电性质的关系3.掌握溶液法测定偶极矩的实验技术2、实验原理1.偶极矩与极化度(1)两个大小相等方向相反的电荷体系的偶极矩定义为:(2)极化程度可用摩尔定向极化度P定向来衡量:P定向=4/3πNA*μ02/(3kT)=4/9πNA*μ02/(kT)(3)极性分子所产生的摩尔极化度P是摩尔定向极化度、摩尔电子诱导极化度和摩尔原子诱导极化度的总和:P=P定向+P诱导=P定向+P电子+P原子2.偶极矩的测定方法(溶液法测定偶极矩)(1)无限稀释时溶质的摩尔极化度的公式:P=P2∞=3αε1/(ε1+2)2 * Μ1/ρ1 + (ε1-1)/(ε1+2) * (Μ2-βΜ1)/ρ1(2)习惯上用溶质的摩尔折射度R2表示高频区测得的摩尔极化度,因为此时P定向=0,P原子=0,推导出无限稀释时溶质的摩尔折射度的公式:P电子=R2∞=n2-1/(n12+2) * (Μ2-βΜ1)/ρ1+6n12Μ1γ/[(n12+2)2*ρ1](3) 近似公式:ε溶=ε1(1+α* x2)ρ溶=ρ1(1+β*x2)n溶=n1(1-γ*x2)(4) 永久偶极矩的获得考虑到摩尔原子诱导极化度通常只有摩尔电子极化度的5%-15%,而且P定向又比P原子大得多,故常常忽略P原子,可得P定向=P2∞-R2∞=4/9πNA*μ02/(kT)μ0=0.0128*[(P2∞-R2∞)*T]1/2(5)介电常数的测定:用空气与一已知介电常数ε溶的标准物质分别测得电容C/空,C/标C/空=C空+Cd=C0+Cd C/标=C标+Cd则通过上两式可求得C0=(C/标-C/空)/(ε标-1) Cd=C/空-C0=C/空-(C/标-C/空)/(ε标-1)ε溶= C溶/ C0=(C/溶- Cd)/ C03、仪器和试剂仪器:阿贝折光仪1台;比重管1只;电容测量仪一台;电容池一台;电子天平一台;电吹风一只;25ml容量瓶4支;25ml、5ml、1ml移液管各一支;滴管5只;5ml针筒一支;针头一支;吸耳球一个;试剂:正丁醇(分析纯);环己烷(分析纯);蒸馏水;丙酮4、实验步骤1.溶液的配制配制4种正丁醇的摩尔分数分别是0.05、0.10、0.15、0.20的正丁醇-环己烷溶液。
稀溶液法测定偶极矩实验报告实验名称:稀溶液法测定偶极矩实验目的:1.通过稀溶液法测定物质的偶极矩大小。
2.掌握使用秤量准确测量固体物质的质量的方法。
3.熟悉使用溶液法进行实验,掌握制备溶液的方法。
实验原理:偶极矩是描述一分子或者一原子对外界电场的敏感程度的量,是电场相互作用下分子或原子各正、负电荷间位移产生的极矩。
测定偶极矩可以通过稀溶液法进行,其原理是在电场作用下,极化的溶液会在两电极之间产生一个电流,通过测量这个电流的大小可以计算出溶液中的物质的偶极矩。
实验仪器:1.常温电陶炉2.落地电子天平3.平行电场选阻电桥4.多用数字表实验步骤:1.利用电子天平精确称取待测物质的质量。
2.制备一定浓度的溶液,要求该溶液中待测物质的质量分数低于5%。
3.将制备好的溶液放入选阻电桥中,使溶液在电极之间。
4.将电场导线连接到电桥上,将电桥的两个电极放入溶液中。
5.调整电桥的电位使其平衡,记录下测定的电位差。
6.利用已知的标准物质的偶极矩大小,构建校准曲线。
7.将实验测得的电位差代入校准曲线中,计算出待测物质的偶极矩大小。
实验结果与分析:根据实验数据计算得出的待测物质的偶极矩大小为X,误差为Y。
经过与理论值的对比发现,实验结果较为准确,误差较小。
结论:通过稀溶液法测定偶极矩的实验,我们成功地得到了待测物质的偶极矩大小,并且得到的结果较为准确。
实验结果证明了该方法的可行性,并且具有一定的准确性。
实验总结:稀溶液法测定偶极矩是一种常用的实验方法,通过这次实验我们掌握了相关的实验技能和操作方法。
在实验过程中,我们注意到了一些实验操作的要点,例如使用电子天平称量物质的方法,制备溶液的步骤等。
这些经验和技巧对我们的实验能力提升有很大的帮助。
然而,在整个实验过程中,也存在一些问题和不足。
例如在制备溶液时,难以控制溶液中待测物质的质量分数低于5%;在测量电位差时,由于仪器精度的限制,测量结果存在一定的误差等。
为了提高实验结果的准确性,我们需要进一步改进实验方法和技术。
稀溶液法测定偶极矩【实验目的】(1)(2)(3) 测定正丁醇的偶极矩。
(1) 偶极矩与极化度分子结构可以近似地看成是由电子云和分子骨架(原子核及内层电子)所构成。
由于空间构型的不同,其正负电荷中心可以是重合的,也可以不重合。
前者称为非极性分子,后者称为极性分子。
图1电偶极矩示意图 图21912年德拜提出“偶极矩”μ的概念来度量分子极性的大小,如图1所示,其定义是 ①式中,q 是正负电荷中心所带的电量; d 为正负电荷中心之间的距离;μ是一个向量,其方向规定为从正到负。
因分子中原子间的距离的数量级为10-10m ,电荷的数量级为10-20C ,所以偶极矩的数量级是10-30C ·m 。
通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。
所以偶极矩的统计值等于零。
若将极性分子置于均匀的电场E 中,则偶极矩在电场的作用下,如图2所示趋向电场方向排列。
这时我们称这些分子被极化了。
极化的程度可用摩尔转向极化度P μ来衡量。
P μ与永久偶极矩的μ的平方成正比,与绝对温度T 成反比。
d q ⋅=μp-b +bkT 9μπN 4P A μ=②式中:k 为玻兹曼常数,NA在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生形变。
这称为诱导极化或变形极化。
用摩尔诱导极化度P 诱导来衡量。
显然P诱导可分为二项,即电子极化度P e 和原子极化度P a ,因此P 诱导=P e +P a如果外电场是交变场,极性分子的极化情况则与交变场的频率有关。
当处于频率小于1010H Z 的低频电场或静电场中,极性分子所产生的摩尔极化度P 是转向极化、电子极化和原子极化的总和。
P = P μ+ P e +P a如何从测得的摩尔极化度P 中分别出P μ的贡献呢?介电常数实际上是在107H Z 以下的频率测定的,测得的极化度为 P μ+ P e +P a 。
物理化学实验报告院系化学化工学院班级化学061学号13姓名沈建明实验名称 溶液法测定极性分子的偶极距 日期 2009.3.26 同组者姓名 史黄亮 室温 17.86℃ 气压 101.21kPa 成绩一、目的和要求1、了解偶极距与分子电性质的关系;2、掌握溶液法测定偶极距的试验技术;3、用溶液法测定乙酸乙酯的偶极距。
二、基本原理 1. 偶极矩和极化度分子的极性可以用“偶极矩”来度量。
其定义为(1)q 为正、负电荷中心所带电荷量,d 为正、负电荷中心距离。
是向量,其方向规定从正到负。
若将极性分子置于均匀电场E 中,则偶极矩在电场的作用下趋向电场方向排列,分子被极化,极化的程度可用摩尔转向极化度P 转向来衡量:(2)在外电场作用下,不论永久偶极为零或不为零的分子都会发生电子云对分子骨架的相对移动,分子骨架也辉因电场分布不均衡发生变形。
用摩尔变形极化度P 变形来衡量:P 变形 = P 电子 + P 原子 (3)分子的摩尔极化度:P = P 转向 +P 变形 = P 转向 +P 电子 +P 原子 (4)dq μ⋅=24μP =πL 9kT转向μ该式适用于完全无序和稀释体系(互相排斥的距离远大于分子本身大小的体系),即温度不太低的气相体系或极性液体在非极性溶剂中的稀溶液。
在中频场中转向P = 0。
则P =P 电子 +P 原子 (5) 在高频场中原子P =0 则P =P 电子 (6) 因此,原则上只要在低频电场下测得极性分子的摩尔极化度P ,在红外频率下测得极性分子的摩尔诱导极化度诱导P ,两者相减得到极性分子的摩尔转向极化度转向P ,然后代人(2)式就可算出极性分子的永久偶极矩μ来。
2、极化度的测定首先利用稀溶液的近似公式()211x αεε+=溶 (7) ()211x βρρ+=溶 (8)再根据溶液的加和性,推导出无限稀释时溶质摩尔极化度的公式()11211112112022123lim 2ρβεερεαεM M M P P P x -⋅+-+⋅+===→∞ (9) 根据光的电磁理论,在同一频率的高频电场作用下,透明物质的介电常数ε与折光率n 的关系为 2n =ε 因为此时转向P = 0,原子P =0,则R 2 =电子P = ρMn n ⋅+-2122 (10) 在稀溶液情况下也存在近似公式()211x n n γ+=溶 (11)同样,从(9)式可以推导得无限稀释时溶质的摩尔折射度的公式 电子P ()122112111221212022621lim 2ργρβ++-⋅+-===→∞n M n M M n n R R x (12) 从(2)、(4)、(9)和(12)式可得转向P kTL RP22294μπ=-=∞∞ 即()m C TR P⋅-⨯=∞∞-22301004274.0μ3、介电常数的测定介电常数是通过测定电容计算而得。
溶液法测定极性分子的偶极矩Ⅰ、实验目的:(1) 了解偶极矩与分子电性质的关系; (2) 掌握溶液法测定偶极矩的实验技术; (3) 用溶液法测定乙酸乙酯的偶极矩;Ⅱ、实验目的:偶极矩(μ)的概念来度量分子极性的大小:μ=q ·d 。
P 转向与永久偶极矩平方成正比,与热力学温度T 成反比。
在外电场的作用下产生的诱导极化:P 诱导=P 电子+P 原子。
如果在外加电场: P=P 转向+P 电子+P 原子极化度的测定:P=21+-εε·ρM稀溶液的近似公式:)1(21溶X +=αεε )1(21溶X +=βρρ 稀溶液的无限稀释公式:P=2311+εαε·11ρM+21+-εε·112ρβM -M 在高频率电场作用下,透明物质的介电常数:ε=n 2极化度:R 2=P 电子=ρmn n ∙+-2122n=n1(1+γχ2)故,无限稀释:R=121121)2(6ργ+M n n +212121+-n n ·112ρβM -M 偶极矩的测定:由于原子的极化度相当于电子的极化度5%—10%。
μ/(C ·m )=0.04274×10-30T R P )(22∞∞- (C ·m )T 为开氏温度T )R -P (128.00T )R -p (L4k 9/2222∞∞∞∞=∙=πμDd 标、标C C +=C d 空、空C C C +=介电常数的计算:00C Cx x ==εεε Ⅲ、实验步骤:一、溶液的配制用称重法配制5种不同浓度(0.01979、0.05939、0.09903、0.1387、0.1784 g/cm 3) 的乙酸乙酯-四氯化碳溶液,分别盛于容量瓶中,控制乙酸乙酯的浓度在0.15左右,操作时应注意防止溶液和溶剂的挥发以及吸收较大的水汽,为此溶液配好后迅速盖好瓶塞,置于干燥箱中。
二折光率的测定在(25±0.1)℃条件下用阿贝折射仪测定四氯化碳及各组中所配溶液的折光率。
稀溶液法测定极性分子的偶极矩一、实验目的1. 掌握溶液法测定偶极矩的原理、方法和计算。
2. 熟悉小电容仪、折射仪和比重瓶的使用。
3. 测定正丁醇的偶极矩,了解偶极矩与分子电性质的关系。
二、实验原理 1. 分子的极性分子是由带正电荷的原子核和带负电荷的电子组成的。
分子呈电中性,但因空间构型的不同,正负电荷中心可能重合,也可能不重合,前者为非极性分子,后者称为极性分子,分子极性大小用偶极矩μ来度量,其定义为μ=qd (1)式中:q 为正、负电荷中心所带的电荷量,单位是C ;d 是正、负电荷中心的距离,单位是m 。
μ是偶极矩,单位是(SI 制)库[仑]米(C·m)。
而过去习惯使用的单位是德拜(D):1D =1×10-18静电单位·厘米=3.338×10-30C·m在不存在外电场时,非极性分子虽因振动,正负电荷中心可能发生相对位移而产生瞬时偶极矩,但宏观统计平均的结果,实验测得的偶极矩为零。
极性分子具有永久偶极矩,由于分子热的运动,偶极矩在空间各个方向的取向几率均等,统计值等于零。
若将极性分子置于均匀的外电场中,分子将沿电场方向转动,同时还会发生电子云对分子骨架的相对移动和分子骨架的变形,称为极化。
极化的程度用摩尔极化度P 来度量。
分子因转向而极化的程度用摩尔转向极化度P转向来表示,因变形而极化的程度用摩尔变形极化度P 变形来表示。
而P 变形又由P 电子 (电子极化度)和P 原子 (原子极化度)两部分组成,于是有P =P 转向+P 变形=P 转向+(P 电子+P 原子) (2) P转向与永久偶极矩的平方μ2的值成正比,与热力学温度T 成反比:kTN p A 334412μππε⋅⋅⋅=转向 (3)式中:N A 为阿佛加德罗(Avogadro)常数;k 为玻耳兹曼(Boltzmann)常数。
由于P 原子在P 中所占的比例很小,所以在不很精确的测量中可以忽略P 原子,(2)式可写成:P =P 转向 + P 电子 (4)只要在低频电场(υ<1010s -1)或静电场中,测得的是P 。
溶液法测定极性分子的偶极矩一、实验目的了解电介质极化与分子极化的概念,以及偶极矩与分子极化性质的关系。
掌握溶液法测定极性分子永久偶极矩的理论模型和实验技术,用溶液法测定乙酸乙酯的偶极矩。
二、实验原理德拜(Peter Joseph William Debye)指出,所谓极性物质的分子尽管是电中性的,但仍然拥有未曾消失的电偶极矩,即使在没有外加电磁场时也是如此。
分子偶极矩的大小可以从介电常数的数据中获得,而对分子偶极矩的测量和研究一直是表征分子特性重要步骤。
1、偶极矩、极化强度、电极化率和相对电容率(相对介电常数)首先定义一个电介质的偶极矩(dipole moment)。
考虑一簇聚集在一起的电荷,总的净电荷为零,这样一堆电荷的偶极矩是一个矢量,其各个分量可以定义为式中电荷的坐标为。
偶极矩的SI制单位是:。
将物质置于电场之中通常会产生两种效应:导电和极化。
导电是在一个相对较长的(与分子尺度相比)距离上输运带电粒子。
极化是指在一个相对较短的(小于等于分子直径)距离上使电荷发生相对位移,这些电荷被束缚在一个基本稳定的、非刚性的带电粒子集合体中(比如一个中性的分子)。
一个物质的极化状态可以用矢量表示,称为极化强度(polarization)。
矢量的大小定义为电介质内的电偶极矩密度,也就是单位体积的平均电偶极矩,又称为电极化密度,或电极化矢量。
这定义所指的电偶极矩包括永久电偶极矩和感应电偶极矩。
的国际单位制度量单位是。
为取平均的单位体积当然很小,但一定包含有足够多的分子。
在一个微小的区域内,的值依赖于该区域内的电场强度。
在这里,有必要澄清一下物质内部的电场强度的概念。
在真空中任意一点的电场强度的定义为:在该点放置一个电荷为的无限微小的“试验电荷”,则该“试验电荷”所受到的力为。
当将这个定义应用到物质内部时,在原子尺度上会引起巨大的电场涨落。
为此,物质内部某一点的宏观电场强度定义为在该点邻近的小区域内原子尺度电场强度的平均值,这个小区域当然比通常标准要小得多,但仍足以容纳足够多的分子。
溶液法测定极性分子的偶极矩实验报告实验目的:通过溶液法,测定几种不同溶液中极性分子的偶极矩。
实验原理:极性分子具有偶极矩,可以通过测量溶液中分子的导电性来间接测定分子的偶极矩。
在纯溶剂中,只有离子导电。
当有极性分子溶解在纯溶剂中时,由于溶质和溶剂分子之间的相互作用力,导致产生极性分子的偶极矩,导致溶液的电导率增加。
利用电导率与溶液浓度的关系,可以推算出溶液中极性分子的偶极矩。
实验仪器:1.导电仪2.溶液辅助电导池3.称量器4.温度计5.热水浴实验步骤:1.根据实验要求,依次称取不同浓度的溶液。
将每种溶液放入烧杯中,并用温度计测量溶液的温度。
2.将导电仪连接到溶液辅助电导池的两个电极上。
将电导池插入烧杯中的溶液,并确保电极完全浸入溶液中。
3.打开导电仪电源,进行零点校准,记录下零点电导率。
4.打开导电仪的电导率测量开关,开始测量溶液的电导率。
每隔一段时间记录一次电导率,直到电导率保持稳定。
5.重复步骤1-4,测量其他不同浓度的溶液的电导率。
实验数据处理:1.计算纯溶剂的电导率:根据零点电导率,计算出纯溶剂的电导率。
2.根据浓度和电导率的关系绘制标准曲线:以浓度为横坐标,电导率为纵坐标,绘制标准曲线。
3.通过标准曲线,计算每种溶液中极性分子的偶极矩。
实验结果:利用以上方法,我们测得了不同溶液中极性分子的偶极矩,并计算得出结果如下:1.溶液A:偶极矩为X库仑米。
2.溶液B:偶极矩为Y库仑米。
3.溶液C:偶极矩为Z库仑米。
实验讨论:通过实验结果可以看出,不同溶液中极性分子的偶极矩不同,这与溶质分子的结构和性质有关。
偶极矩是描述分子极性的重要物理量,通过测量溶液的电导率可以间接测定分子的偶极矩,为分子结构和化学性质的研究提供了重要方法。
实验结论:通过实验,我们成功测定了几种不同溶液中极性分子的偶极矩,并验证了溶液法测定极性分子偶极矩的可行性。
实验结果对于研究分子结构和化学性质具有一定的指导意义。
华 南 师 范 大 学 实 验 报 告学生姓名 学 号 专 业 化学(师范) 年级班级 课程名称 结构化学实验 实验项目 稀溶液法测定偶极矩 实验类型 □验证 □设计 √综合 实验时间 2013年10月29日实验指导老师 彭彬 实验评分【实验目的】1. 掌握溶液法测定偶极矩的主要实验技术2. 了解偶极矩与分子电性质的关系3. 测定正丁醇的偶极矩 【实验原理】1.偶极矩与极化度分子结构可以近似地看成是由电子云和分子骨架(原子核及内层电子)所构成。
由于空间构型的不同,其正负电荷中心可能重合,也可能不重合。
前者称为非极性分子,后者称为极性分子。
1912年,德拜提出“偶极矩”的概念来度量分子极性的大小,其定义是qd →μ ①式中,q 是正负电荷中心所带的电量;d 为正负电荷中心之间的距离;→μ是一个矢量,其方向规定为从正到负。
因分子中原子间的距离的数量级为10-10m ,电荷的数量级为10-20C ,所以偶极矩的数量级是10-30C ·m 。
通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。
极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。
所以偶极矩的统计值等于零。
若将极性分子置于均匀的电场E 中,则偶极矩在电场的作用下,趋向电场方向排列。
这时称这些分子被极化了。
极化的程度可以用摩尔转向极化度P μ来衡量。
P μ与永久偶极矩μ的平方成正比,与绝对温度T 成反比。
kT 9μπN 4P A μ=②式中,k 为波兹曼常数;NA 为阿弗加德罗常数;T 为热力学温度;μ为分子的永久偶极矩。
在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生形变。
这称为诱导极化或变形极化。
用摩尔诱导极化度P 诱导来衡量。
显然,P 诱导可分为两项,即电子极化度P e 和原子极化度P a ,因此P 诱导 = P e + P a ③如果外电场是交变场,极性分子的极化情况则与交变场的频率有关。
溶液法测定极性分子的偶极矩I. 目的与要求一、 用溶液法测定乙酸乙酯的偶极矩二、 了解偶极矩与分子电性质的关系三、 掌握溶液法测定偶极矩的实验技术I I. 基本原理一、偶极矩与极化度分子结构可以近似地被石成是由电子。
和对于骨架〔原子核与内层电子〕所构成的。
由于分子空间构型的不同,其正、负电荷中心可能是重合的,也可能不重合,前者称为非极性分子,后者称为极性分子。
图1 电偶极矩示意图1912年,德拜〔Debye 〕提出“偶极矩〞μ的概念来度量分子极性的大小,如图1所示,其定义是 d q ⋅=μ 〔1〕式中 q 是正、负电荷中心所带的电荷量,d 为正、负电荷中心之间的距离,μ是一个向量,其方向规定从正到负。
因分子中原子间距离的数量级为1010-m ,电荷的数量级为2010-C ,所以偶极矩的数量级是3010-C·m 。
通过偶极矩的测定可以了解分子结构中有关电子云的分布和分子的对称性等情况,还可以用来判别几何异构体和分子的立体结构等。
极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向各个方向的机会相同,所以偶极矩的统计值等于零。
若将极性分子置于均匀的电场中,则偶极矩在电场的作用下会趋向电场方向排列。
这时我们称这些分子被极化了,极化的程度可用摩尔转向极化度转向P 来衡量。
转向P 与永久偶极矩平方成正比,与热力学温度T 成反比kTL kT L P 2294334μπμπ=⋅=转向 〔2〕 式中k 为玻耳兹曼常数,L 为阿伏加德罗常数。
在外电场作用下,不论极性分子或非极性分子都会发生电子云对分子骨架的相对移动,分子骨架也会发生变形,这种现象称为诱导极化或变形极化,用摩尔诱导极化度诱导P 来衡量。
显然,诱导P 可分为二项,即电子极化度电子P ,和原子极化度原子P ,因此诱导P = 电子P + 原子P 。
诱导P 与外电场强度成正比,与温度无关。
如果外电场是交变电场,极性分子的极化情况则与交变电场的频率有关。
溶液法测定极性分子的偶极矩I. 目的与要求一、用溶液法测定乙酸乙酯的偶极矩二、了解偶极矩与分子电性质的关系三、掌握溶液法测定偶极矩的实验技术I I. 基本原理一、偶极矩与极化度分子结构可以近似地被石成是由电子。
和对于骨架(原子核及层电子)所构成的。
由于分子空间构型的不同,其正、负电荷中心可能是重合的,也可能不重合,前者称为非极性分子,后者称为极性分子。
图1 电偶极矩示意图1912年,德拜(Debye)提出“偶极矩”μ的概念来度量分子极性的大小,如图1所示,其定义是dq⋅=μ(1)式中 q 是正、负电荷中心所带的电荷量,d为正、负电荷中心之间的距离,μ是一个向量,其方向规定从正到负。
因分子中原子间距离的数量级为1010-m,电荷的数量级为2010-C,所以偶极矩的数量级是3010-C·m。
通过偶极矩的测定可以了解分子结构中有关电子云的分布和分子的对称性等情况,还可以用来判别几何异构体和分子的立体结构等。
极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向各个方向的机会相同,所以偶极矩的统计值等于零。
若将极性分子置于均匀的电场中,则偶极矩在电场的作用下会趋向电场方向排列。
这时我们称这些分子被极化了,极化的程度可用摩尔转向极化度转向P来衡量。
转向P与永久偶极矩平方成正比,与热力学温度T成反比kTL kT L P 2294334μπμπ=⋅=转向 (2) 式中k 为玻耳兹曼常数,L 为阿伏加德罗常数。
在外电场作用下,不论极性分子或非极性分子都会发生电子云对分子骨架的相对移动,分子骨架也会发生变形,这种现象称为诱导极化或变形极化,用摩尔诱导极化度诱导P 来衡量。
显然,诱导P 可分为二项,即电子极化度电子P ,和原子极化度原子P ,因此诱导P = 电子P + 原子P 。
诱导P 与外电场强度成正比,与温度无关。
如果外电场是交变电场,极性分子的极化情况则与交变电场的频率有关。
当处于频率小于1010-s -1的低频电场或静电场中,极性分子所产生的摩尔极化度P 是转向极化、电子极化和原子极化的总和P = 转向P + 电子P + 原子P (3)当频率增加到1210-~1410-s -1的中频(红外频率)时,电场的交变周期小于分子偶极矩的弛豫时间,极性分子的转向运动跟不上电场的变化,即极性分子来不及沿电场定向,故转向P = 0。
稀溶液法测定极性分子的偶极矩一、实验目的1. 掌握溶液法测定偶极矩的原理、方法和计算。
2. 熟悉小电容仪、折射仪和比重瓶的使用。
3. 测定正丁醇的偶极矩,了解偶极矩与分子电性质的关系。
二、实验原理 1. 分子的极性分子是由带正电荷的原子核和带负电荷的电子组成的。
分子呈电中性,但因空间构型的不同,正负电荷中心可能重合,也可能不重合,前者为非极性分子,后者称为极性分子,分子极性大小用偶极矩μ来度量,其定义为μ=qd (1)式中:q 为正、负电荷中心所带的电荷量,单位是C ;d 是正、负电荷中心的距离,单位是m 。
μ是偶极矩,单位是(SI 制)库[仑]米(C·m)。
而过去习惯使用的单位是德拜(D):1D =1×10-18静电单位·厘米=3.338×10-30C·m在不存在外电场时,非极性分子虽因振动,正负电荷中心可能发生相对位移而产生瞬时偶极矩,但宏观统计平均的结果,实验测得的偶极矩为零。
极性分子具有永久偶极矩,由于分子热的运动,偶极矩在空间各个方向的取向几率均等,统计值等于零。
若将极性分子置于均匀的外电场中,分子将沿电场方向转动,同时还会发生电子云对分子骨架的相对移动和分子骨架的变形,称为极化。
极化的程度用摩尔极化度P 来度量。
分子因转向而极化的程度用摩尔转向极化度P转向来表示,因变形而极化的程度用摩尔变形极化度P 变形来表示。
而P 变形又由P 电子 (电子极化度)和P 原子 (原子极化度)两部分组成,于是有P =P 转向+P 变形=P 转向+(P 电子+P 原子) (2) P转向与永久偶极矩的平方μ2的值成正比,与热力学温度T 成反比:kTN p A 3344120μππε⋅⋅⋅=转向(3) 式中:N A 为阿佛加德罗(Avogadro)常数;k 为玻耳兹曼(Boltzmann)常数。
由于P 原子在P 中所占的比例很小,所以在不很精确的测量中可以忽略P 原子,(2)式可写成:P =P 转向 + P 电子 (4)只要在低频电场(υ<1010s -1)或静电场中,测得的是P 。
在中频电场(υ=1012~1014s -1) (红外频率)时,极性分子的转向运动跟不上电场的变化,故P转向=0,P =P变形=P电子+P 原子。
在高频电场(υ≈1015s -1)(紫外可见光)中,由于极性分子的转向和分子骨架变形跟不上电场的变化,故P 转向=0,P原子=0,所以测得的是P电子。
此时电子极化度可以用摩尔折射度R 代替。
ρM n n R p ⨯+-==2122电子因此,分别在低频和中频电场下测出分子的摩尔极化度,两者相减即可得到P 转向,再由(3)式计算μ。
通过测定偶极矩,可以了解分子中电子云的分布和分子对称性,判断几何异构体和分子的立体结构。
2. 极化度与偶极矩摩尔极化度P 与介电常数ε之间的关系为ρεεMP ⨯+-=21 (5) 式中:M 为待测物质的摩尔质量(g·mol -1);ρ为待测物质的密度(g·cm -3);ε为介电常数。
2. 溶液法测定偶极矩所谓溶液法就是将极性待测物溶于非极性溶剂中进行测定,然后外推到无限稀释。
因为在无限稀的溶液中,极性溶质分子所处的状态与它在气相时十分相近,此时分子的摩尔极化度就可视为(5)的P 。
在稀溶液当中,溶液的摩尔极化度P 可用下式求出:2211x p x P P +=(1-溶剂,2-溶质,x-摩尔分数) )(11122x P P x P -=(6) 将(5)式代入(6)得)2121(11111122ρεερεεx M M x P sol sol sol sol ⨯+--⨯+-=)2121(11111122112ρεερεεx M x M x M x sol sol sol ⨯+--+⨯+-=(7) 式中:sol 代表溶液,ε1,M 1,ρ1分别是溶剂的相对介电常数、摩尔质量和密度。
M 2为 溶质摩尔质量。
为了省去溶液密度的测量,经Guggenheim 和Smith 的简化与改进,得到如下公式:)()2(d M N 4KT 27n s 2112α-α+ε∙π=μ d 1为溶剂的密度。
分子的偶极矩可按下式计算:(7)式中,P ∞2和R ∞2分别表示无限稀时极性分子的摩尔极化度和摩尔折射度(习惯上用摩尔折射度表示折射法测定的P 电子);T 是热力学温度。
本实验是将正丁醇溶于非极性的环己烷中形成稀溶液,然后在低频电场中测量溶液的介电常数和溶液的密度求得P ∞2;在可见光下测定溶液的R ∞2,然后由(5)式计算正丁醇的偶极矩。
(1) 极化度的测定无限稀时,溶质的摩尔极化度P ∞2的公式为(6)式中,ε1、ρ1、M 1分别是溶剂的介电常数、密度和相对分子质量,其中密度的单位是g·cm -3;M 2为溶质的相对分子质量;α和β为常数,可通过稀溶液的近似公式求得:ε溶= ε1(1+αx 1) (7) ρ溶=ρ1(1+βx 2) (8) 式中,ε溶和ρ溶分别是溶液的介电常数和密度;x 2是溶质的摩尔分数。
无限稀释时,溶质的摩尔折射度R ∞2的公式为(9)式中,n1为溶剂的折射率;γ为常数,可由稀溶液的近似公式求得:n溶=n1(1+γx2) (10)式中,n溶是溶液的折射率。
(2) 介电常数的测定介电常数ε可通过测量电容来求算ε=C/C0 (11)式中,C0为电容器在真空时的电容;C为充满待测液时的电容,由于空气的电容非常接近于C0,故(11)式改写成ε=C/C空(12)本实验利用电桥法测定电容,其桥路为变压器比例臂电桥,如图1所示,电桥平衡的条件是式中,C′为电容池两极间的电容;C S为标准差动电器的电容。
调节差动电容器,当C′=C S时,u S=u X,此时指示放大器的输出趋近于零。
C S可从刻度盘上读出,这样C′即可测得。
由于整个测试系统存在分布电容,所以实测的电容C′是样品电容C和分布电容C d之和,即C′=C+C d(13)显然,为了求C首先就要确定C d值,方法是:先测定无样品时空气的电空C′空,则有C′空=C空+C d(14)再测定一已知介电常数(ε标)的标准物质的电容C′标,则有C′标=C标+C d=ε标C空+C d(15) 由(14)和(15)式可得:(16)将C d代入(13)和(14)式即可求得C溶和C空。
这样就可计算待测液的介电常数。
三、仪器与试剂图 1 电容电桥示小电容测量仪1台;阿贝折射仪1台;超级恒温槽2台;电吹风1只;比重瓶(10mL,1只);滴瓶5只;滴管1只。
环己烷(A.R.);正丁醇摩尔分数分别为0.04,0.06,0.08,0.10和0.12的五种正丁醇—环己烷溶液。
四、实验步骤1. 折射率的测定在25℃条件下,用阿贝折射仪分别测定环己烷和五份溶液的折射率。
2. 密度的测定在25℃条件下,用比重瓶分别测定环己烷、正丁醇和五份溶液的密度。
3. 电容的测定(1) 将PCM-1A精密电容测量仪通电,预热20min。
(2) 将电容仪与电容池连接线先接一根(只接电容仪,不接电容池),调节零电位器使数字表头指示为零。
(3) 将两根连接线都与电容池接好,此时数字表头上所示值既为C′空值。
(4) 用2mL移液管移取2mL环己烷加入到电容池中,盖好,数字表头上所示值即为C′标(5) 将环己烷倒入回收瓶中,用冷风将样品室吹干后再测C′空值,与前面所测的C′值应小于0.05pF,否则表明样品室有残液,应继续吹干,然后装入溶液,同样方空。
法测定五份溶液的C′溶五、注意事项1.每次测定前要用冷风将电容池吹干,并重测C′空,与原来的C′空值相差应小于0.01pF。
严禁用热风吹样品室。
2.测C′溶时,操作应迅速,池盖要盖紧,防止样品挥发和吸收空气中极性较大的水汽。
装样品的滴瓶也要随时盖严。
3.每次装入量严格相同,样品过多会腐蚀密封材料渗入恒温腔,实验无法正常进行。
4.要反复练习差动电容器旋钮、灵敏度旋钮和损耗旋钮的配合使用和调节,在能够正确寻找电桥平衡位置后,再开始测定样品的电容。
5.注意不要用力扭曲电容仪连接电容池的电缆线,以免损坏。
六、数据处理1. 将所测数据列于表中。
2. 根据(16)和(14)计算C d和C空。
其中环己烷的介电常数与温度t的关系式为:ε标=2.023-0.0016(t-20)。
3. 根据(13)和(12)式计算C溶和ε溶。
4. 分别作ε溶—x2图,ρ溶—x2图和n溶—x2图,由各图的斜率求α,β,γ。
5. 根据(6)和(9)式分别计P∞ 2 和R∞ 2 。
6. 最后由(5)式求算正丁醇的μ。
七、思考题1. 本实验测定偶极矩时做了哪些近似处理?2. 准确测定溶质摩尔极化度和摩尔折射度时,为何要外推到无限稀释?3. 试分析实验中误差的主要来源,如何改进?。