磺胺类药物及抗菌增效剂
- 格式:ppt
- 大小:461.50 KB
- 文档页数:52
第1节磺胺类药物及抗菌增效剂1、磺胺类药物的作用机理:磺胺类药物与细菌生长所必需的对氨基苯甲酸(PABA)产生竞争性拮抗,生成无功能的类二氢叶酸化合物,使生成四氢叶酸受阻,影响辅酶F的形成,从而影响微生物DNA、RNA、蛋白质的合成,使其生长繁殖受到抑制。
2、构效关系PKa在6.5-7.5时,抑菌作用最强。
3、药物:磺胺嘧啶1)性质:其钠盐水溶液易吸收空气中的CO2,析出磺胺嘧啶↓可与硝酸银作用生成磺胺嘧啶银2)应用:抗菌、收敛作用,对绿脓杆菌有抑制作用易透过血脑屏障,防止流行性脑膜炎磺胺甲噁唑1)化学性质乙酰化物,溶解度小→肾小管析出结晶→尿路损伤应同时服用NaHCO3→碱化尿液→↑乙酰物在尿中的溶解度2)代谢N4-乙酰化物、N4-葡萄糖酸结合物抗菌增效剂甲氧苄啶作用机理:可逆性抑制二氢叶酸还原酶,阻碍二氢叶酸还原成四氢叶酸,影响辅酶F的形成。
问:试述磺胺类药与甲氧苄啶配伍的理论依据?(复方新诺明,磺胺类:甲氧苄啶=5:1)1、磺胺类药物与细菌生长所必需的对氨基苯甲酸(PABA)产生竞争性拮抗,生成无功能的类二氢叶酸化合物,使生成四氢叶酸受阻,影响辅酶F的形成,从而影响微生物DNA、RNA、蛋白质的合成,使其生长繁殖受到抑制。
而甲氧苄啶可逆性抑制二氢叶酸还原酶,阻碍二氢叶酸还原成四氢叶酸,影响辅酶F的形成。
2、两者联用后,双重阻断细菌代谢,从而使其抗菌作用增强数倍至数十倍。
问:磺胺类抗菌药的作用机理的研究为药物化学的发展起到何种贡献?贡献在于发现了抗代谢学说,即设计与生物体内基本代谢物的结构有某种程度相似的化合物,使其与基本代谢物竞争或干扰基本代谢物的被利用,或掺入到生物大分子的合成中形成伪生物大分子,导致致死合成,从而影响细胞的合成。
抗代谢的设计多采用生物电子等排原理。
第二节喹诺酮类抗菌药1、发展概述第一代:1962-1969,对G+几乎无作用,易被代谢,作用时间短药物:萘啶酸、吡咯酸第二代:1969-1978,对G+、G-有效、对绿脓杆菌有效(7位引入哌嗪基[碱性]→分子碱性↑,水溶性↑→抗菌活性↑)药物:西诺沙星、吡哌酸第三代:1978-1996,抗G+、G-、支原体、衣原体、军团菌、分枝菌(6位引入F,使得具有良好的组织渗透性,药代动力学参数及吸收、分布、代谢状况均佳)药物:诺氟沙星、环丙沙星、氧氟沙星第四代:1997年至今比较均衡地作用与拓扑异构酶Ⅱ(回旋酶、旋转酶)与拓扑异构酶Ⅳ药物:加替沙星(中药房实习:加替沙星滴眼液,糖尿病患者禁用)、莫西沙星、吉米沙星、巴洛沙星、帕珠沙星2、作用机理:喹诺酮类药物与细菌DNA的旋转酶和拓扑异构酶Ⅳ形成稳定化合物,选择性抑制这两种酶,使细菌处于一种超螺旋状态,从而影响细菌细胞的生长与分裂(DNA旋转酶对于细菌的复制、转录和修复起决定性作用;拓扑异构酶Ⅳ在细胞壁的分裂中,对细菌染色体的分裂起关键性作用)3、构效关系:1位若为苯基取代,抗菌活性与乙基相似,对G+作用更强2位引入取代基活性下降的原因:空间位阻干扰与受体结合2、喹诺酮类结构与抗菌活性、毒性、代谢关系:见师姐笔记《药化二P4-5》3、药物:(1)环丙沙星化学结构:1位乙基被环丙基取代(2)左氧氟沙星右下角:甲基为α位,H为β位优点:活性是环丙沙星的2倍水溶性好→制成注射剂毒副作用小耐药机制:细菌降低细胞壁的通透性,或激活细胞膜上的药物外排泵。
磺胺类药物在20世纪30年代发展很快,临床上应⽤的药物曾有20余种,40年代以后由于青霉素等抗⽣素的出现,磺胺类药物在化学治疗药物中的地位下降,但是磺胺类药物有抗菌谱⼴、疗效确切、可以⼝服,吸收较迅速等特点。
与抗菌增效剂甲氧苄啶(Trimethoprim)合⽤可使抗菌作⽤增强。
仍为⽐较常⽤的抗菌药。
磺胺类药物作⽤机制的阐明,确⽴了抗代谢学说,为发展新药开辟了⼀条新途径。
⽬前临床上使⽤较多的药物有磺胺嘧啶(Sulfadiazine)和磺胺甲噁唑(Sulfamethoxazole)。
⼀、磺胺类药物作⽤机制 磺胺类药物作⽤机制有多种学说其中众所公认的Wood-Fields学说认为磺胺类药物能与细菌⽣长所必需的对氨基苯甲酸(PABA)产⽣竞争性拮抗,⼲扰了细菌的酶系统对PABA利⽤,PABA是叶酸的组成部分,叶酸为微⽣物⽣长中必要物质,也是构成体内叶酸辅酶的基本原料。
PABA在⼆氢蝶酸合成酶的催化下,与⼆氢蝶啶焦磷酸酯及⾕氨酸或⼆氢蝶啶焦磷酸酯与对氨基苯甲酰⾕氨酸合成⼆氢叶酸。
再在⼆氢叶酸还原酶的作⽤下还原成四氢叶酸,为细菌合成核酸提供叶酸辅酶。
由于磺胺类药物分⼦⼤⼩及电荷分布和PABA及为相似,使得在⼆氢叶酸的⽣物合成中,可以取代PABA位置,磺胺类药物抑制⼆氢蝶酸合成酶,阻断了⼆氢叶酸的⽣物合成。
⼆氢叶酸经⼆氢叶酸还原酶作⽤还原为四氢叶酸,后者进⼀步合成辅酶F。
辅酶F为DNA合成中所必需的嘌呤、嘧啶碱基的合成提供⼀个碳单位。
⼈体作为微⽣物的宿主,可以从⾷物中摄取四氢叶酸,因此,磺胺类药物不影响正常叶酸代谢,⽽微⽣物靠⾃⾝合成四氢叶酸,⼀旦叶酸代谢受阻,⽣命不能继续,因此微⽣物对磺胺类药物敏感。
⼆、磺胺嘧啶(Sulfadiazine) 化学名:4-氨基-N-2-嘧啶基苯磺酰胺 性质: 1.磺胺嘧啶为两性化合物,可在稀盐酸或氢氧化钠试液、氨试液中溶解。
这是由于磺胺类药物分⼦中磺酰氨基上的氢,受磺酰基吸电⼦作⽤的影响易解离,显弱酸性。
第十二章抗菌药本章只讨论磺胺类药物及抗菌增效剂;喹诺酮类抗菌药;抗结核药物。
一、磺胺类药物及抗菌增效剂磺胺类药物为对氨基苯磺酰胺的衍生物,具有以下基本结构:磺胺类药物在20世纪30年代发展很快,临床上应用的药物曾有20余种,40年代以后由于青霉素等抗生素的出现,磺胺类药物在化学治疗药物中的地位下降,但是磺胺类药物有抗菌谱广、疗效确切、可以口服,吸收较迅速等特点。
与抗菌增效剂甲氧苄啶(Trimethoprim)合用可使抗菌作用增强。
仍为比较常用的抗菌药。
磺胺类药物作用机制的阐明,确立了抗代谢学说,为发展新药开辟了一条新途径。
目前临床上使用较多的药物有磺胺嘧啶(Sulfadiazine)和磺胺甲噁唑(Sulfamethoxazole)。
(一)磺胺类药物作用机制磺胺类药物作用机制有多种学说其中众所公认的Wood-Fields学说认为磺胺类药物能与细菌生长所必需的对氨基苯甲酸(PABA)产生竞争性拮抗,干扰了细菌的酶系统对PABA利用,PABA是叶酸的组成部分,叶酸为微生物生长中必要物质,也是构成体内叶酸辅酶的基本原料。
PABA在二氢蝶酸合成酶的催化下,与二氢蝶啶焦磷酸酯及谷氨酸或二氢蝶啶焦磷酸酯与对氨基苯甲酰谷氨酸合成二氢叶酸。
再在二氢叶酸还原酶的作用下还原成四氢叶酸,为细菌合成核酸提供叶酸辅酶。
由于磺胺类药物分子大小及电荷分布和PABA及为相似,使得在二氢叶酸的生物合成中,可以取代PABA位置,磺胺类药物抑制二氢蝶酸合成酶,阻断了二氢叶酸的生物合成。
二氢叶酸经二氢叶酸还原酶作用还原为四氢叶酸,后者进一步合成辅酶F。
辅酶F为DNA合成中所必需的嘌呤、嘧啶碱基的合成提供一个碳单位。
人体作为微生物的宿主,可以从食物中摄取四氢叶酸,因此,磺胺类药物不影响正常叶酸代谢,而微生物靠自身合成四氢叶酸,一旦叶酸代谢受阻,生命不能继续,因此微生物对磺胺类药物敏感。
(二)磺胺嘧啶(Sulfadiazine)化学名:4-氨基-N-2-嘧啶基苯磺酰胺性质:1.磺胺嘧啶为两性化合物,可在稀盐酸或氢氧化钠试液、氨试液中溶解。
磺胺类药物及抗菌增效剂数字化教材院〔部〕食品药品学院教研室药品技术教师潍坊职业学院磺胺类药物及抗菌增效剂一、磺胺类药物概述〔一〕磺胺类药物的定义磺胺类药物〔Sulfonamides, SAs 〕是指具有对氨基苯磺酰胺结构的一类药物总称,母体对氨基苯磺酰胺又称磺胺,是一类用于预防和治疗细菌感染性疾病的化学治疗药物。
磺胺药是现代医学中常用的一类抗菌消炎药,其品种繁多,最早的磺胺却是染料中的一员。
〔二〕磺胺类药物的结构R 1多为H,4位上的氨基为抗菌活性必需基团。
R2多为杂环取代,作用更强。
只有磺胺米隆的结构例外。
〔三〕磺胺类药物开展历史在问世之前,西医对于炎症,尤其是对、、等,都因无特效药而感到非常棘手。
1 对氨基苯磺酰胺问世1908年,德国化学家Gelmo合成了对氨基苯磺酰胺,作为合成偶氮染料的中间体。
可惜它的医疗价值当时没有被人们发现。
2 百浪多息问世1932年,德国化学家Fritz Mietzsch和Josef Klarer合成了红色的磺胺偶氮染料2ʹ,4ʹ二氨基偶氮苯-4-磺酰胺盐酸盐,又名为“〞〔prontosil〕,因其中包含一些具有消毒作用的成分,所以曾被零星用于治疗丹毒等疾患。
然而在实验中,它在试管内却无明显的杀菌作用,因此没有引起医学界的重视。
同年,德国病理学家格哈德·杜马克〔Gerhard Domagk〕在试验过程中发现,“〞对于感染的具有很高的疗效。
后来,他又用兔、狗进行试验,都获得成功。
1935年百浪多息被世人知晓。
Domagk的小女儿因为被针刺了一下而受到链球菌的感染而得了严重的败血症。
在采用多种方法治疗无效后,Domagk在绝望中对她注射了大剂量的百浪多息,结果女儿得救。
百浪多息挽救了美国总统的儿子——小F·D·罗斯福,当时也是因为感染而生命垂危。
美国首相温斯顿·丘吉尔〔肺炎〕也是因为受到百浪多息的治疗而恢复健康的。
1935年,Domagk发表了百浪多息的抗菌作用。