5.2 同步时序逻辑电路的分析报告
- 格式:doc
- 大小:760.24 KB
- 文档页数:9
同步时序逻辑电路的分析一.分析的目的:得出时序电路的逻辑功能。
二.分析的方法(步骤):1、写方程式(1)时钟方程:CP的逻辑式(2)输出方程:时序电路输出逻辑表达式,它通常为现态的函数。
(3)驱动方程:各触发器输入端的逻辑表达式<(4)状态方程:把驱动方程代入相应的触发器的特性方程,即可求出各个触发器次态输出的逻辑表达式。
2、列真值表;3、画状态转换图;4、画时序图;5、逻辑功能说明:由状态表归纳说明给定的时序电路的逻辑功能;6、检查电路能否自启动。
注意:常见时序电路:1)计数器:同(异)步N进制加(减)法计数器。
2)寄存器三.时序逻辑电路中的几个概念说明1. 有效状态与有效循环有效状态:在时序电路中,凡是被利用了的状态, 都称为有效状态。
有效循环:在时序电路中,凡是有效状态形成的循环,都称为有效循环。
2. 无效状态与无效循环无效状态:在时序电路中,凡是没有被利用的状态,都叫无效状态。
无效循环:在时序电路中,如果无效状态形成了循环,那么这种循环就称为无效循环。
3. 电路能自启动与不能自启动能自启动:在时序电路中,虽然存在无效状态,但是它们没有形成循环,这样的时序电路叫能够自启动的时序电路。
不能自启动:在时序电路中,既有无效状态存在, 且它们之间又形成了循环,这样的时序电路被称之为不能自启动的时序电路。
在这种电路中,一旦因某种原因使循环进入无效循环,就再也回不到有效状态了,所以,再要正常工作也就不可能了。
四.同步时序电路的分析举例CP 例1试分析如图所示的时序电路的逻辑功能解:(1)写方程式 时钟方程: 输出方程: 驱动方程:CP 0 CR CP 2 CP 丫 Q 2n Q 1nQ o nJ i QoJ 2 Q ;K o Q ; K iQ o nK 2 Q 1n状态方程:把驱动方程分别代入特性方程 JK 触发器的特性方程:Q n1JQ nKQ nQ 011J o Q o nK oQoQ ;Q o nQ 2nQ o nQ ;1J Q K 1Q ;Q ⑥Qg nQ A(6-2-4),得状态方程:K 2Q 2n Q?Q 2n Q :Q ; Q;J 2Q;Q 2n()Q2(2)列状态表 依次假设电路得现态Q ;Q1nQ o n,代入状态方程式和输出方程式,进行计算,求出相应得次态和输出,结果见状态表)画出状态图/1 /1 /1 /1 /10 0 0——► 0 0 1 ——► 0 1 1——► 1 1 1——► 1 1 0——► 1 0 0/0(a)有效循环110 1 0——►1 0 111(b)无效循环(4)画时序图(5)电路功能说明由状态图和时序图可知,该电路是一个6次CP 脉冲一循环的顺序发生器,又称为节拍发生器。
第1篇一、实验目的1. 理解时序电路的基本概念和组成,掌握时序电路的设计方法和分析方法。
2. 掌握计数器、寄存器、移位寄存器等时序电路的应用。
3. 熟悉FPGA开发环境,能够使用Quartus II设计工具进行时序电路的设计和仿真。
二、实验原理时序电路是数字电路中的一种重要电路,它能够根据输入信号的变化,产生一系列有序的输出信号。
时序电路主要由触发器、逻辑门和时钟信号组成。
1. 触发器:触发器是时序电路的基本单元,具有存储一个二进制信息的功能。
常见的触发器有D触发器、JK触发器、T触发器等。
2. 逻辑门:逻辑门用于实现基本的逻辑运算,如与、或、非、异或等。
3. 时钟信号:时钟信号是时序电路的同步信号,用于控制触发器的翻转。
三、实验内容1. 计数器设计(1)设计一个3位同步二进制加计数器。
(2)设计一个3位同步二进制减计数器。
2. 寄存器设计使用74LS74触发器设计一个双向移位寄存器。
3. 移位寄存器设计使用74LS74触发器设计一个单向移位寄存器。
4. 环形计数器设计使用74LS74触发器设计一个环形计数器。
5. 可控分频器设计使用Verilog HDL语言设计一个可控分频器,实现时钟信号的分频功能。
四、实验步骤1. 使用Quartus II设计工具创建工程,并添加所需的设计文件。
2. 根据实验原理,编写时序电路的Verilog HDL代码。
3. 编译代码,并生成测试平台。
4. 在测试平台上进行仿真,验证时序电路的功能。
5. 将设计下载到FPGA,进行硬件实验。
6. 记录实验结果,分析实验现象。
五、实验结果与分析1. 计数器实验结果(1)3位同步二进制加计数器:按照时钟信号的变化,计数器能够从000计数到111。
(2)3位同步二进制减计数器:按照时钟信号的变化,计数器能够从111减到000。
2. 寄存器实验结果使用74LS74触发器设计的双向移位寄存器,能够实现数据的左移和右移功能。
3. 移位寄存器实验结果使用74LS74触发器设计的单向移位寄存器,能够实现数据的左移功能。
实验六时序逻辑电路测试及研究一、实验目的1、掌握计数器电路分析及测试方法。
2、训练独立进行实验的技能。
二、实验仪器及器件1、双踪示波器、实验箱2、实验用元器:74LS00 1片 74lS73 2片 74LS175 1片 74LS10 1片三、实验内容、测试电路及测试表格1、异步二进制计数器(1) 按图5.1 接线。
(2) 由CP 端输入单脉冲,测试并记录Q1—Q4 状态及波形(可调连续脉冲)。
表6.12、异步二—十进制加法计数器(1) 按图5.2 接线。
QA、QB、QC、QD 4 个输出端分别接发光二极管显示,CP 端接连续脉冲或单脉冲。
(2)在CP 端接连续脉冲,观察CP、QA、QB、QC、QD 的波形。
(3) 画出CP、QA、QB、QC、QD 的波形。
表6.23、移位寄存器型计数器(1) 按图5.3 接线构成环形计数器,将A、B、C、D 置为1000,用单脉冲计数,记录各触发器状态。
表6.3(2)改为连续脉冲计数,并将其中一个状态为“0”的触发器置为“1”(模拟干扰信号作用的结果),观察计数器能否正常工作。
分析原因。
分析:输出端没有任何波形,故计数器没有正常工作。
这是因为在这个计数器循环中,当有且只有一位被置“1”时,才可以进入有效循环。
而出现两个“1”时,不在有效循环内,故无法工作。
从此部分实验,我明白了设计时序电路最后一步要检查电路是否能经过若干个有效循环后进入自启动。
因为有些同步时序电路设计中会出现不在循环内的无效状态,开始很有可能是无效状态,故应检查自启动能力。
时序逻辑电路的特点:时序逻辑电路是指任意时刻的输出状态不仅与该时刻的输入信号状态有关,而且还与信号作用前电路的状态有关,在电路结构上,必定含有具有记忆功能的存储电路。
在任意时刻的输出状态不仅与该时刻的输入信号状态有关,而且还与信号作用前电路的状态有关,其结构特点是由存储电路和组合电路两部分组成。
时序电路的状态是由存储电路来记忆的,因而在时序逻辑电路中,触发器是必不可少的,而组合逻辑电路在有些时序电路中则可以没有。
二、时序逻辑电路实验题目1. 试用同步加法计数器74LS161(或74LS160)和二4输入与非门74LS20构成百以内任意进制计数器,并采用LED 数码管显示计数进制。
采用555定时器构成多谐振荡电路,为同步加法计数器提供时钟输入信号。
例如,采用同步加法计数器74LS 161构成60进制加法计数器的参考电路如图2所示。
1Q A Q B Q C Q D CP74LS161P TR COD C B A L D C rQ A Q B Q C Q D CP74LS161P TR COD C B A L D C rCP&设计:(一)设计一个固定进制的加法计数器。
(1)利用555定时器设计一个可以生时钟脉冲的多谐振荡器,使其构成长生脉冲,对同步加法器74LS161输入信号,根据555定时器构成的多谐振荡器的周期可定,由图可的T=T 1+T 2=(R A +R B )C+ R B C=(R A +2R B )C ,通过改变电阻R A ,R B 和C 的大小,可以改变脉冲的周期。
所发电阻为2个510k Ω,C=1uF ,则T=(R A +2R B )C= (2)利用十六进制的加法计数器74LS61组成百以内任意进制计数器,可以用清零法和置数法改变计数器的技术进制,由于译码显示器可以显示….9,所以一片74LS161只可以控制一个显示器,就要将一片74LS161改为十进制,最后再利用级联的74LS161改变数组进制,可以将不同进制的数值用显示姨妈其显示出来,下面以33进制为例进行设计,a.清零法,异步清零信号为=计图如下:U1LM555CMGND 1DIS 7OUT3RST 4VCC8THR 6CON5TRI 2VCC5V R1510kΩR2510kΩC11uFC25nFVCC213U274LS160DQA 14QB 13QC 12QD 11RCO15A3B 4C 5D6ENP 7ENT 10~LOAD 9~CLR 1CLK 2GND8VCC 16U374LS160DQA 14QB 13QC 12QD 11RCO15A 3B 4C 5D6ENP 7ENT10~LOAD9~CLR 1CLK 2GND8VCC 1600U4DCD_HEX_DIG_ORANGE U5DCD_HEX_DIG_ORANGEVCC5VVCC5VVCC600U8B 74S00D 5U6B 74S00D 10U7A 74S20D14111312874VCC 5V15VCC VCC 9上图中两个一码显示,左边是低位显示,右边为高位显示。
时序电路测试及研究实验报告总结时序电路测试及研究实验报告总结一、实验目的1. 理解时序电路的基本概念和原理;2. 学习时序电路的设计方法;3. 掌握时序电路测试方法。
二、实验器材1. 电源;2. 示波器;3. 函数发生器;4. 逻辑分析仪。
三、实验原理1. 时序电路的概念和分类:时序电路是指由触发器、计数器等组成的数字电路,按照信号传递时间顺序控制输出信号状态。
根据输入输出关系可分为同步时序电路和异步时序电路。
2. 触发器:触发器是一种用于存储二进制信息的数字元件,它可以将输入信号转换为稳定的输出信号,并能够保持该状态。
3. 计数器:计数器是一种用于计数的数字元件,它能够根据输入信号进行计数,并在达到设定值后产生输出信号。
四、实验步骤与结果1. D触发器测试:(1)连接D触发器并设置输入端口和输出端口;(2)使用函数发生器模拟输入脉冲,并使用示波器检测输出脉冲;(3)通过逻辑分析仪观察D触发器的时序波形。
结果:通过实验,我们得到了D触发器的时序波形,可以清晰地看到输入信号和输出信号的变化过程。
2. JK触发器测试:(1)连接JK触发器并设置输入端口和输出端口;(2)使用函数发生器模拟输入脉冲,并使用示波器检测输出脉冲;(3)通过逻辑分析仪观察JK触发器的时序波形。
结果:通过实验,我们得到了JK触发器的时序波形,可以清晰地看到输入信号和输出信号的变化过程。
3. T触发器测试:(1)连接T触发器并设置输入端口和输出端口;(2)使用函数发生器模拟输入脉冲,并使用示波器检测输出脉冲;(3)通过逻辑分析仪观察T触发器的时序波形。
结果:通过实验,我们得到了T触发器的时序波形,可以清晰地看到输入信号和输出信号的变化过程。
4. 计数器测试:(1)连接计数器并设置计数范围;(2)使用函数发生器模拟输入脉冲,并使用示波器检测计数范围内产生的输出信号;(3)通过逻辑分析仪观察计数器的时序波形。
结果:通过实验,我们得到了计数器的时序波形,可以清晰地看到输入信号和输出信号的变化过程。
同步时序逻辑电路的分析
一.分析的目的:得出时序电路的逻辑功能。
二.分析的方法(步骤):
1、写方程式
(1)时钟方程:CP的逻辑式
(2)输出方程:时序电路输出逻辑表达式,它通常为现态的函数。
(3)驱动方程:各触发器输入端的逻辑表达式。
(4)状态方程:把驱动方程代入相应的触发器的特性方程,即可求出各个触发器次态输出的逻辑表达式。
2、列真值表;
3、画状态转换图;
4、画时序图;
5、逻辑功能说明:由状态表归纳说明给定的时序电路的逻辑功能;
6、检查电路能否自启动。
注意:常见时序电路:
1)计数器:同(异)步N进制加(减)法计数器。
2)寄存器
三.时序逻辑电路中的几个概念说明
1.有效状态与有效循环
有效状态:在时序电路中,凡是被利用了的状态,都称为有效状态。
有效循环:在时序电路中,凡是有效状态形成的循环,都称为有效循环。
2.无效状态与无效循环
无效状态:在时序电路中,凡是没有被利用的状态,都叫无效状态。
无效循环:在时序电路中,如果无效状态形成了循环,那么这种循环就称为无效循环。
3.电路能自启动与不能自启动
能自启动:在时序电路中,虽然存在无效状态,但是它们没有形成循环,这样的时序电路叫能够自启动的时序电路。
不能自启动:在时序电路中,既有无效状态存在,且它们之间又形成了循环,这样的时序电路被称之为不能自启动的时序电路。
在这种电路中,一旦因某种原因使循环进入无效循环,就再也回不到有效状态了,所以,再要正常工作也就不可能了。
四.同步时序电路的分析举例
例1 试分析如图所示的时序电路的逻辑功能
Y
CP
解:(1)写方程式
时钟方程: CP CP CP CP ===210 输出方程: n n n Q Q Q Y 012=
驱动方程: n
Q J 20= n Q K 20= n
Q J 01= n Q K 01=
n
Q J 12= n Q K 12=
状态方程:把驱动方程分别代入特性方程
JK 触发器的特性方程:n n n Q K Q J Q +=+1
(6-2-4),得状态方程:
n n n n n n n n Q Q Q Q Q Q K Q J Q 20202000010=+=+=+ ()
n n n n n n n n Q Q Q Q Q Q K Q J Q 010********=+=+=+
n n n n n n n n Q Q Q Q Q Q K Q J Q 12121222212=+=+=+
(2)列状态表
依次假设电路得现态n n n
Q Q Q
012
,代入状态方程式和
输出方程式,进行计算,求出相应得次态和输出,结果见状态表
(3)画出状态图
1 1 1
/1
/1
/1
/1
/1
/0
(a )有效循环
/1
(b )无效循环
(4)画时序图
CP Q 1Q 2Q 0Y
1
00000000000
1
1
1
1
1
1111
1
1
111
(5)电路功能说明
由状态图和时序图可知,该电路是一个6次CP 脉冲一循环的顺序发生器,又称为节拍发生器。
(6)检查电路能否自启动:由状态图可知,电路不能自启动。
例2. 试分析如图所示电路的逻辑功能。
C
CP
解:
(1)写方程式:
脉冲方程: CP CP CP CP ===210 驱动方程: 100==K J
n
Q K J 011==
n o n Q Q K J 122==
输出方程: n
n n Q Q Q C 012=
状态方程:
将驱动方程(6-3-1)代入到JK 触发器的特性方程中,得到状态方程:
n
n n n Q Q K Q J Q 0000010=+=+
n n n
n n n n Q Q Q Q Q K Q J Q 010111111
1
+=+=+
n
n n n n n n n n n Q Q Q Q Q Q Q Q K Q J Q 0212012222212++=+=+
(2)列状态表
(3)画状态图。
1 0 0
1 1 1
/0
/0
/0
/0
/0
/0
/0
/1
(4)画和时序图
CP Q 1Q 2Q 0000
000011
1
1
1
1
00
1
1
1
000011
1
1
0C
(5)电路功能说明
该时序电路为3为二进制同步加法计数器,C 为进位指示端。
(6)检查电路能否自启动:
如图所示,该电路为3位二进制同步减法计数器,分析过程同二进制同步加法计数器。
例3. 分析如图6-3-12所示电路的逻辑功能。
1
CP
解: (1)写方程式
脉冲方程: CP CP CP CP CP ====3210
驱动方程: 100==K J
n n Q Q J 031= n
Q K 01=
n n Q Q K J 0122==
n n n
Q Q Q J 2
1
3= n
Q K 03=
输出方程: n
n Q Q C 03=
(2)求状态方程
将驱动方程代入到触发器的特性方程中,得到状态方程:
n n
n n Q Q K Q J Q 0000010=+=+
n n n n n n n n Q Q Q Q Q Q K Q J Q 010********+=+=+
n
n n n n n n n n n Q Q Q Q Q Q Q Q K Q J Q 0212012222212++=+=+
n n n n n n n n n Q Q Q Q Q Q Q K Q J Q 030123333313+=+=+
(3)进行计算,得状态表。
(4)由状态真值表可画出状态转换图。
0 0 1 1
/0
/0
/0
/0
/0/1
(5)根据状态真值表可画出时序图。
CP Q 0Q 1Q 2Q 3C。