1.5等腰三角形的轴对称性(2)教学案
- 格式:doc
- 大小:75.00 KB
- 文档页数:4
八年级《等腰三角形》数学教案4篇教案,也称课时计划,教师经过备课,以课时为单位设计的具体教学方案,教案是上课的重要依据,通常包括:班级、学科、课题、上课时间、课的类型、教学方法、教学目的、教学内容、课的进程和时间分配等。
以下是我为大家整理的,感谢您的欣赏。
八年级《等腰三角形》数学教案1教学目标(一)教学知识点1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.教学重点1.等腰三角形的概念及性质.2.等腰三角形性质的应用.教学难点等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本P138探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕.(演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在ABC中,AB=AC,作底边BC的中线AD,因为所以BAD≌CAD(SSS).所以∠B=∠C.[生乙]如右图,在ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为所以BAD≌CAD.所以BD=CD,∠BDA=∠CDA=∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:ABC各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD,∠ABC=∠C=∠BDC,•再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.再由三角形内角和为180°,•就可求出ABC的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.(课件演示)[例]因为AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC.∠A=∠ABD(等边对等角).设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x.于是在ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°.在ABC中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识.Ⅲ.随堂练习(一)课本P141练习1、2、3.练习1.如下图,在下列等腰三角形中,分别求出它们的底角的度数.答案:(1)72°(2)30°2.如右图,ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底边BC上的高,标出∠B、∠C、∠BAD、∠DAC的度数,图中有哪些相等线段?答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD.3.如右图,在ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本P138~P140,然后小结.Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.Ⅴ.课后作业(一)课本P147─1、3、4、8题.(二)1.预习课本P141~P143.2.预习提纲:等腰三角形的判定.Ⅵ.活动与探究如右图,在ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质.结果:证明:延长CD交AB的延长线于P,如右图,在ADP 和ADC中ADP≌ADC.∠P=∠ACD.又DE∥AP,∠4=∠P.∠4=∠ACD.DE=EC.同理可证:AE=DE.AE=CE.板书设计§14.3.1.1等腰三角形(一)一、设计方案作出一个等腰三角形二、等腰三角形性质1.等边对等角2.三线合一三、例题分析四、随堂练习五、课时小结六、课后作业八年级《等腰三角形》数学教案2一、教材的地位和作用现实生活中,等腰三角形的应用比比皆是.所以,利用“轴对称”的知识,进一步研究等腰三角形的特殊性质,不仅是现实生活的需要,而且从思想方法和知识储备上,为今后研究“四边形”和“圆”的性质打下坚实的基础.性质“等腰三角形的两个底角相等”是几何论证过程中,证明“两个角相等”的重要方法之一.“等腰三角形底边上的三条重要线段重合”的性质是今后证明“两条线段相等”“两条直线互相垂直”“两个角相等”等结论的重要理论依据.教学重点:1. 让学生主动经历思考和探索的过程.2. 掌握等腰三角形性质及其应用.教学难点:等腰三角形性质的理解和探究过程.二、学情分析本年级的学生已经研究过一般三角形的性质,积累了一定的经验,动手能力强,善于与同伴交流,这就为本节课的学习做好了知识、能力、情感方面的准备.不同层次的学生因为基础不同,在学习中必然会出现相异构想,这也将是我在教学过程中着重关注的一点.三、目标分析知识与技能1.了解等腰三角形的有关概念和掌握等腰三角形的性质2. 了解等边三角形的概念并探索其性质3. 运用等腰三角形的性质解决问题过程与方法1.通过观察等腰三角形的对称性,发展学生的形象思维.2.探索等腰三角形的性质时,经历了观察、动手实践、猜想、验证等数学过程,积累数学活动经验,发展了学生的归纳推理,类比迁移的能力. 在与他人交流的过程中,能运用数学语言合乎逻辑的进行讨论和质疑,提高了数学语言表达能力.情感态度价值观:1.通过情境创设,使学生感受到等腰三角形就在自己的身边,从而使学生认识到学习等腰三角形的必要性.2.通过等腰三角形的性质的归纳,使学生认识到科学结论的发现,是一个不断完善的过程,培养学生坚强的意志品质.3.通过小组合作,发展学生互帮互助的精神,体验合作学习中的乐趣和成就感.四、教法分析根据学生已有的认知,采取了激疑引趣——猜想探究——应用体验——建构延伸的教学模式,并利用多媒体辅助教学.教学过程教学过程设计意图同学们,我们在七年级已研究了一般三角形的性质,今天我们一起来探究特殊的三角形:等腰三角形.等腰三角形的定义有两条边相等的三角形叫做等腰三角形.等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角.腰和底边的夹角叫做底角.提出问题:生活中有哪些现象让你联想到等腰三角形?首先让学生明确:本学段的几何图形都是按一般的到特殊的顺序研究的.通过学生描述等腰三角形在生活中的应用,让学生感受到数学就在我们身边,以及研究等腰三角形的必要性.剪纸游戏你能利用手中的这个矩形纸片剪出一个等腰三角形吗? 注意安全呦!学情分析:大部分学生会有自己的想法,根据轴对称图形的性质,利用对折纸片,再“剪一刀”就是就得到了两条“腰”;可能还有的同学会利用正方形的折法,获得特殊的等腰直角三角形;可能还有同学先画图,再依线条剪得.在这个过程中,注重落实三维目标.让学生在获取新知的过程中更好的认识自我,建立自信.我不失时机的对学生给予鼓励和表扬,使活动更加深入,课堂充满愉悦和温馨.知其然,更重要的是知其所以然.因此,我力求让学生关注剪法的理性思考.我设计了问题:你是如何想到的? 为的是剖析学生的思维过程:“折叠”就是为了得到“对称轴”,“剪一刀”就是就得到了两条“腰”,由“重合”保证了“等腰”.这样就建立了“操作”与“证明”的中间桥梁.从实际操作中得到证明的方法,也为发现“三线合一”做了铺垫.提出问题:等腰三角形还有什么性质?请提出你的猜想,验证你的猜想?并填写在学案上.合作小组活动规则:1、有主记录员记录小组的结论;2、定出小组的主发言人(其它同学可作补充);3、小组探究出的结论是什么?4、说明你们小组所获得结论的理由.等腰三角形的性质:性质一:等腰三角形的两个底角相等(简称“等边对等角”).性质二:等腰三角形顶角的平分线、底边上的中线、底边上的高重合(简称“三线合一”).学情分析:这个环节是本节课的重点,也是教学难点.尽管在教学过程中,因为学生的相异构想,数学猜想的初始叙述不准确,甚至不正确,但我不会立即去纠正他们,而是让同学们不断地质疑﹑辨析、研讨和归纳,逐渐完善结论.让他们真正经历数学知识的形成过程,真正的体现以人为本的教学理念,努力创设和谐的教育教学的生态环境.通过设置恰当的动手实践活动,引导学生经历观察、动手实践、猜想、验证等数学探究活动,这种探究的学习过程,恰恰是研究几何图形性质的一般规律和方法.(1)在此环节中,我的教学要充分把握好“四让”:能让学生观察的,尽量让学生观察;能让学生思考的,尽量让学生思考;能让学生表达的,尽量让学生表达;能让学生作结论的,尽量让学生作结论.这种教学方式,把学习的过程真正还给学生,不怕学生说不好,不怕学生出问题,其实学生说不好的地方、学生出问题的地方都正是我们应该教的地方,是教学的切入点、着眼点、增长点.(2)教师在这个过程中,充分听取和参与学生的小组讨论,对有困难的学生,及时指导.巩固知识1.等腰三角形顶角为70°,它的另外两个内角的度数分别为________;2.等腰三角形一个角为70°,它的另外两个内角的度数分别为_____;3.等腰三角形一个角为100°,它的另外两个内角的度数分别为_____.内化知识1.如图1,在△ABC中,AB=AC,AD⊥BC,∠BAC=120°你能求出∠BAD的度数吗?知识迁移等边三角形有什么特殊的性质?简单地叙述理由.等边三角形的性质定理:等边三角形的各角都相等,并且每一个角都等于60°.拓展延伸如图2,在△ABC中,AB=AC,点D,E在BC上,AD=AE,你能说明BD=EC?由于学生之间存在知识基础、经验和能力的差异,我为学生提供了层次分明的反馈练习.将练习从易到难,从简到繁,以适应不同阶段、不同层次的学生的需要.让学生拾阶而上,逐步掌握知识,使学困生达到简单运用水平,中等生达到综合运用水平,优等生达到创建水平.畅谈收获总结活动情况,重在肯定与鼓励.引导学生从本课学习中所得到的新知识,运用的数学思想方法,新旧知识的联系等方面进行反思,提高学生自主建构知识网络、分析解决问题的能力.帮助学生梳理知识,回顾探究过程中所用到的从特殊到一般的数学方法,启发学生更深层次的思考,为学生的下一步学习做好铺垫.反思过程不仅是学生学习过程的继续,更重要的是一种提高和发展自己的过程.基础性作业:P65 习题1、2、3、4八年级《等腰三角形》数学教案3教学目标:【知识与技能】1、理解并掌握等腰三角形的性质。
等腰三角形性质教学设计(共5篇)第1篇:等腰三角形性质教学设计等腰三角形的性质教学设计一、教学目标(一)、知识目标1、了解等腰三角形的两底角相等,底边上的高、中线及顶角平分线三线合一的性质,并能运用它们进行相关的论证和计算。
2、理解等腰三角形和等边三角形性质定理之间的联系。
(2)、能力目标1、培养学生“转化”的数学思要及应用意识,初步了解作辅助线的规律及“分类讨论”的思要。
2、培养学生进行独立思考,提高了独立解决问题的能力。
(三)、德育目标通过本节课教学,激发学生探索在实际生活中和数学相关的现实问题,使学生认识到数学源于实践应用于实践的辩证唯物主义观点,培养学生学习数学的兴趣。
二、教学重难点1、教学着重:等腰三角形的性质定理及其证明。
2、教学难点:问题的证明及等腰三角形中常用添辅助线的方法。
三、教学用具三角板、圆规、投影胶片、投影仪、计算机等。
四、教学过程课的导入:(一)、三角形按边怎样分类?(三角形、不等边三角形、等腰三角形、腰和底不相等的等腰三角形、等边三角形) (二)、什么叫等腰三角形?指出等腰三角形的腰、底、顶角、底角.有两边相等的三角形叫等腰三角形.(三)、一般三角形有那些性质?(两边之和大于第三边.三次内角的和等于180°).(四)、图片展示等腰三角形在日常生活中的实例。
新课讲解(一)、动手实验,发现结论请学生折叠事先准备好的等腰三角形,观察除两腰相等外,它的两次底角还有什么关系?(二)、(电脑或几何画板演示)结论:折叠等腰三角形或改变等腰三角形的腰长后,两底角之间依旧坚持相等关系。
(三)、证明结论,得出性质1、性质定理的证明。
(1)学生找出文字命题的题设、结论、画图,换成符号语言。
(2)引导学生寻找辅助线、如何添加辅助线。
(3)电脑显示证明过程。
(4)说明“等边对等角”的作用。
2、推论1的证明。
(1)进一步启发学生得到“等腰三角形三线合一”的性质。
(2)说明这条性质的作用,总结等腰三角形中常用辅助线的添加方法。
1.5 等腰三角形的轴对称性(2) (教案)班级 姓名 学号教学目标:1、掌握等角对等边的性质2、掌握直角三角形斜边上的中线等于斜边的一半的性质3、经历“折纸、画图、观察、归纳”的活动过程,发展学生的空间观念和抽象概括能力,感受分类、转化等数学思想方法;4、会用“因为……所以……理由是……”等方式来进行说理,进一步发展有条理的思考和表达,提高演绎推理的能力教学重点:熟练的掌握“等角对等边”及直角三角的重要性质; 教学难点:正确熟练的运用新知解决简单问题; 教学过程: 一、情境创设:前一课,我们知道了:在一个三角形中,如果有两条边相等,那么这两条边所对的角相等.反过来,在一个三角形中,如果有两个角相等,那么这两个角所对的边的大小有什么关系呢? 这一节课,我们首先就来探索这个问题.探索1:(1)如图1,在一张长方形纸条上任意画一条截线AB ,所得∠1与∠2相等吗?为什么?(2)如图2,将纸条沿截线AB 折叠,在所得的△ABC 中,仍有∠1=∠2.度量AB 和AC 的长度.你有什么发现? 二、新课讲解:通过上面的探索,同学们发现了AB=AC.这是不是巧合呢?我们再来做一个实验: 在一张薄纸上画线段AB ,并在AB 的同侧利用量角器画两个相等的锐角∠BAM 和∠ABN ,设AM 与BN 相交于点C ,量一量AC 与BC 的长度,AC 和BC 相等吗? (度量后,我们还会发现AC =BC )AB21BAC21 图1 图2于是,我们可以得到结论:如果一个三角形有两个角相等,那么这两个角对的边也相等.(简称为“等角对等边”) 即:如上图∵在△ABC 中,∠B=∠C ∴AB=AC (等角对等边)三、例题示范:例1.如图,在△ABC 中,AB=AC ,角平分线BD 、CE 相交于点O ,OB与OC 相等吗?请说明理由.探索2:师生当堂互动(1)任意剪一张直角三角形纸片,如图1. (2)剪得的纸片是否能折成图2和图3的形状? (3)把纸片展开,连接CD ,你有什么发现? 由于经过折叠,①和②,③和④是重合的,所以 ∠A=∠ACD ,∠B=∠BCD 即:AD=CD ,BD=CD 所以 CD=12AB 即“直角三角形斜边上的中线等于斜边的一半”例2. 如图,在△ABC 中,∠ACB = 90°,CD 是AB 边上的中线且CD = 5cm ,则AB= .四、课堂小结:探究得到了一判定一个三角形是等腰三角形的条件以及“直角三角形斜边上的中线等于斜边的一半”这个性质,在应用这些结论解决问题的过程中进一步提高了说理、分析、识图和归纳的能力. 六、课后作业:P29 4,5,6 七、教学后记:21O D EC BADCA(1) (2) (3) (4)。
八年级上期中复习教学案(2)等腰三角形的轴对称性一、知识点:1.等腰三角形的性质:①等腰三角形是轴对称图形,顶角平分线所在直线是它的对称轴;②等腰三角形的两个底角相等;(简称“等边对等角”)③等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
(简称“三线合一”)2.等腰三角形的判定:①如果一个三角形有2个角相等,那么这2个角所对的边也相等;(简称“等角对等边”)②直角三角形斜边上的中线等于斜边上的一半。
3.等边三角形:①等边三角形的定义:三边相等的三角形叫做等边三角形或正三角形。
②等边三角形的性质:等边三角形是轴对称图形,并且有3条对称轴;等边三角形的每个角都等于600。
③等边三角形的判定:3个角相等的三角形是等边三角形;有两个角等于600的三角形是等边三角形;有一个角等于600的等腰三角形是等边三角形。
二,基础知识1.等腰三角形中,如果底边长为6,一腰长为8,那么周长是。
如果等腰三角形有一边长是6,另一边长是8,那么它的周长是;如果等腰三角形的两边长分别是4、8,那么它的周长是。
2.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.等腰直角三角形C.等边三角形D.直角三角形3.等腰三角形的一个外角等于100°,则与它不相邻的两个内角的度数分别为()A.40°,40°B.80°,20°C.50°,50°D.50°,50°或80°,20°4.如图1.5-2,在△ABC中,点D、E、F分别在边BC、AB、AC上,且BD=BE,CD=CF,∠A=70°,那么∠FDE等于()A.40° B.45° C.55° D.35°5.等腰三角形上的高与一腰的夹角为30°,则其顶角的度数为( ). A.60° B.120° C.60°或150° D.60°或120°6.如图1.5-18,等腰三角形ABC 中,AB=AC ,∠A=44°,CD ⊥AB 于D ,则∠DCB 等于( ).A 、44°B 、68°C 、46°D 、22°7.如图1.5-3,在△ABC 中,AB=AC ,∠A=36°,角平分线BE 与CD 相交于点F ,那么图中等腰三角形有( )A .6个B .7个C .8个D .9个8.如图1.5-4,在△ABC 中,CF ⊥AB 于F ,BE ⊥AC 于E ,M 为BC 的中点,EF=5,BC=8,则△EFM 的周长是( )A .21B .18C .13D .159.某直角三角形的两条直角边长分别为5和12,则它的斜边中线为 。
等腰三角形的性质定理【教学目标】1.经历利用轴对称变换推导等腰三角形的性质,并加深对轴对称变换的认识。
2.掌握等腰三角形的下列性质:等腰三角形的两个底角相等;等腰三角形三线合一。
3.会利用等腰三角形的性质进行简单的推理、判断、计算和作图。
【教学重难点】理解并掌握等腰三角形的性质:等边对等角;三线合一。
【教学过程】一、创设情境,自然引入1.温故检测: 叫做等腰三角形;等腰三角形是轴对称图形,它的对称轴是 。
[两边相等的三角形叫做等腰三角形。
特殊情况是正三角形。
对称轴是等腰三角形顶角平分线所在的直线。
]2.悬念、引子、思考将一把三角尺和一个重锤如图放置,就能检查一根横梁是否水平,你知道为什么吗? 说明:首先这个三角形必须是等腰三角形,要不然三角形就放不平。
对于“为什么”学生可能会回答“不知道”,那就进入下一环节“合作学习,探究等腰三角形的性质”;也有可能会回答“等腰三角形三线合一”,因为不能排除有部分学生“预习过”什么的。
那就可以追问“等腰三角形三线为什么会合一”,学生会说,就让他说,但不管会说,还是不会说,都要进入下一环节“合作学习,探究等腰三角形的性质”;这是考虑到大多数学生的利益。
二、交流互动,探求新知1.等腰三角形的性质合作学习:分三组教学活动材料教学活动材料1:如图,在等腰三角形ABC 中,AB =AC ,AD 平分∠BAC ,交BC 于D , (1)把这个等腰三角形剪下来,然后沿着顶角平分线对折,仔细观察重合的部分,并写ABCD出所发现的结论。
(2)你发现了等腰三角形的哪些性质?教学活动材料2:如图,在等腰三角形ABC中,AB=AC,AD平分∠BAC,交BC于D,(1)根据我们已经获得的等腰三角形是轴对称图形,图中等腰三角形ABC的对称轴是什么?△ABD各个顶点的对称点分别是什么?由此可见,将△ABD作关于直线AD的轴对称变换,所得的像是什么?(2)根据轴对称变换的性质:轴对称变换不改变图形的形状和大小。
苏科版数学八年级上册2.5《等腰三角形的轴对称性》说课稿2一. 教材分析《等腰三角形的轴对称性》是苏科版数学八年级上册第二章第五节的内容。
本节课的主要内容是让学生掌握等腰三角形的轴对称性,并会运用轴对称性解决一些实际问题。
教材通过引入等腰三角形的定义和性质,引导学生探究等腰三角形的轴对称性,从而让学生更深入地理解等腰三角形的性质。
二. 学情分析学生在学习本节课之前,已经学习了三角形的性质,对三角形有了一定的了解。
但等腰三角形是三角形的一种特殊形式,它的性质和普通三角形有所不同,所以学生需要通过学习来掌握等腰三角形的性质。
另外,学生已经学习过轴对称的概念,但对轴对称性的理解和应用还不够深入,这也是本节课需要重点解决的问题。
三. 说教学目标1.知识与技能目标:学生能够理解等腰三角形的轴对称性,并能运用轴对称性解决一些实际问题。
2.过程与方法目标:通过学生自主探究、合作交流的方式,培养学生解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心和自主学习能力。
四. 说教学重难点1.教学重点:等腰三角形的轴对称性。
2.教学难点:如何引导学生发现和证明等腰三角形的轴对称性。
五. 说教学方法与手段1.教学方法:采用学生自主探究、合作交流的教学方法,引导学生发现和证明等腰三角形的轴对称性。
2.教学手段:利用多媒体课件、几何画板等教学辅助工具,帮助学生直观地理解等腰三角形的轴对称性。
六. 说教学过程1.导入:通过复习三角形的性质,引出等腰三角形的定义和性质。
2.探究:让学生分组讨论,每组尝试找出等腰三角形的轴对称性,并说明理由。
3.展示:每组选出一名代表,向全班展示他们的探究成果。
4.讲解:教师对学生的探究结果进行点评,并给出正确的证明过程。
5.练习:让学生运用轴对称性解决一些实际问题,巩固所学知识。
6.小结:对本节课的内容进行总结,强调等腰三角形的轴对称性。
七. 说板书设计板书设计如下:等腰三角形的轴对称性1.定义:等腰三角形2.性质:轴对称性3.证明:利用几何画板,展示等腰三角形的轴对称性八. 说教学评价本节课的教学评价主要从学生的学习效果和课堂表现两个方面进行。
义务教育基础课程初中教学资料第一章轴对称图形1.1 轴对称和轴对称图形教学目标:1、经历观察生活中的轴对称现象和轴对称图形,探索它们的共同特征的活动过程,发展空间观念;2、能够认识轴对称和轴对称图形,并能找出对称轴;3、知道轴对称和轴对称图形的区别和联系;4、欣赏现实生活中的轴对称图形,体会轴对称在现实生活中的广泛应用和它的丰富的文化价值。
教学重点:正确辨认轴对称图形,画出它们的对称轴;教学难点:设计简单轴对称图案;教学过程:一、创设情境:动手操作:用一张正方形的纸片,二、新课讲解:1、观察、思考:(投影片)P4 4幅图,观察下列四幅图形,你能发现它们有什么共同特征,说出来与同学交流。
如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称这条直线叫做对称轴,两个图形中的对应点叫做对称点。
2、动手试一试:观察课本第4页几幅图中,画出它们对称轴。
3、探索思考:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
动手画出第5页几幅图片的对称轴。
说说你所熟悉的图形是否是轴对称图形,对称轴是什么?与同学讨论、交流,同小组互相补充。
轴对称图形:圆、正方形、长方形、菱形、等腰梯级、等腰三角形、角、线段等。
学生口述对称轴的位置。
4、讨论、交流:轴对称与轴对称图形的区别与联系。
区别:轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分能完全重合。
联系:两部分都完全重合,都有对称轴,都有对称点。
5、观察、思考:镜像特征:哪些字母在镜中的像与原字母一样?哪些发生了改变?说说它们的对称轴;手在镜中的像有什么变化?说说生活中的轴对称和轴对称图形。
6、欣赏大自然风景(倒影)并说说它们的对称轴的位置。
三、课堂练习:1、P1 22、动手制作一轴对称标志(校运会)四、本节课的收获:1、什么是轴对称和轴对称图形;2、如何画出对称轴、如何找对称点?3、生活中的轴对称和轴对称图形。
初中数学等腰三角形性质教学设计初中数学等腰三角形性质教学设计篇1一、教材分析1、学习目标:根据《数学新课程标准》对学生在知识与技能、数学思考以及情感与态度等方面的要求,我把本节课的学习目标确定为:知识目标:了解等腰三角形和等边三角形有关概念,探索并掌握等腰三角形和等边三角形性质,能应用性质进行计算和解决生产、生活中的有关问题。
能力目标:能结合具体情境发现并提出问题,逐步具有观察、猜想、推理、归纳和合作学习能力。
情感目标:通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质。
2、教学重、难点:重点:等腰三角形性质的探索及其应用。
难点:等腰三角形性质的探索及证明。
3、突破难点策略:通过创设具有启发性的、学生感兴趣的、有助自主学习和探索的问题情境,使学生在活动丰富、思维积极的状态中进行探究学习,组织好合作学习,并对合作过程进行引导,使学生朝着有利于知识建构的方向发展。
二、学情分析刚进入初二的学生观察、操作、猜想能力较强,但演绎推理、归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、结密性、灵活性比较欠缺,自主探究和合作学习能力也需要在课堂教学中进一步加强和引导。
三、教法分析《数学课程标准》要求教师应激发学生学习的积极性,向学生提供充分从事数学活动的机会,帮助他们进行自主探索和合作交流。
为了顺利达到这一目标,引导学生探索性学习,唤起学生的创新意识,我根据教材特点和学生实际,采用了以观察法、发现法、实验操作法、探究法为主的教学方法进行教学。
四、学法建构《数学新课程标准》指出自主探索与合作交流是学生的主要学习方式,因此,通过本节教学,我将对学生进行以下学法指导:1、指导学生动眼观察、动手操作、动脑思考、动口表达,注重多感官参与,多种心智能力投入,使学生始终处于主动探索状态。
2、向学生渗透探究、发现的学习方法,培养他们在合作中共同探索新知识、解决新问题的能力。
等腰三角形的教学设计(9篇)等腰三角形篇一2.5等腰三角形的轴对称性(2)教学目标1.掌握等腰三角形的判定定理。
2.知道等边三角形的性质以及等边三角形的判定定理。
3.经历折纸、画图、观察、推理等操作活动的合理性进行证明的过程,不断感受合情推理和演绎推理都是人们正确认识事物的重要途径。
4.会用“因为……所以……理由是……”或“根据……因为……所以……”等方式来进行说理,进一步发展有条理地思考和表达,提高演绎推理的能力。
教学重点熟练地掌握等腰三角形的判定定理。
教学难点正确熟练地运用定理解决问题及简洁地逻辑推理。
教学过程(教师活动)学生活动设计思路前面我们学习了等腰三角形的轴对称性,说说你对等腰三角形的认识。
本节课我们将继续学习等腰三角形的轴对称性。
一、创设情境如图所示△abc是等腰三角形,ab=ac,它的一部分被墨水涂没了,只留下一条底边bc 和一个底角△c.请同学们想一想,有没有办法把原来的等腰三角形abc重新画出来?大家试试看。
1.学生观察思考,提出猜想。
2.小组交流讨论。
一方面回忆等边对等角及其研究方法,为学生研究等角对等边提供研究的方法,另一方面通过创设情境,自然地引入课题。
二、探索发现一请同学们分别拿出一张半透明纸,做一个实验,按以下方法进行操作:(1)在半透明纸上画一条长为6cm的线段bc.(2)以bc为始边,分别以点b和点c为顶点,在bc的同侧用量角器画两个相等的锐角,两角终边的交点为a.(3)用刻度尺找出bc的中点d,连接ad,然后沿ad对折。
问题1:ab与ac有什么数量关系?问题2:请用语言叙述你的发现。
1.根据实验要求进行操作。
2.画出图形、观察猜想。
3.小组合作交流、展示学习成果。
演示折叠过程为进一步的说理和推理提供思路。
通过动手操作、演示、观察、猜想、体验、感悟等学习活动,获得知识为今后学生进行探索活动积累数学活动经验。
三、分析证明思考:我们利用了折叠、度量得到了上述结论,那么如何证明这些结论呢?问题3:已知如图,在△abc中,△b=△c.求证:ab=ac.引导学分析问题,综合证明。
精选教课教课设计设计| Excellent teaching plan教师学科教课设计[ 20–20学年度第__学期]任教课科: _____________任教年级: _____________任教老师: _____________xx市实验学校精选教课教课设计设计| Excellent teaching plan《等腰三角形的轴对称性三》教课设计学习目标1、掌握“直角三角形斜边上的中线等于斜边的一半”的性质.2、经历“折纸、绘图、察看、归纳”的活动过程,发展学生的空间观点和抽象归纳能力,感觉分类、转变等数学思想方法.学习重难点要点:掌握“直角三角形斜边上的中线等于斜边的一半”的性质.难点:会利用性质解决实质问题 .自主学习1、已知,如图,∠EAC 是△ ABC 的外角, AD 均分∠ EAC , AD∥ BC.求证: AB=AC.EA DB C2、直角三角形斜边上的中线等于的一半.合作研究操作: ( 1) 剪一张直角三角形纸片,如图:ADB C( 1)( 2)( 3)(4)( 2) 剪得的纸片能否能折成图2和图 3的形状?.( 3) 把纸片睁开,连结CD,你有什么发现?∠ A=∠,∠ B=∠1AB. ,即: AD =CD, BD =CD ,因此 CD=2结论 : 直角三角形斜边上的中线等于.精选教课教课设计设计| Excellent teaching planADCB符号语言:如图, 在△ ABC 中,∠ ACB=90°,∵ AD=BD( 或许 D 为 AB 中点 ) ,∴ CD 1AB . 2达标稳固1、若直角三角形斜边上的高和中线分别是5cm 和 6cm ,则斜边长为 ,面积为.2、在△ A BC 中,∠ A=30°,当∠ B=时,△ ABC 为等腰三角形;当∠ B=时,△ ABC 为直角三角形.3、如图,在△ ABC 中,∠ ACB=90°, CD 是 AB 边上的中线且 CD =5cm ,求 AB.BDAC4、一个三角形的一个外角为130°,且它恰巧等于一个不相邻的内角的二倍 . 这个三角形是()A .钝角三角形B .直角三角形C .等腰三角形D .等边三角形5、如图,在△ ABC 中,∠ ACB=90°,D 是 AB 的中点, CE ⊥ AB ,且 AC=6,BC=8,EC=4. 8,求 CD 的长度AEDC B4. 一个等腰三角形的周长为 15cm ,一腰上 的中线把周长分为两部分,这两部分的差为 6cm ,求腰长 .精选教课教课设计设计| Excellent teaching plan ADCB。
沪科版八年级上数学第15章《轴对称图形与等腰三角形》教学设计一. 教材分析《轴对称图形与等腰三角形》是沪科版八年级上数学第15章的内容,本章主要让学生了解轴对称图形的概念,学会判断一个图形是否为轴对称图形,以及掌握等腰三角形的性质。
教材通过生活中的实例引入轴对称图形,让学生感受数学与生活的联系,培养学生的数学素养。
二. 学情分析八年级的学生已经掌握了七年级的数学知识,具备一定的逻辑思维能力和空间想象能力。
但部分学生对实际生活中的几何图形认识不足,对轴对称图形和等腰三角形的概念理解可能存在困难。
因此,在教学过程中,要注重引导学生观察生活中的几何图形,激发学生的学习兴趣,帮助学生建立清晰的概念。
三. 教学目标1.理解轴对称图形的概念,学会判断一个图形是否为轴对称图形。
2.掌握等腰三角形的性质,能运用等腰三角形的性质解决实际问题。
3.培养学生的空间想象能力和逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.轴对称图形的概念及判断。
2.等腰三角形的性质及运用。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生感受轴对称图形的存在,激发学生的学习兴趣。
2.互动教学法:引导学生观察、讨论、分析,培养学生的空间想象能力和逻辑思维能力。
3.实践操作法:让学生动手操作,加深对轴对称图形和等腰三角形性质的理解。
4.归纳总结法:在教学过程中,引导学生总结轴对称图形和等腰三角形的性质,提高学生的表达能力。
六. 教学准备1.教学课件:制作精美的课件,展示生活中的轴对称图形和等腰三角形。
2.教学素材:准备一些实际的图形,如卡片、模型等,用于引导学生观察和操作。
3.教学设备:多媒体设备、投影仪等。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的轴对称图形,如剪刀、飞机模型等,引导学生观察并提问:“这些图形有什么特点?”让学生初步感知轴对称图形的存在。
2.呈现(10分钟)讲解轴对称图形的概念,引导学生了解轴对称图形的定义及特点。
1.5 等腰三角形的轴对称性(1)教案班级姓名学号教学目标:1、理解等腰三角形是轴对称图形;2、掌握等边对等角的性质;3、掌握“三线合一”的性质;教学重点:等腰三角形相关性质的应用:教学难点:等腰三角形的“三线合一”性质的灵活运用教学过程:一、情境创设:对于等腰三角形我想大家一定都不陌生.在前面三角形的学习中我们已经有所认识. 1.出示一组小木屋、金字塔、各种装饰图案等,让学生寻找生活中的等腰三角形2.观察图中的等腰三角形ABC,分别说出它们的腰、底边、顶角和底角二、新课讲解拿出事先准备的等腰三角形,把等腰三角形沿顶角的平分线对折.同学们有什么发现吗?通过对上面等腰三角形的折叠我们可以得出等腰三角形是轴对称图形,顶角平分线所在直线是它的对称轴.根据等腰三角形的轴对称性,同学们还发现了等腰三角形什么性质吗?1.等腰三角形的两个底角相等(简称“等边对等角”)2.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”)1、在△ABC中,如果AB=AC,那么∠=∠2、在△ABC中,AB=AC,点D在BC上;如果∠BAD=∠CAD,那么AD⊥BC,B D=CD;D如果BD=CD,那么∠=∠_______,______⊥______;如果A D⊥BC,那么________ ,_______;二、例题示范:例1.如图,在△ABC中,AB = A C,点D在BC上,且A D = BD.找出相等的角并说明理由.例2.在△ ABC中,AB=AC,D是BC边上的中点,∠ B=30°,求∠ 1和∠ ADC 的度数.分析等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合,简称“三线合一”.等腰三角形的“三线合一”是等腰三角形的重要性质.三、课堂小结:1、等腰三角形是轴对称图形;2、等边对等角的性质;3、“三线合一”的性质;4、等边三角形三个角都是60°;四、课后作业:P29 1,2,3五、教学后记:。
《等腰三角形》一、说教材分析:1.教材内容:本课是等腰三角形,本课内容在初中数学教学中起着比较重要的作用。
通过等腰三角形的特征反映在一个三角形中等边对等角关系,并且对轴对称图形特征的直观反映(三线合一),对以后直角三角形和相似三角形学习起到相当重要的作用。
2、教学目标:(1)认知目标:要求学生掌握等腰三角形的特征和三线合一的特征,使学生会用等腰三角形的特征进行证明或计算,逐步渗透几何证题的基本方法:分析法和综合法;(2)能力目标:培养观察能力、分析能力、联想能力、表达能力;使学生初步学会分析几何证明题的思路,从而提高学生的逻辑思维能力及分析问题、解决问题的能力;(3)情感目标:通过亲自动手,发现“等腰三角形两底角相等”和“三线合一”特征,对学生进行数学美育教育。
3、教学重难点:(1)教学重点:等腰三角形两底角相等的特征是本课的重点。
(2)教学难点:等腰三角形“三线合一”特征的运用是本课的难点。
4、教具准备:为了使学生了解这堂课,本节课要求学生自制若干个不同等腰三角形和一般性三角形纸片模型。
二、说教学方法:由于八年级学生的理解能力和思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及八年级学生刚刚学习轴对称图形,对轴对称图形的分析相对比较好,再加上八年级学生思维的感官性,所以本课由学生通过翻折等腰三角形纸片去发现等腰三角形的两个特征,也为使课堂生动、有趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,我通过实验观察,采用教具直观教学法,启发式教学法和师生互动式教学模式进行教学。
教学过程中注意师生之间的情感交流,培养学生“多观察、动脑想、大胆猜、勤钻研”的研讨式学习模式,培养学生的数形结合的思想。
对于等腰三角形的“两底角相等”和“三线合一”这两个特征,通过让学生动手操作,让学生翻折不同的等腰三角形,如顶角是锐角、钝角或直角的等腰三角形,以及一般三角形的模版,从而让学生逐步通过等腰三角形的轴对称变换探索出相关的特征。
A
B
2
1C
B A
E
D
O 21
1.5等腰三角形的轴对称性(2)
姓名_________ 班级 ________ 学号 等第
学习目标
1. 掌握“等角对等边”的性质
2. 掌握“直角三角形斜边上的中线等于斜边的一半”的性质
3. 经历“折纸、画图、观察、归纳”的活动过程,发展学生的空间观念和抽象概括能力,
感受分类、转化等数学思想方法;
4. 会用“因为……所以……理由是……”等方式来进行说理,进一步发展有条理的思考和
表达,提高演绎推理的能力
学习重点
熟练的掌握“等角对等边”及直角三角的重要性质
学习难点
正确熟练的运用解决问题
学习过程
1.探索发现
(1).将一张长方形的纸条上任意画出一条截线AB ,所得的∠1与∠2相等吗?为什么?
经过折叠后所得的△ABC ,在所得的三角形中∠1=∠2。
那么请同学们度量边AC ,BC 的长度,你们有什么发现?
(2).在一张薄纸上画线段AB ,并在AB 同侧利用量角器画两个相等的锐角∠BAM 和∠ABM.设AM 与BN 相交于点C.量一量AC 与BC 的长度,AC 和BC 相等吗?你和同学所得的结论相同吗?
2.例题分析
例1. 如图,在△ABC 中,AB = AC ,两条角平分线BD 、CE 相交于点O 。
(1).OB 与OC 相等吗?请说明理由。
⑵.BD 与CE 相等吗?为什么?
B
A
C
21
⑶.如果将BD 与CE 变为高或中线,⑵中的结论还成立吗?为什么?
例2、如图,已知0B 、OC 为△ABC 的角平分线,DE ∥BC ,△ADE 的周长为10,BC 长为8,求△ABC 的周长.
3. 根据课本P26的探索,请同学讨论,并从中得出相关的结论 取一张直角三角形纸片,按下列步骤折叠:
问题:图中与AD 相等的线段有哪些?CD 与AB 的大小有什么关系?
4.课堂练习
(1).课本第26页练习1、2、3
(2).如图,在四边形ABCD 中, ∠ABC=∠ADC=900,M 、N 分别是AC 、BD 的中点,求证:MN ⊥BD.
(3).如图,在△ABC 中,∠C=900
, ∠ABD=2∠EBC ,AD ∥BC , 求证:DE=2AB.
5. 总结反思
(1).如何判定一个三角形是等腰三角形?
(2).直角三角形斜边上的中线与斜边有何关系?
A
B
C
D ⑴
⑵
⑶
⑷
A
B
C
D E
A C
B D
M
N A B
C D E
作业设计
班级 姓名 学号 等第 1.等腰三角形的识别:如果一个三角形有两个角 ,那么这两个角所对的边 .简称 .
2.直角三角形 等于 的一半.
3.在△ABC 中,∠A=30°,当∠B= 时,△ABC 为等腰三角形; 当∠B= 时,△ABC 为直角三角形.
4.如图,已知AC=CD=DA=CB=DE ,则此图中共有 个等腰三角形,有 个直角三角形,
AC=21 =2
1
.
5.在△ABC 中,∠C=90°,D 是AB 的中点,若AB=18㎝, 则CD= .
6.如图,BC=BD ,∠C=∠D ,你能判断AC 与AD 的长度有什么关系吗?请说明理由.
7.在△ABC 中,已知点E 在BA 的延长线上,并且∠1=∠2,AD∥BC. 问:△ABC 是什么三角形?为什么?
8.如图,△ABC 中,BE 、CF 分别是AC 、AB 边上的高,D 是BC 边上的中点,试说明DE=DF.
A
B C D
E
E 2
D C B A 1
B C
A F
B D E
C A
9.在△ABC 中,∠ABC 、∠ACB 的平分线相交于点O ,过点O 作DE ∥BC ,分别交AB 、AC 于点D 、E.请说明DE=BD+EC.
选做习题
10.如图,已知△ABC 中,∠B=90°,AB=BC,BD=CE,M 是AC 边上的中点,求证:△DEM 是等腰三角形.
11.如图在△ABC 中,M,N 分别是BC 与EF 的中点,CF ⊥AB ,BE ⊥AC ,证明:MN ⊥EF.
A
B C
F
E
N
M
A
B C D E。