第3章 微波传输线
微带线可由双导体系统演化而来, 但由于在中心导带和接 地板之间加入了介质, 因此在介质基底存在的微带线所传 输的波已非标准的TEM波, 而是纵向分量Ez和Hz必然存在。
下面我们首先从麦克斯韦尔方程出发加以证明纵向分量的 存在。
第3章 微波传输线
为微带线建立如图 3 - 5 所示的坐标。介质边界两边电磁 场均满足无源麦克斯韦方程组:
t )](w / h h
2)
h
2h
2h
第3章 微波传输线
式中, we为t不为零时导带的等效宽度; RS为导体表面电阻。
为了降低导体的损耗, 除了选择表面电阻率很小的导体材 料(金、 银、 铜)之外, 对微带线的加工工艺也有严格的要求。 一方面加大导体带厚度, 这是由于趋肤效应的影响, 导体带越厚, 则导体损耗越小, 故一般取导体厚度为 5~8 倍的趋肤深度; 另一 方面, 导体带表面的粗糙度要尽可能小, 一般应在微米量级以下。
(2) 介质衰减常数αd
对均匀介质传输线, 其介质衰减常数由下式决定:
ad
1 2
GZ0
27.3
0
tan
第3章 微波传输线
式中, tanδ为介质材料的损耗角正切。由于实际微带只有 部分介质填充, 因此必须使用以下修正公式
式中,
q
ad
e
27.3
(q e ) tan
0
r
为介质损耗角的填充系数。
r
一般情况下, 微带线的导体衰减远大于介质衰减, 因此一般
第3章 微波传输线
同理可得
EZ1 y
r
Ez 2 y
j
(1
1
r
)
E
y