预应力管桩抗拔桩抗裂如何验算
- 格式:doc
- 大小:26.50 KB
- 文档页数:2
桩基抗拔裂缝计算
首先,需要确定桩的抗拔能力。
桩的抗拔能力与桩的尺寸、深度以及桩材料的强度属性等因素有关。
通常情况下,桩的抗拔能力可以通过计算桩的抗拔承载力来确定。
桩的抗拔承载力可以通过静力试验、动力试验或者数值模拟等方法进行测定。
静力试验可以通过加载试验,测定桩受力变化规律,进而计算出桩的抗拔承载力。
在进行桩基抗拔裂缝计算时,还需要考虑荷载的作用方式。
荷载可以是持续的静力荷载,也可以是变化的动力荷载。
对于静力荷载,可以通过计算桩的剪应力和弯矩等来分析桩体的抗拔稳定性。
对于动力荷载,需要考虑到振动荷载对桩体的影响,进而评估桩体的抗拔稳定性。
在进行桩基抗拔裂缝计算时,还需要考虑土壤的力学性质。
土壤的力学性质包括土壤的抗拔性质和抗折性质。
通常情况下,土壤的抗拔性质可以通过进行室内试验或者现场试验来确定。
抗折性质可以通过破坏试验来进行测定。
土壤的力学性质对于桩基抗拔裂缝的计算是非常重要的,对于桩基的选取和计算结果都会有重要的影响。
在进行桩基抗拔裂缝计算时,还需要考虑桩体与土壤之间的相互作用效应。
桩体与土壤之间的相互作用效应包括桩体与土壤的摩擦力和桩体与土壤的相互阻力等。
桩体与土壤之间的相互作用效应对于桩基抗拔裂缝计算是非常重要的,可以通过实测数据和数值模拟等方法进行评估。
综上所述,桩基抗拔裂缝计算是一个复杂的工程问题。
需要考虑桩的抗拔能力、荷载的作用方式、土壤的力学性质以及桩体与土壤之间的相互作用效应等因素。
通过合理的计算方法和可靠的试验数据,可以评估桩基的抗拔裂缝能力,提供合理的设计建议。
预应力混凝土管桩抗拔承载力计算摘要:介绍了预应力混凝土管桩抗拔承载力的计算过程和需要考虑的方面。
关键词:预应力混凝土管桩;抗浮;抗拔Abstract: the article introduces the prestressed concrete pipe pile bearing capacity of the process and pull out of the need to consider.Keywords: prestressed concrete pipe pile; Anti-uplift; Resistance to pull1工程概况预应力管桩由于单桩承载力高、施工便捷、造价较低、桩身质量稳定而广泛用于基础工程。
将其用于抗拔桩使用时,在有效预压应力范围内桩身不会出现裂缝,抗裂性能好,从而提高了桩身的耐久性。
XX广场位于上海市浦东新区,川沙路东侧,庙港绿地南侧,浦东运河西侧。
总建筑面积52575.6平方米,地上建筑面积24407.7平方米,地下建筑面积28167.9平方米。
地下两层,地上3~5层。
基础采用桩基础。
根据岩土工程勘探报告,预制桩的设计参数如表1所示。
单桩承载力设计参数表1根据本工程的特点,通过对比后,最终确定抗拔桩采用PHC500AB100-27,参考图集为《预应力混凝土管桩》(图集号10G409)。
2PHC管桩抗拔设计2.1土体提供的竖向抗拔承载力计算根据表1,桩端持力层为⑦1层砂质粉土,可得出PHCAB500管桩单桩抗拔承载力设计值Rtd=680kN。
2.2桩身结构强度验算抗拔桩竖向承载力除了满足桩土相互作用的抗拔承载力外,还需满足PHC 管桩自身桩身结构强度要求。
根据国标图集《预应力混凝土管桩》(图集号10G409)式6.4.2,Ao=A+[(Es/Ec)-1]Ap=3.14X(5002-3002)/4+(2X105/3.8X104-1)X11X90=129820mm2 σce=6.59MPaNk=σceAo=855kN试桩时按不出现裂缝控制时Nk=(σce+ftk)Ao=(6.59+3.11)X129820=1259kN2.3接桩焊缝连接强度验算上下节管桩之间的接头连接做法一般分为机械快速接头和坡口对接围焊接头两种,上海地区常用做法是坡口对接围焊接头。
抗浮桩裂缝宽度验算:抗浮桩设计参数:桩径:600mm,主筋8Φ22 保护层厚度50mm 混凝土强度C30ωmax=ɑcrΨбsk/Es(1.9c+0.08dep/ρte)其中:ωmax 最大裂缝宽度,取0.2mmɑcr 构件受力特征系数Ψ裂缝间纵向受拉钢筋应变不均匀系数Ψ=1.1-0.65f tk/(P te. бsk)f tk混凝土轴心抗拉强度标准值бsk钢筋受拉应力Es 钢筋弹性模量C 钢筋保护层厚度P te 钢筋配筋率由P te=Ag/Ap=3040/282600=0.01076d/ P te=22/0.01076=2044.6mmбsk=Ng/Ag=700000/3040=230.3N/mm2Ψ=1.1-0.65f tk/(P te. бsk)=1.1-0.65×2.01/(0.01076×230.3)=0.573ωmax=2.7×0.573×230.3/(2×105)×(1.9×50+0.08×2044.6)=0.46 〉【ωmax 】=0.2mm 不符合设计要求将桩主筋调整为14Φ22,混凝土强度改为C35计算参数如下:桩径:600mm,主筋14Φ22 保护层厚度50mm 混凝土强度C35ωmax=ɑcrΨбsk/Es(1.9c+0.08dep/ρte)其中:ωmax 最大裂缝宽度,取0.2mmɑcr 构件受力特征系数Ψ裂缝间纵向受拉钢筋应变不均匀系数Ψ=1.1-0.65f tk/(P te. бsk)f tk混凝土轴心抗拉强度标准值бsk钢筋受拉应力Es 钢筋弹性模量C 钢筋保护层厚度P te 钢筋配筋率由P te=Ag/Ap=5319.2/282600=0.0188d/ P te=22/0.0188=1170.2mmбsk=Ng/Ag=700000/5319.2=131.60N/mm2Ψ=1.1-0.65f tk/(P te. бsk)=1.1-0.65×2.01/(0.0188×131.60)=0.572(0.522)ωmax=2.7×0.572×131.60/(2×105)×(1.9×50+0.08×1170.2)=0.175 mm 〈【ωmax 】=0.2mm 符合设计要求设计说明:1、局部基础底板设置抗浮桩:2、抗浮桩主筋采用焊接接头。
对抗拔桩以及抗拔工程桩如何进行裂缝控制及配筋。
1.按相关规范的公式计算的裂缝为近似值。
2.如果裂缝控制计算配筋量太大或桩截面内钢筋间距无法满足要求,则可虑如下方法设计:1)施加预应力首选考虑4根非预应力钢筋,做成骨架,然后采用无粘结预应力钢绞线,根据抗拔力进行计算,根据抗拔力计算大小考虑预应力,做法如图所示。
钢绞线锚固方式分为两种:一、在桩顶锁定。
二、在承台顶锁定,比较方便,但应考虑防水问题。
优点:(1)由于钢绞线强度较高,钢筋用量较少,比较经济。
(2)由于预应力的作用,桩体侧向微膨胀,摩阻力增大。
缺点:(1)工艺较复杂。
2)钢绞线外套钢管。
3)增加配筋量。
3.其它1)非腐蚀性环境中的抗拔桩,当桩身裂缝宽度满足设计要求,为提高其耐久性,可将桩身竖向主筋直径增加3mm,作为防腐蚀余量;2)预应力混凝土管桩因增加钢筋直径有困难,考虑其钢筋直径较小,耐久性差,所以裂缝控制等级应为二级,即混凝土拉应力不应超过混凝土抗拉强度设计值。
桩身不允许出现裂缝,抗拔钢筋增加防腐蚀余量的目的在于保证建筑物足够长的使用寿命,而不仅是保证设计使用年限中的安全。
3)腐蚀性环境中,考虑桩身钢筋耐久性,预应力混凝土管桩出现了数起桩身抗拔破坏的事故,主要表现在主筋墩头与端板连接处拉脱,同时管桩的接头焊缝耐久性也有问题,因此,在抗拔构件中应慎用预应力混凝土管桩。
必须使用时应考虑以下几点:(1)预应力筋必须锚入承台;(2)截桩后应考虑预应力损失,在预应力损失段的桩外围应包裹钢筋混凝土;(3)宜采用单节管桩;(4)多节管桩可考虑通常灌芯,另行设置通长的抗拔钢筋,或将抗拔承载力留有余地,防止墩头拔出。
4)承受拔力的桩基,应同时验算群桩基础的抗拔承载力。
经计算,圆形截面桩正方形布桩16桩以下承台及承台梁下单排、双排桩,当桩中心距为3.5d时,群桩实体周边的边长大于各基桩周边长度之和,即不存在群桩抗拔控制计算的情况。
下表列出正方形布桩不同承台桩数时群桩实体周边边长与各基桩周边长度之和相等时的n值(n为桩中心距与桩径的比值)。
PHC 管桩有效预应力、允许承载能力、抗裂弯矩、极限弯矩、抗剪和抗拉强度理论计算方法严志隆一、 有效预应力(Effective pre-stress )(参照JISA5337方法计算) 此方法主要考虑PHC 管桩混凝土的弹性变形、混凝土徐变、混凝土收缩及预应力钢筋的松弛等因素引起的预应力损失。
(1) 先张法张拉后,混凝土压缩变形后预应力钢筋的拉应力c ppipt A A n '1+=σσ 式1式中:pt σ——先张法张拉后,混凝土压缩变形后,预应力钢筋(建立的)拉应力,N/mm 2;pi σ——预应力钢筋初始张拉时,(千斤顶施加的)张拉应力,N/mm 2; 现预应力筋的b σ=1420 N/mm 2,2.0σ=1275 N/mm 2。
千斤顶预应力张拉时,控制应力取值:29947.014207.0mm N b =⨯=⨯σ; 或22.010208.012758.0mm N =⨯=⨯σ;按JISA5337要求,上述控制应力值取两者之中小者,即994N/mm 2。
(关于实测钢筋屈服强度2.0σ,屈服点s σ,抗拉强度b σ 的问题)图1 预应力钢筋受拉的应力-应变曲线p A ——预应力钢筋的截面积,mm 2;现以Ф500×100mm 管桩为例,A 级配筋为Ф9.2mm×10根,则226406410mm mm A p =⨯=。
c A ——管桩混凝土截面积,mm 2。
Ф500×100mm 管桩混凝土截面积为125700 mm 2。
'n ——放张时,预应力钢筋和混凝土的弹性模量比,预应力筋弹性模量取2×106(Kg·f/cm 2),混凝土的弹性模量取4×105(Kg·f/cm 2),则510410256'=⨯⨯=n 。
23.9690255.0199412570064051994mm N pt =+=⨯+=σ (关于有资料用3×105Kg·f/cm 2,而后期管桩为4×105Kg·f/cm 2的问题)(2) 因混凝土徐变、收缩(干缩)引起的预应力损失⎪⎭⎫ ⎝⎛+++=∆211''ϕσσεϕσσϕpt cpt cp cpt p n E n 式2 式中:ϕσp ∆——因混凝土徐变、收缩(干缩)引起的预应力损失,N/mm 2; cpt σ——张拉后的混凝土预(压)应力,N/mm 2;294.41257006403.969mm N A A c ppt cpt =⨯=⋅=σσ 'n ——预应力筋和混凝土的弹性模量比,'n 取5;ϕ——混凝土徐变系数,ϕ取2.0;c ε——混凝土收缩(干缩)率,c ε取1.5×10-4,即100005.1; p E ——预应力钢筋弹性模量取2×106(Kg·f/cm 2)=1.96×105N/mm 2。
1 前言高强预应力管桩基础是本地区应用最广的基础型式。
如何保证管桩的承载力是我们大家都关心的问题。
桩的承载力决定于土的承载力和桩身质量两个方面。
管桩的检测就是用各种不同的方法从不同的角度来考验这两个方面,以判断其是否满足要求。
目前,管桩常见的检测方法有单桩竖向静荷载试验、高应变动力试桩、基桩反射波法等三种。
本文就这三种方法进行介绍并讨论它们的适应性和应注意的地方,供同行参考。
2 单桩竖向静荷载试验2.1单桩竖向静荷载试验的目的静荷载试验是采用接近桩的实际工作条件的试验方法来考验桩,主要是为了获得桩的极限承载力,作为设计的依据。
或者在桩的验收阶段确定桩的承载力是否满足设计要求。
2.2单桩竖向静荷载试验的原理在桩顶施加了竖向荷载后,桩土间产生相对位移,桩身表面则出现向上的侧阻力;桩身上部产生压应力和压缩变形。
随着桩顶荷载的增加,桩土间的位移进一步加大,桩身的应力进一步往下发展,桩下部的侧阻力也逐渐发挥出来;当桩顶荷载足够大时,侧阻力达到最大值,桩端土产生压缩变形和土反力。
继续增加荷载,直到桩顶沉降大于期望值或桩端土出现了刺入破坏为止。
此时桩顶荷载就是其极限承载力。
在试验的过程中,若桩身有质量缺陷可能会出现先期破坏(桩身发生破坏先于土承载力),这样也就一并对桩身质量作了检验。
通过静载试验获得桩的承载力,可分为按强度控制和按沉降控制两大类:①桩侧、桩底的土承载力均发生破坏,荷载~沉降曲线表现为陡降型,此种情况按强度控制,取荷载~沉降曲线出现陡降段的前一级荷载作为桩的极限承载力。
②土的承载力没有发生破坏,随着荷载的增加,虽然沉降量也进一步增大,但桩端土的承载力也进一步增大,荷载~沉降曲线表现为缓变型,此种情况按沉降控制,可依据设计要求或规范要求取某一沉降所对应的荷载作为桩的承载力。
2.3单桩竖向静荷载试验的适应性讨论静载试验对桩地承载力检测是最适宜的。
试验施加的荷载,加载速度极为缓慢,桩的沉平均速度为0.0001m/s,加速度接近于零,静载试验测到的承载力,被认为是最接近于工程实际。
抗拔桩抗拔力检测方法
抗拔桩抗拔力检测方法主要有静载试验和抗拔力计算。
静载试验是一种常用的抗拔力检测方法,主要通过施加静态荷载来测定桩基的抗拔力。
具体步骤包括确定试验设计,根据桩的类型、尺寸和荷载要求,设置合适的试验方案,包括桩基的选取、试验荷载大小、试验持续时间等;施加试验荷载,在桩顶或靠近桩顶的地方设置试验反力装置,通过施加反力来产生试验荷载,可以使用专用的拉力机、油压机等设备来实施;监测位移和力。
抗拔力计算则是通过理论计算来确定桩的抗拔承载力。
根据桩身材料、尺寸、截面形式、土壤特性等因素,可以采用各种公式或有限元分析方法进行计算。
计算结果可以为设计提供依据,也可以用于检测和验收桩基工程。
在进行抗拔桩抗拔力检测时,需要注意选择合适的检测方法,按照相关规定和技术标准进行操作,以保证检测结果的准确性和可靠性。
预应力管桩抗拔桩抗裂如何验算?
浏览次数:53日期:2010年7月3日11:35
摘要:
以上海某工程为例说明。
对抗拔桩需进行裂缝核算。
以Rd´=630kN为例,采用抗拔桩PHC B 400 80 30(9Ф10.7)(上海预应力管桩图集,即:桩径400mm,壁厚80mm,桩长30m)。
由于预应力主筋采用强度标准值为1420MPa的异型钢棒,张拉控制应力σcon=0.7f Ptk=0.7×1420=994MPa,则抗拉力设计值N=
9×π×10.72/4×994/1000=804kN>630kN,满足要求。
抗裂验算分二级考虑。
按一级严格不出现裂缝考虑:混凝土有效预压应力σ=7.15MPa,由于π×(4002-2402)/4×7.15/1000=574.7kN<630kN,则不能满足。
此时按二级一般要求不出现裂缝考虑:
(1)不考虑预应力钢筋时对C80混凝土,f t=2.2MPa(f tk=3.11MPa),则(2.2+7.15)×π×(4002-2402)/4/1000=751.6kN>630kN,能够满足要求;
(2)试桩时要求达到极限承载力630×1.6=1008kN。
根据变形协调条件:Δσc/E c=Δσp/E p,有Δσp=Δσc×E p/E c=(7.15+3.11)×2×105/(3.8×104)=54MPa,考虑预应力筋的存在,则f=Δσp×A p+Δσc×A c=54(9×π×10.72/4)/1000+(7.15+3.11)[π×(4002-2402)/4-9×π×10.72/4]/1000=860.1kN<1008kN,则试桩将出现裂缝。
裂缝计算时σsk=(1008-7.15A te)/(A S+A P),计算得ωmax=0.65mm,由于试桩是短期拉拔,短期裂缝ω=ωmax/1.5=0.43mm,基本满足要求0.4mm的规范要求。
注:此例所取抗拔力用于2007年初上海普陀区某商住两用,审图通过,勘察院认可,为同类型当年上海所取抗拔力最高值。
普陀区是上海土质相对较好区域,同行不宜随便取用。
目前比较可靠的PHC500取到Rd'=550kN(上海带两层地下室时)。
目前像江苏省已经不允许用PHC桩作为抗拔桩使用,主要还是由于施工时焊接质量不能保证,满足焊接要求的话一根桩至少要焊20分钟左右,往往不现实。
国外已经推行法兰连接,希望国内相关科研部门予以研究并推出新的图集予以提高相关发展。
上述符号按混凝土结构设计规范和上海地基规程。