专题一 第1讲
- 格式:doc
- 大小:436.00 KB
- 文档页数:15
专题一(第一讲):《双基部分》 金牌数学专题系列 导入知识回顾一、 面的旋转1.“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。
2.圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆。
(2)两个底面间的距离叫做圆柱的高。
(3)圆柱有无数条高,且高的长度都相等。
3.圆锥的特征:(1)圆锥的底面是一个圆。
(2)圆锥的侧面是一个曲面。
(3)圆锥只有一条高。
二、 圆柱的表面积1.沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)。
(如果不是沿高剪开,有可能还会是平行四边形)2.圆柱的侧面积=底面周长×高,用字母表示为:S 侧=ch 。
3.圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S 侧=ch ; (2)已知底面直径和高,求侧面积,可运用公式:S 侧=πdh ; (3)已知底面半径和高,求侧面积,可运用公式:S 侧=2πrh4.圆柱表面积的计算方法:如果用S 侧表示一个圆柱的侧面积,S 底表示底面积,d 表示底面直径,r 表示底面半径,h 表示高,那么这个圆柱的表面积为:S 表=S 侧+2S 底 或S 表=πdh+πd2/2=或S 表=2πrh+2πr2三、 圆柱的体积1. 圆柱的体积:一个圆柱所占空间的大小。
2. 圆柱的体积=底面积×高。
如果用V 表示圆柱的体积,S 表示底面积,h 表示高,那么V =Sh 。
3. 圆柱体积公式的应用:(1) 计算圆柱体积时,如果题中给出了底面积和高,可用公式:V =Sh 。
(2) 已知圆柱的底面半径和高,求体积,可用公式:V =πr2h ; (3) 已知圆柱的底面直径和高,求体积,可用公式:V =π(d/2)2儿子考完试回家一进门,连招呼都不打,低着头要回屋。
爸爸:“成绩下来了,多少分?” 儿子:“爸,您今天心情好吗?” 爸爸:“非常好。
” 儿子:“为了不影响您的好心情,您还是别问了。
2022高考数学二轮复习讲义 专题一 第1讲 函数的图象与性质【要点提炼】考点一 函数的概念与表示 1.复合函数的定义域(1)若f(x)的定义域为[m ,n],则在f(g(x))中,m ≤g(x)≤n ,从中解得x 的范围即为f(g(x))的定义域.(2)若f(g(x))的定义域为[m ,n],则由m ≤x ≤n 确定的g(x)的范围即为f(x)的定义域. 2.分段函数分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数值域的并集.【热点突破】【典例1】 (1)若函数f(x)=log 2(x -1)+2-x ,则函数f ⎝ ⎛⎭⎪⎫x 2的定义域为( )A .(1,2]B .(2,4]C .[1,2)D .[2,4)(2)设函数f(x)=⎩⎪⎨⎪⎧2x +1,x ≤0,4x,x>0,则满足f(x)+f(x -1)≥2的x 的取值范围是________.【拓展练习】(1)已知实数a<0,函数f(x)=⎩⎪⎨⎪⎧x 2+2a ,x<1,-x ,x ≥1,若f(1-a)≥f(1+a),则实数a 的取值范围是( ) A .(-∞,-2] B .[-2,-1] C .[-1,0)D .(-∞,0)(2)(多选)设函数f(x)的定义域为D ,如果对任意的x ∈D ,存在y ∈D ,使得f(x)=-f(y)成立,则称函数f(x)为“H 函数”.下列为“H 函数”的是( )A .y =sin xcos xB .y =ln x +e xC .y =2xD .y =x 2-2x【要点提炼】考点二 函数的性质 1.函数的奇偶性(1)定义:若函数的定义域关于原点对称,则有: f(x)是偶函数⇔f(-x)=f(x)=f(|x|); f(x)是奇函数⇔f(-x)=-f(x).(2)判断方法:定义法、图象法、奇偶函数性质法(如奇函数×奇函数是偶函数). 2.函数单调性判断方法:定义法、图象法、导数法. 3.函数图象的对称中心或对称轴(1)若函数f(x)满足关系式f(a +x)=2b -f(a -x),则函数y =f(x)的图象关于点(a ,b)对称.(2)若函数f(x)满足关系式f(a +x)=f(b -x),则函数y =f(x)的图象关于直线x =a +b2对称.【热点突破】考向1 单调性与奇偶性【典例2】 (1)(2020·新高考全国Ⅰ)若定义在R 上的奇函数f(x)在(-∞,0)上单调递减,且f(2)=0,则满足xf(x -1)≥0的x 的取值范围是( ) A .[-1,1]∪[3,+∞) B .[-3,-1]∪[0,1] C .[-1,0]∪[1,+∞)D .[-1,0]∪[1,3](2)设函数f(x)=cos ⎝ ⎛⎭⎪⎫π2-πx +x +e2x 2+e2的最大值为M ,最小值为N ,则(M +N -1)2 021的值为________.考向2 奇偶性与周期性【典例3】(1)定义在R 上的奇函数f(x)满足f ⎝ ⎛⎭⎪⎫x +32=f(x),当x ∈⎝ ⎛⎦⎥⎤0,12时,f(x)=()12log 1x -,则f(x)在区间⎝ ⎛⎭⎪⎫1,32内是( ) A .减函数且f(x)>0 B .减函数且f(x)<0 C .增函数且f(x)>0D .增函数且f(x)<0(2)已知定义在R 上的函数f(x)满足:函数y =f(x -1)的图象关于点(1,0)对称,且x ≥0时恒有f(x +2)=f(x),当x ∈[0,1]时,f(x)=e x-1,则f(2 020)+f(-2 021)=________. 【拓展练习】 (1)(2018·全国Ⅱ)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)等于( ) A .-50 B .0 C .2 D .50(2)(多选)关于函数f(x)=x +sin x ,下列说法正确的是( ) A .f(x)是奇函数 B .f(x)是周期函数C .f(x)有零点D .f(x)在⎝⎛⎭⎪⎫0,π2上单调递增【要点提炼】考点三 函数的图象1.作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.2.利用函数图象可以判断函数的单调性、奇偶性,作图时要准确画出图象的特点.【热点突破】考向1 函数图象的识别【典例4】 (1)(2020·衡水模拟)函数f(x)=x ·ln |x|的图象可能是( )(2)已知某函数图象如图所示,则此函数的解析式可能是( )A .f(x)=1-ex1+e x ·sin xB .f(x)=e x-1e x +1·sin xC .f(x)=1-ex 1+e x ·cos xD .f(x)=e x-1e x +1·cos x考向2 函数图象的变换及应用【典例5】 (1)若函数y =f(x)的图象如图所示,则函数y =-f(x +1)的图象大致为( )(2)已知函数f(x)=⎩⎪⎨⎪⎧2x-1,x ≤0,-x 2-3x ,x>0,若不等式|f(x)|≥mx -2恒成立,则实数m 的取值范围为( )A .[3-22,3+22]B .[0,3-22]C .(3-22,3+22)D .[0,3+22]【拓展练习3】 (1)(2020·天津市大港第一中学模拟)函数y =2|x|sin 2x 的图象可能是( )(2)已知函数f(x)=⎩⎪⎨⎪⎧x 2-x ,x ≤0,ln x +1,x>0,若存在x 0∈R 使得f(x 0)≤ax 0-1,则实数a 的取值范围是( ) A .(0,+∞)B .[-3,0]C .(-∞,-3]∪[3,+∞)D .(-∞,-3]∪(0,+∞)专题突破一、单项选择题1.函数y =-x 2+2x +3lg x +1的定义域为( )A .(-1,3]B .(-1,0)∪(0,3]C .[-1,3]D .[-1,0)∪(0,3]2.设函数f(x)=⎩⎪⎨⎪⎧log 21-x ,x<0,22x -1,x ≥0,则f(-3)+f(log 23)等于( )A.112B.132C.152D .103.设函数f(x)=4x23|x|,则函数f(x)的图象大致为( )4.设函数f(x)=⎩⎪⎨⎪⎧2|x -a|,x ≤1,x +1,x>1,若f(1)是f(x)的最小值,则实数a 的取值范围是( )A .[-1,2)B .[-1,0]C .[1,2]D .[1,+∞)5.(2020·抚顺模拟)定义在R 上的偶函数f(x)满足f(x +2)=f(x),当x ∈[-1,0]时,f(x)=-x -2,则( )A .f ⎝ ⎛⎭⎪⎫sin π6>f ⎝⎛⎭⎪⎫cos π6 B .f(sin 3)<f(cos 3)C .f ⎝ ⎛⎭⎪⎫sin 4π3<f ⎝ ⎛⎭⎪⎫cos 4π3D .f(2 020)>f(2 019) 6.定义新运算:当a ≥b 时,a b =a ;当a<b 时,ab =b 2.则函数f(x)=(1x)x -(2x),x ∈[-2,2]的最大值为( )A .-1B .1C .6D .127.(2020·全国Ⅱ)设函数f(x)=ln|2x +1|-ln|2x -1|,则f(x)( )A .是偶函数,且在⎝ ⎛⎭⎪⎫12,+∞单调递增B .是奇函数,且在⎝ ⎛⎭⎪⎫-12,12单调递减C .是偶函数,且在⎝ ⎛⎭⎪⎫-∞,-12单调递增D .是奇函数,且在⎝⎛⎭⎪⎫-∞,-12单调递减 8.已知函数f(x)(x ∈R )满足f(x)=f(2-x),若函数y =|x 2-2x -3|与y =f(x)图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则i 等于( ) A .0 B .m C .2m D .4m 二、多项选择题9.若函数f(x),g(x)分别是定义在R 上的偶函数、奇函数,且满足f(x)+2g(x)=e x,则( ) A .f(x)=e x+e-x2B .g(x)=e x -e-x2C .f(-2)<g(-1)D .g(-1)<f(-3)10.(2020·福州质检)已知函数f(x)=⎩⎪⎨⎪⎧x 2+32x ,x ≥0,x 2-32x ,x<0,则( )A .f(x)是偶函数B .f(x)在[0,+∞)上单调递增C .f(x)在(-∞,0)上单调递增D .若f ⎝ ⎛⎭⎪⎫1a ≥f(1),则-1≤a ≤111.符号[x]表示不超过x 的最大整数,如[3.14]=3,[-1.6]=-2,定义函数f(x)=x -[x],则下列命题正确的是( ) A .f(-0.8)=0.2B .当1≤x<2时,f(x)=x -1C .函数f(x)的定义域为R ,值域为[0,1)D .函数f(x)是增函数、奇函数12.已知函数f(x)的定义域为R ,且f(x +1)是偶函数,f(x -1)是奇函数,则下列说法正确的是( ) A .f(7)=0B .f(x)的一个周期为8C .f(x)图象的一个对称中心为(3,0)D .f(x)图象的一条对称轴为直线x =2 019 三、填空题13.(2020·江苏)已知y =f(x)是奇函数,当x ≥0时,f(x)=23x ,则f(-8)的值是________. 14.已知定义在R 上的函数f(x)满足f(x +2)=-1f x,当x ∈(0,2]时,f(x)=2x +1,则f(2 020)+f(2 021)的值为________.15.对于函数y =f(x),若存在x 0使f(x 0)+f(-x 0)=0,则称点(x 0,f(x 0))是曲线f(x)的“优美点”.已知f(x)=⎩⎪⎨⎪⎧x 2+2x ,x<0,kx +2,x ≥0,若曲线f(x)存在“优美点”,则实数k 的取值范围是________________.16.(2020·全国Ⅲ)关于函数f(x)=sin x +1sin x 有如下四个命题:①f(x)的图象关于y 轴对称; ②f(x)的图象关于原点对称;③f(x)的图象关于直线x =π2对称; ④f(x)的最小值为2.其中所有真命题的序号是________.。
第一讲 绝对值、有理数的巧算专题一、知识梳理1.非负数一个数的绝对值是非负数,一个数的平方(四次方,六次方等偶次方)都是非负数. 即,0≥a ,02≥a ,为正整数)(其中n a n 02≥2.裂项常用到的关系式(1)ba ab b a 11+=+; (2)111)1(1+-=+a a a a ; (3)b a a b a a b +-=+11)(; (4)2)1(321n n n ⨯+=++++ .3.绝对值表示距离的应用n n a x a x a x a x a x a x -+-++-+-+-+--14321 :表示求数x 分别到数 n n a a a a a a 、、、、、、14321- 的距离和(其中n n a a a a a a 、、、、、、14321- 是数轴 上依次排列的点表示的有理数).(1)当n 为偶数时,若122+≤≤n n a x a ,则原式有最小值;(2)当n 为奇数时,若21+=n a x ,则原式有最小值.4.乘方中的计算公式(1)n n n b a b a ⨯=⨯)(; (2)⎪⎩⎪⎨⎧-=-为偶数时当,为奇数时当,n a n a a n n n)( 二、典例剖析专题一:一个数的绝对值与其本身的关系的应用——aa 例题1 用a 、b 、c 表示任意三个非零的有理数,求cc b b a a ++的值.【活学活用】1.设0<a ,且x ≤a a,则=--+21x x .2.若0≠ab ,则bb a a+的取值不可能是( ) A.0 B.1 C.2 D.-23.用a 、b 表示任意两个有理数,若0≠ab ,则abab b b a a ++的取值可能是( ) A. 0 B.1 C.3或1 D.3或-1★4.三个有理a 、b 、c 满足0,0>++<c b a abc ,当x=c cb ba a++时,代数式29219+-x x 的值为 .5.已知1-=++c c b b a a ,试求abc abc ca ca bc bc ab ab +++的值.6.已知:a 、b 、c 都不为0,且abcabc c c b b a a +++的最大值为m ,最小值为n ,则 2004)(n m += .7.已知0≠abc ,且M=abc abcc cb ba a+++,当a 、b 、c 取不同的值时,M 有( )A .惟一确定的值B .3种不同的取值C .4种不同的取值D .8种不同的取值专题二:绝对值的非负性——0≥a引例 若2)1(-a 与2+b 互为相反数,则2010)(b a += .例题2 若,,a b c 为整数,且19191a bc a -+-=,试计算c a a b b c -+-+-的值.【活学活用】1.已知:1,,____a b a b a b +=-=且为整数,则.2.如果02)31(2=-++y x ,则y x = .3.若1+=m m ,则=+2010)14(m .★4.如果,2-<x 那么x +-11等于( )A.x --2B.x +2C.xD.x -★5.若x <2,则|x -2|+ |2+x|=_____________★6.已知a 、b 、c 都是负数,且0=-+-+-c z b y a x ,则xyz 是( )A.负数B.非负数C.正数D.非正数★7.如果2-x +x -2=0,那么x 的取值范围是( )A.x >2B.x <2C.x ≥ 2D.x ≤28.已知0)3(254=++-y x ,求2010)2(y x +的值.9.计算:若2)2(-a 与88|b - 1|2003 互为相反数,则a-b a+b的值为?★10..已知55)(2+=+++b b b a ,且012=--b a ,求ab 的值.专题三:绝对值表示距离的应用解决数轴上两点之间的距离问题(数形结合的解题思想)若数轴上点A 对应的数是a ,点B 对应的数是b ,则A 、B 两点之间的距离为数a 、b 的 差的绝对值,即b a AB -=.例题3 如图,点A 、B 在数轴上对应的有理数分别为n m 、,则A 、B 间的距离是 .(用含n m 、的式子表示)【活学活用】有理数c b a 、、在数轴上的位置如图所示.m 0 nB A试化简:a b a c b c c +--++-.例题4 绝对值表距离的应用(1)51-+-x x 的最小值是 . (2)32-++x x 的最小值是 .(3)421-+-++x x x 的最小值是 .(4)试求7654321-+-+-+-+-+-+-x x x x x x x 的最小值.(5)试求2010321-++-+-+-x x x x 的最小值.(6)试求2011321-++-+-+-x x x x 的最小值.【活学活用】(★)若x 为有理数,则173++++-x x x 的最小值为_____________.专题四:乘方中的计算公式——nn n b a b a ⨯=⨯)(c b 0 a例题5 已知14400151432133333=+++++ ,求333333028642+++++ 的 值.专题五:整数的分解例题6 若d c b a 、、、是互不相等的整数(d c b a <<<),且121=⨯⨯⨯d c b a ,求 d c b a +的值.【活学活用】若d c b a 、、、是互不相等的正整数,且441=⨯⨯⨯d c b a ,求d c b a +++的值.专题六:有理数运算的技巧——裂项、凑整、换元例题7 已知|321(2)0x y -+-=,求111(1)(1)(2008)(2008)xy x y x y +++++++……的 值.【活学活用】1.已知|321(2)0x y -+-=,求111(1)(1)(2008)(2008)xy x y x y +++++++……的值.2.201220091141111181851521⨯++⨯+⨯+⨯+⨯ 计算.3.计算1111131517192153042567290110-+-+-+例题8 计算:1+211++3211+++…+100993211+++++例题9 计算8989889988999889999833333++++【活学活用】1.计算2005×0.5-2006×2.5-2007÷12.5.2.计算89-899+8999-89999+…+89999999得( )A.-818181810B.-81818189C.81818189D.818181810三、家庭作业★1.已知ab 2c 3d 4e 5<0,下列判断正确的是 ( )A .abcde<0 B.ab 2cd 4e<0 C.ab 2cde<0 D.abcd 4e<02.(-2)2004+3×(-2)2003的值为( )A.-22003B.22003C.-22004D.22004 3.已知,则当1=a 时,=2A __________,当1-=a 时, A=_______.4.若一个数的绝对值是8,另一个数的绝对值是4,这两个数的乘积为负数,则这两个数 中,大数除以小数的商是 .5.(2008佛山)若20072008a =,20082009b =,则a ,b 的大小关系是a b .6.计算:2010120071200712008120081200912009120101---+-+-.7.11(23++…11)(120102+⨯++…11)(120092+-++…111)(201023+⨯++…1).2009+8.求)2009120101()2008120091()4151()3141()2131()121(-+-++-+-+-+- 的 值.9.已知a 与b 互为相反数,x 与y 互为倒数,c 的绝对值等于2,求c xy b a 312-++的值.10.已知a 、b 、m 、n 、x 是有理数,且a 、b 互为相反数,m 、n 互为倒数,x 的绝 对值等于3.求201020092)()()(mn b a mn b a x -+++++-的值.11.有理数综合运算 020********)1()2(}375.0)161(]212)75.0(81[2)2(3{)21(2)(-+-⨯----÷+--⨯--⨯-----π。
专题一阅读理解[全国卷3年考情分析]题型与题量卷别细微环节理解题推理推断题主旨大意题词义揣测题考情分析从统计表可以看出,高考英语阅读理解的题型设置以细微环节理解题和推理推断题为主,兼顾主旨大意题和词义揣测题。
细微环节理解题相对简洁,而其他三种题型相对较难。
在近两年的考查趋向上,细微环节理解题的答案更加隐藏,叙述含蓄,干脆信息题会越来越少,取而代之的将是事实细微环节题加入很多推理、推断、归纳等元素;推理推断题的难度会适当加大。
本专题将对这四种题型进行递进式的指导。
2024 卷Ⅰ7 5 2 1 卷Ⅱ9 3 2 1 卷Ⅲ9 3 2 12024 卷Ⅰ7 6 1 1 卷Ⅱ 5 6 2 2 卷Ⅲ 6 6 2 12024 卷Ⅰ10 3 1 1卷Ⅱ7 5 1 2卷Ⅲ8 4 1 2第一讲细微环节理解题——定位信息巧比对细微环节理解题在英语高考阅读理解中占了较大的比重,而且此类题型相对比较简洁,只须要依据题干中的关键词,回到原文定位信息区间,稍加比对,就能得出正确答案。
因此,对于这类题目要力求读得快、找得准、答得对,力争不丢分,保住基本分才能得高分。
但有些细微环节理解题由于命题人有意设置障碍,把有用信息分散在文章不同位置,有时又有转折、否定等,因此有些题目须要细致地思索、对比、计算、对上下文关键信息把握和分析。
尽管细微环节理解题相对简洁,但不行掉以轻心。
细微环节理解题常见的考查题型有:干脆信息题、间接信息题、概括细微环节理解题和正误推断题。
一、题型特点要知晓(一)细微环节理解题常见设问方式1.特别疑问句形式。
以when, where, what, which, who, how much/many等疑问词引出的问题。
2.推断是非形式。
含有TRUE/FALSE, NOT true或EXCEPT等的推断是非的问题。
此时要留意题干中是否含有否定词,如not, never等。
3.以“According to ...”开头的提问形式。
第1讲 函数图象与性质高考定位 1.以基本初等函数为载体,考查函数的定义域、最值、奇偶性、单调性和周期性;2.利用函数的图象研究函数性质,能用函数的图象性质解决简单问题;3.函数与方程思想、数形结合思想是高考的重要思想方法.真 题 感 悟1.(2017·全国Ⅲ卷)函数y =1+x +sin xx 2的部分图象大致为( )解析 法一 易知g (x )=x +sin xx 2为奇函数,其图象关于原点对称.所以y =1+x +sin xx 2的图象只需把g (x )的图象向上平移一个单位长度,选项D 满足.法二 当x =1时,f (1)=1+1+sin 1=2+sin 1>2,排除A ,C.又当x →+∞时,y →+∞,B 项不满足,D 满足. 答案 D2.(2017·山东卷)设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝ ⎛⎭⎪⎫1a =( )A.2B.4C.6D.8解析 由已知得a >0,∴a +1>1,∵f (a )=f (a +1),∴a =2(a +1-1), 解得a =14,∴f ⎝ ⎛⎭⎪⎫1a =f (4)=2(4-1)=6.答案 C3.(2017·全国Ⅰ卷)已知函数f (x )在(-∞,+∞)上单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( ) A.[-2,2]B.[-1,1]C.[0,4]D.[1,3]解析 因为f (x )为奇函数,所以f (-1)=-f (1)=1,于是-1≤f (x -2)≤1等价于f (1)≤f (x -2)≤f (-1),又f (x )在(-∞,+∞)上单调递减, ∴-1≤x -2≤1,∴1≤x ≤3. 答案 D4.(2016·全国Ⅱ卷)已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑mi =1x i =( )A.0B.mC.2mD.4m解析 ∵f (x )=f (2-x ),∴函数f (x )的图象关于直线x =1对称.又y =|x 2-2x -3|=|(x -1)2-4|的图象关于直线x =1对称, ∴两函数图象的交点关于直线x =1对称. 当m 为偶数时,∑m i =1x i =2×m2=m ;当m 为奇数时,∑mi =1x i =2×m -12+1=m .答案 B考 点 整 合1.函数的性质(1)单调性:单调性是函数在其定义域上的局部性质.证明函数的单调性时,规范步骤为取值、作差、变形、判断符号和下结论.复合函数的单调性遵循“同增异减”的原则.(2)奇偶性:①若f (x )是偶函数,则f (x )=f (-x ). ②若f (x )是奇函数,0在其定义域内,则f (0)=0.③奇函数在关于原点对称的单调区间内有相同的单调性,偶函数在关于原点对称的单调区间内有相反的单调性.(3)周期性:①若y =f (x )对x ∈R ,f (x +a )=f (x -a )或f (x +2a )=f (x )(a >0)恒成立,则y =f (x )是周期为2a 的周期函数.②若y =f (x )是偶函数,其图象又关于直线x =a 对称,则f (x )是周期为2|a |的周期函数.③若y =f (x )是奇函数,其图象又关于直线x =a 对称,则f (x )是周期为4|a |的周期函数.④若f (x +a )=-f (x )⎝ ⎛⎭⎪⎫或f (x +a )=1f (x ),则y =f (x )是周期为2|a |的周期函数. 易错提醒 错用集合运算符号致误:函数的多个单调区间若不连续,不能用符号“∪”连接,可用“和”或“,”连接. 2.函数的图象(1)对于函数的图象要会作图、识图和用图,作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换和对称变换. (2)在研究函数性质特别是单调性、值域、零点时,要注意结合其图象研究. (3)函数图象的对称性①若函数y =f (x )满足f (a +x )=f (a -x ),即f (x )=f (2a -x ),则y =f (x )的图象关于直线x =a 对称;②若函数y =f (x )满足f (a +x )=-f (a -x ),即f (x )=-f (2a -x ),则y =f (x )的图象关于点(a ,0)对称.热点一 函数及其表示【例1】 (1)(2017·邯郸调研)函数y =lg (1-x 2)2x 2-3x -2的定义域为( )A.(-∞,1]B.[-1,1]C.⎝ ⎛⎭⎪⎫-1,-12∪⎝ ⎛⎭⎪⎫-12,1 D.⎣⎢⎡⎭⎪⎫-1,-12∪⎝ ⎛⎦⎥⎤-12,1 (2)(2015·全国Ⅰ卷)已知函数f (x )=⎩⎨⎧2x -1-2,x ≤1,-log 2(x +1),x >1且f (a )=-3,则f (6-a )=( ) A.-74B.-54C.-34D.-14解析 (1)函数有意义,则⎩⎪⎨⎪⎧1-x 2>0,2x 2-3x -2≠0,即⎩⎨⎧-1<x <1,x ≠2且x ≠-12.所以函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1<x <1,且x ≠-12. (2)若a ≤1,则f (a )=2a -1-2=-3,2a -1=-1,无解; 若a >1,则f (a )=-log 2(a +1)=-3,a =7, 故f (6-a )=f (-1)=2-2-2=14-2=-74. 答案 (1)C (2)A探究提高 1.(1)给出解析式的函数的定义域是使解析式有意义的自变量的集合,只需构建不等式(组)求解即可.(2)抽象函数:根据f (g (x ))中g (x )的范围与f (x )中x 的范围相同求解.2.对于分段函数的求值问题,必须依据条件准确地找出利用哪一段求解;形如f (g (x ))的函数求值时,应遵循先内后外的原则.【训练1】 (1)(2017·郑州二模)函数y =a -a x (a >0,a ≠1)的定义域和值域都是[0,1],则log a 56+log a 485=( ) A.1B.2C.3D.4(2)已知函数f (x )=⎩⎨⎧a ·2x ,x ≥0,2-x ,x <0(a ∈R ),若f (f (-1))=1,则a =( )A.14B.12C.1D.2解析 (1)当x =1时,y =0,则函数在[0,1]上为减函数,故a >1.∴当x =0时,y =1,则a -1=1,∴a =2.则log a 56+log a 485=log a ⎝ ⎛⎭⎪⎫56×485=log 28=3.(2)∵f (-1)=2-(-1)=2,∴f [f (-1)]=f (2)=4a =1,解得a =14. 答案 (1)C (2)A热点二 函数的图象及应用 命题角度1 函数图象的识别【例2-1】 (2017·汉中模拟)函数f (x )=⎝ ⎛⎭⎪⎫21+e x -1·sin x 的图象大致形状为( )解析 ∵f (x )=⎝ ⎛⎭⎪⎫21+e x-1·sin x , ∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x-1·sin(-x )=-⎝ ⎛⎭⎪⎫2e x1+e x -1sin x =⎝ ⎛⎭⎪⎫21+e x -1·sin x =f (x ). ∴函数f (x )为偶函数,故排除C ,D ,当x =2时,f (2)=⎝ ⎛⎭⎪⎫21+e 2-1·sin 2<0,故排除B ,只有A 符合. 答案 A命题角度2 函数图象的应用【例2-2】 (1)(2017·历城冲刺)已知f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )( ) A.有最小值-1,最大值1B.有最大值1,无最小值C.有最小值-1,无最大值D.有最大值-1,无最小值(2)(2015·全国Ⅰ卷)设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则实数a 的取值范围是( ) A.⎣⎢⎡⎭⎪⎫-32e ,1 B.⎣⎢⎡⎭⎪⎫-32e ,34 C.⎣⎢⎡⎭⎪⎫32e ,34D.⎣⎢⎡⎭⎪⎫32e ,1 解析 (1)画出y =|f (x )|=|2x -1|与y =g (x )=1-x 2的图象,它们交于A ,B 两点.由“规定”,在A ,B 两侧,|f (x )|≥g (x ),故h (x )=|f (x )|;在A ,B 之间,|f (x )|<g (x ),故h (x )=-g (x ).综上可知,y =h (x )的图象是图中的实线部分,因此h (x )有最小值-1,无最大值. (2)设g (x )=e x (2x -1),h (x )=ax -a ,由题知存在唯一的整数x 0,使得g (x 0)<h (x 0),因为g ′(x )=e x (2x +1),可知g (x )在⎝ ⎛⎭⎪⎫-∞,-12上单调递减,在⎝ ⎛⎭⎪⎫-12,+∞上单调递增,作出g (x )与h (x )的大致图象如图所示,故⎩⎪⎨⎪⎧h (0)>g (0),h (-1)≤g (-1),即⎩⎨⎧a <1,-2a ≤-3e ,所以32e ≤a <1. 答案 (1)C (2)D探究提高 1.已知函数的解析式,判断其图象的关键是由函数解析式明确函数的定义域、值域、单调性、奇偶性、周期性等,以及函数图象上的特殊点,根据这些性质对函数图象进行具体分析判断.2.(1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究. 【训练2】 (1)(2017·长沙二模)函数y =⎝ ⎛⎭⎪⎫13|log 3x |的图象是( )(2)已知函数f (x )=⎩⎨⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则实数a 的取值范围是( )A.(-∞,0]B.(-∞,1]C.[-2,1]D.[-2,0]解析 (1)当x ≥1时,y =⎝ ⎛⎭⎪⎫13|log 3x |=⎝ ⎛⎭⎪⎫13log 3x =1x .当0<x <1时,y =⎝ ⎛⎭⎪⎫13|log 3x |=3log 3x =x .∴y =⎝ ⎛⎭⎪⎫13|log 3x |=⎩⎨⎧1x ,x ≥1,x ,0<x <1.图象为选项A.(2)函数y=|f(x)|的图象如图.y=ax为过原点的一条直线,当a>0时,与y=|f(x)|在y轴右侧总有交点,不合题意;当a=0时成立;当a<0时,找与y=|-x2+2x|(x≤0)相切的情况,即y′=2x-2,切点为(0,0),此时a=2×0-2=-2,即有-2≤a<0,综上,a∈[-2,0].答案(1)A(2)D热点三函数的性质与应用【例3】(1)(2017·山东卷)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x∈[-3,0]时,f(x)=6-x,则f(919)=________.(2)(2017·天津卷)已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(-log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为()A.a<b<cB.c<b<aC.b<a<cD.b<c<a解析(1)∵f(x+4)=f(x-2),∴f[(x+2)+4]=f[(x+2)-2],即f(x+6)=f(x),∴f(919)=f(153×6+1)=f(1),又f(x)在R上是偶函数,∴f(1)=f(-1)=6-(-1)=6,即f(919)=6.(2)法一易知g(x)=xf(x)在R上为偶函数,∵奇函数f(x)在R上是增函数,且f(0)=0.∴g(x)在(0,+∞)上是增函数.又3>log25.1>2>20.8,且a=g(-log25.1)=g(log25.1),∴g(3)>g(log25.1)>g(20.8),则c>a>b.法二(特殊化)取f(x)=x,则g(x)=x2为偶函数且在(0,+∞)上单调递增,又3>log25.1>20.8,从而可得c>a>b.答案 (1)6 (2)C探究提高 1.利用函数的奇偶性和周期性可以转化函数的解析式、图象和性质,把不在已知区间上的问题,转化到已知区间上求解.2.函数单调性应用:可以比较大小、求函数最值、解不等式、证明方程根的唯一性.【训练3】 (1)(2017·淄博诊断)已知奇函数f (x )=⎩⎨⎧3x -a (x ≥0),g (x )(x <0),则f (-2)的值等于________.(2)(2017·西安质检)已知定义在R 上的函数f (x )满足f (x -1)=f (x +1),且当x ∈[-1,1]时,f (x )=x ⎝ ⎛⎭⎪⎫1-2e x +1,则( ) A.f (-3)<f (2)<f ⎝ ⎛⎭⎪⎫52B.f ⎝ ⎛⎭⎪⎫52<f (-3)<f (2) C.f (2)<f (-3)<f ⎝ ⎛⎭⎪⎫52D.f (2)<f ⎝ ⎛⎭⎪⎫52<f (-3)解析 (1)因为函数f (x )为奇函数,所以f (0)=0,则30-a =0,∴a =1. ∴当x ≥0时,f (x )=3x -1,则f (2)=32-1=8, 因此f (-2)=-f (2)=-8.(2)∵f (x -1)=f (x +1),则函数f (x )的周期T =2. 当x ∈[-1,1]时,f (x )=x ⎝ ⎛⎭⎪⎫1-2e x +1=x ·e x -1e x +1,则f (-x )=-x ·e -x -1e -x +1=-x ·1-e x 1+e x =x ·e x -1e x +1=f (x ),则函数f (x )为偶函数,因此f ⎝ ⎛⎭⎪⎫52=f ⎝ ⎛⎭⎪⎫12,f (-3)=f (-1)=f (1),f (2)=f (0).当0≤x ≤1时,函数y =x 与y =1-2e x +1均为增函数且都不小于0,所以f (x )=x ⎝ ⎛⎭⎪⎫1-2e x+1在区间[0,1]上是增函数. ∴f (1)>f ⎝ ⎛⎭⎪⎫12>f (0),即f (-3)>f ⎝ ⎛⎭⎪⎫52>f (2).答案 (1)-8 (2)D1.解决函数问题忽视函数的定义域或求错函数的定义域,如求函数f (x )=1x ln x 的定义域时,只考虑x >0,忽视ln x ≠0的限制.2.如果一个奇函数f (x )在原点处有意义,即f (0)有意义,那么一定有f (0)=0;若f (x )为偶函数,则f (|x |)=f (x ).3.三种作函数图象的基本思想方法(1)通过函数图象变换利用已知函数图象作图;(2)对函数解析式进行恒等变换,转化为已知方程对应的曲线; (3)通过研究函数的性质,明确函数图象的位置和形状.4.函数是中学数学的核心,函数思想是重要的思想方法,利用函数思想研究方程(不等式)才能抓住问题的本质,对于给定的函数若不能直接求解或画出图形,常会通过分解转化为两个函数图象,数形结合直观求解.一、选择题1.(2017·唐山一模)若函数f (x )=⎩⎨⎧e x -1,x ≤1,5-x 2,x >1,则f (f (2))=( )A.1B.4C.0D.5-e 2解析 由题意知,f (2)=5-4=1,f (1)=e 0=1, 所以f (f (2))=1. 答案 A2.(2017·衡阳二模)已知函数g (x )的定义域为{x |x ≠0},且g (x )≠0,设p :函数f (x )=g (x )⎝ ⎛⎭⎪⎫11-2x -12是偶函数;q :函数g (x )是奇函数,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析令h(x)=11-2x-12(x≠0)易得h(x)+h(-x)=0,h(x)为奇函数,g(x)是奇函数,f(x)为偶函数;反过来也成立.因此p是q的充要条件.答案 C3.(2017·全国Ⅰ卷)函数y=sin 2x1-cos x的部分图象大致为()解析令f(x)=sin 2x1-cos x,定义域为{x|x≠2kπ,k∈Z},又f(-x)=-f(x),∴f(x)在定义域内为奇函数,图象关于原点对称,B不正确.又f⎝⎛⎭⎪⎫π2=0,f(π)=0,f⎝⎛⎭⎪⎫34π=-11+22<0.∴选项A,D不正确,只有选项C满足.答案 C4.已知定义在R上的函数f(x)=2|x-m|-1(m为实数)为偶函数,记a=f(log0.53),b =f(log25),c=f(2m),则a,b,c的大小关系为()A.a<b<cB.a<c<bC.c<a<bD.c<b<a解析由f(x)=2|x-m|-1是偶函数可知m=0,所以f(x)=2|x|-1.所以a=f(log0.53)=2|log0.53|-1=2log23-1=2,b=f(log25)=2|log25|-1=2log25-1=4,c =f (0)=2|0|-1=0,所以c <a <b . 答案 C5.(2016·天津卷改编)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫12,32B.⎝ ⎛⎭⎪⎫-∞,32 C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝ ⎛⎭⎪⎫-∞,12∪⎝ ⎛⎭⎪⎫32,+∞ 解析 ∵f (x )是偶函数,且在(-∞,0)上单调递增,∴在(0,+∞)上单调递减,f (-2)=f (2),∴f (2|a -1|)>f (2),∴2|a -1|<2=212,∴|a -1|<12,即-12<a -1<12,即12<a <32. 答案 A 二、填空题6.(2017·成都诊断)函数f (x )=2x -12+3x +1的定义域为________.解析由题意得:⎩⎨⎧2x -12≥0,x +1≠0,解得x >-1.答案 {x |x >-1}7.(2017·郴州二模)已知函数f (x )是奇函数,当x >0时,f (x )=a x (a >0且a ≠1),且f (log 124)=-3,则a 的值为________.解析 ∵奇函数f (x )满足f ⎝ ⎛⎭⎪⎫log 124=-3,而log 124=-2<0,∴f (-2)=-3,即f (2)=3,又∵当x >0时,f (x )=a x (a >0且a ≠1),又2>0, ∴f (2)=a 2=3,解之得a = 3.答案 38.(2015·全国Ⅰ卷改编)设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是________. 解析 易知f (x )在R 上为偶函数, 则由f (x )>f (2x -1),得f (|x |)>f (|2x -1|), 当x >0时,f (x )=ln(1+x )-11+x2在[0,+∞)上是增函数,从而|x |>|2x -1|, 两边平方,得3x 2-4x +1<0,解之得13<x <1. 答案 ⎝ ⎛⎭⎪⎫13,1三、解答题9.(2017·深圳中学调研)已知函数f (x )=a -22x +1. (1)求f (0);(2)探究f (x )的单调性,并证明你的结论; (3)若f (x )为奇函数,求满足f (ax )<f (2)的x 的范围. 解 (1)f (0)=a -220+1=a -1. (2)∵f (x )的定义域为R , ∴任取x 1,x 2∈R 且x 1<x 2, 则f (x 1)-f (x 2)=a -22x 1+1-a +22x 2+1=2·(2x 1-2x 2)(1+2x 1)(1+2x 2), ∵y =2x 在R 上单调递增且x 1<x 2,∴0<2x 1<2x 2,∴2x 1-2x 2<0,2x 1+1>0,2x 2+1>0. ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )在R 上单调递增.(3)∵f (x )是奇函数,∴f (-x )=-f (x ), 即a -22-x +1=-a +22x +1,解得a =1(或用f (0)=0去解). ∴f (ax )<f (2)即为f (x )<f (2), 又∵f (x )在R 上单调递增,∴x <2. ∴不等式的解集为(-∞,2).10.已知函数f (x )=x 2-2ln x ,h (x )=x 2-x +a . (1)求函数f (x )的极值;(2)设函数k (x )=f (x )-h (x ),若函数k (x )在[1,3]上恰有两个不同零点,求实数a 的取值范围.解 (1)函数f (x )的定义域为(0,+∞),令f ′(x )=2x -2x =0,得x =1. 当x ∈(0,1)时,f ′(x )<0,当x ∈(1,+∞)时,f ′(x )>0, 所以函数f (x )在x =1处取得极小值为1,无极大值. (2)k (x )=f (x )-h (x )=x -2ln x -a (x >0), 所以k ′(x )=1-2x ,令k ′(x )>0,得x >2,所以k (x )在[1,2)上单调递减,在(2,3]上单调递增, 所以当x =2时,函数k (x )取得最小值k (2)=2-2ln 2-a . 因为函数k (x )=f (x )-h (x )在区间[1,3]上恰有两个不同零点, 即有k (x )在[1,2)和(2,3]内各有一个零点,所以⎩⎨⎧k (1)≥0,k (2)<0,k (3)≥0,即有⎩⎨⎧1-a ≥0,2-2ln 2-a <0,3-2ln 3-a ≥0,解得2-2ln 2<a ≤3-2ln 3.所以实数a 的取值范围为(2-2ln 2,3-2ln 3]. 11.(2017·贵阳质检)已知函数f (x )=ln(x +1)-ax1-x(a >0). (1)当a =1时,求函数f (x )的单调区间;(2)若-1<x <1时,均有f (x )≤0成立,求正实数a 的取值范围. 解 (1)当a =1时,f (x )的定义域为(-1,1)∪(1,+∞), f ′(x )=1x +1-1(1-x )2=x (x -3)(x -1)2(x +1),当-1<x<0或x>3时,f′(x)>0;当0<x<1或1<x<3,f′(x)<0.所以函数f(x)的单调递增区间为(-1,0)和(3,+∞);单调递减区间为(0,1)和(1,3).(2)f′(x)=x2-(a+2)x+1-a(x-1)2(x+1),-1<x<1,当a>0时,令f′(x)=0,得x1=a+2-a2+8a2,x2=a+2+a2+8a2.若0<a<1,此时0<x1<1,对0<x<x1,有f′(x)>0,f(x)>f(0)=0,不符合题意. 若a>1,此时-1<x1<0,对x1<x<0,有f′(x)<0,f(x)>f(0)=0,不符合题意. 若a=1,由(1)知,函数f(x)在x=0处取得最大值0,符合题意,综上实数a的取值范围为{1}.。