ICP-AES电感耦合等离子体原子发射光谱法
- 格式:ppt
- 大小:4.04 MB
- 文档页数:138
电感耦合等离子体原子发射光谱(ICP-AES)法测定人发中铜、锌、钙、镁、铁王生进;张琳;刘春虎;董龙腾;韩夫强【摘要】样品经硝酸-高氯酸消化溶解,高氯酸冒烟,盐酸溶解盐类后,在盐酸(5%)介质中,在选定的测定条件下,用电感耦合等离子体原子发射光谱(ICP-AES)法测定人发中微量元素铜、锌、铁、镁、钙.选择Cu 327.3、Zn 206.2、Fe 238.2、Mg 279.5、Ca 315.8 nm分别作为铜、锌、铁、镁、钙的分析线与混合标准溶液同时测定;方法加标回收率为98.6%~101%,铜、锌、铁、镁、钙的精密度(RSD,n=8)为0.37%~2%,准确度(RE)为-3.4%~1.15%,检出限分别为0.002 3、0.001 6、0.004 6、0.003 0、0.001 4 μg/mL.方法克服了分光光度法和原子吸收光谱法操作繁琐、周期长、成本高、灵敏度低等缺点.用于测定人发样品中的铜、锌、铁、镁、钙元素,测定结果与原子吸收光谱法测定值基本一致.经GB-WO7061标准物质和自制标样分析验证,测定值与标准值吻合,结果准确可靠.【期刊名称】《中国无机分析化学》【年(卷),期】2016(006)001【总页数】4页(P69-72)【关键词】铜;锌;铁;镁;钙;人发;电感耦合等离子体原子发射光谱法【作者】王生进;张琳;刘春虎;董龙腾;韩夫强【作者单位】河北省地矿局第十一地质大队,河北邢台054000;河北地质职工大学,石家庄050081;河北省地矿局第十一地质大队,河北邢台054000;河北省地矿局第十一地质大队,河北邢台054000;河北省地矿局第十一地质大队,河北邢台054000【正文语种】中文【中图分类】O657.31;TH744.11现代科学研究证明,微量元素在人体中起着极其重要的作用,它的缺乏或过剩与人的健康休戚相关,微量元素与人发有特殊的亲和力,身体中微量元素积蓄于人发中,其含量过高或偏低预示着会患有某种疾病的危险[1]。
电感耦合高频等离子体原子发射光谱分析(ICP—AES)本章要求:电感耦合高频等离子体原子发射光谱法是以电感耦合等离子焰炬为激光源的一类新型光谱分析方法(Inductively Coupled Plasma—Atomic Emission Spectrometry,简称ICP—AES)。
由于该法具有检出限较低、准确度及精密度高、分析速度快和线性范围宽等许多独特的优点,因此在国外ICP—AES法已发展成为一种极为普遍、适用范围极广的常规分析方法,并广泛用于环境试样、岩石矿物、生物医学以及金属与合金中数十种元素的分析测定。
在国内ICP—AES法的研究工作始于1974年,现已有上千个科研单位、大专院校、工厂以及环境监测等部门拥有了此种分析手段,ICP—AES法已成为近年来我国分析测试领域中发展最快的测试方法之一。
为了使这种新型分析技术在环境监测中得到普及,环境监测人员必须对ICP—AES法有所了解,在学习中应掌握以下几方面的知识。
1、电感耦合等离子体(ICP)光谱技术的发展概况。
2、ICP光源的理论基础。
3、ICP所用的高频电源。
4、ICP所需的进样装臵。
5、ICP炬管及工作气体。
6、ICP仪器的分光、测光装臵。
7、ICP-AES法的分析技术。
8、ICP-AES法的应用。
9、有机试液的ICP光谱分析。
10、ICP-AES法和其他分析技术的比较。
参考文献1、光谱学与光谱分析编辑部,《ICP光谱分析应用技术》,1982年,北京大学出版社。
2、蔡德,《光谱分析辞典》,1987年,光谱实验室编辑部。
3、陈新坤,《电感耦合等离子体光谱法原理和应用》,1987年,南开大学出版社。
4、不破敬一郎,《ICP发射光谱分析》,1987年,化学工业出版社。
5、辛仁轩,《电感耦合等离子体光源—原理、装臵和应用》,1984年,光谱实验室编辑部。
6、《分析技术辞典,发射光谱分析》,1980年,科学出版社。
7、高铮德,《光谱分析常识》,1985年,光谱实验室编辑部。
电感耦合等离子体原子发射光谱法电感耦合等离子体原子发射光谱法(ICP-AES)是以等离子体为激发光源的原子发射光谱分析方法,可进行多元素的同时测定。
样品由载气(氩气)引入雾化系统进行雾化后,以气溶胶形式进入等离子体的轴向通道,在高温和惰性气氛中被充分蒸发、原子化、电离和激发,发射出所含元素的特征谱线。
根据特征谱线的存在与否,鉴别样品中是否含有某种元素(定性分析);根据特征谱线强度确定样品中相应元素的含量(定量分析)。
本法适用于各类药品中从痕量到常量的元素分析,尤其是矿物类中药、营养补充剂等药品中的元素定性定量测定。
1、对仪器的一般要求电感耦合等离子体原子发射光谱仪由样品引入系统、电感耦合等离子体(ICP)光源、分光系统、检测系统等构成,另有计算机控制及数据处理系统,冷却系统、气体控制系统等。
样品引入系统按样品状态不同可以分为以液体、气体或固体进样,通常采用液体进样方式。
样品引入系统由两个主要部分组成:样品提升部分和雾化部分。
样品提升部分一般为蠕动泵,也可使用自提升雾化器。
要求蠕动泵转速稳定,泵管弹性良好,使样品溶液匀速地泵入,废液顺畅地排出。
雾化部分包括雾化器和雾化室。
样品以泵入方式或自提升方式进入雾化器后,在载气作用下形成小雾滴并进入雾化室,大雾滴碰到雾化室壁后被排除,只有小雾滴可进入等离子体源。
要求雾化器雾化效率高,雾化稳定性高,记忆效应小,耐腐蚀;雾化室应保持稳定的低温环境,并需经常清洗。
常用的溶液型雾化器有同心雾化器、交叉型雾化器等;常见的雾化室有双通路型和旋流型。
实际应用中宜根据样品基质,待测元素,灵敏度等因素选择合适的雾化器和雾化室。
电感耦合等离子体(ICP)光源电感耦合等离子体光源的“点燃”,需具备持续稳定的高纯氩气流,炬管、感应圈、高频发生器,冷却系统等条件。
样品气溶胶被引入等离子体源后,在6,000K~10,000K的高温下,发生去溶剂、蒸发、离解、激发、电离、发射谱线。
根据光路采光方向,可分为水平观察ICP源和垂直观察ICP源;双向观察ICP 光源可实现垂直/水平双向观察。
电感耦合等离子体原子发射光谱法电感耦合等离子体原子发射光谱法 (ICP-AES)是一种用于定量分析物质含量的一种光谱方法,可实时、快速地测定被测物质中各种元素的组成,包括含量低的微量元素和高价元素,广泛应用于土壤、水,食品及环境等实验室的精密分析领域。
I. 基本原理1. 基本概念电感耦合等离子体原子发射光谱法(ICP-AES)是将等离子体生成装置与原子发射光谱仪(AES)相结合,将原子发射光谱技术用于研究物质组成的有效技术手段。
根据它的原理,采用高频电感耦合方式,使物质在放电的同时流入等离子体,经原子高温热解的过程中,物质被分解成常见的原子离子核心状态,并释放出内部能量。
在此能量降落过程中,经由原子核发出的原子发射谱线可以把物质的组成成分用不同的光谱线表示出来,而这些谱线和元素种类以及它们的含量有直接关联,从而确认物质的组成结构和物质含量。
2. 优点电感耦合等离子体原子发射光谱法(ICP-AES)具有多种优点,如快速、精确,可以同时测定金属元素、非金属元素、电解质离子、有机氯离子和其他复杂物质等。
可以分析无金属和金属两种物质。
另外,大量分析样品不影响测试精度,量级区间宽,可测定高、中、低价元素以及极低的微量元素,可以分析微量物质,同时减小输入量。
3. 缺点电感耦合等离子体原子发射光谱法(ICP-AES)的缺点在于系统背景噪音较大,而且系统复杂,调节和维护复杂,耗费时间和经费,以及分析过程中也容易受到干扰。
II. 用途1. 环境监测电感耦合等离子体原子发射光谱(ICP-AES)技术可以用于环境样品的分析,快速准确地测定出被测样品的成分,用于环境的基础监测,监测土壤中营养元素和有害元素。
2. 工业实验室分析电感耦合等离子体原子发射光谱(ICP-AES)技术在工业实验室分析中也广泛应用,如可以分析广泛工程材料、金属、有机、无机混合物,以及钽、放射性元素等物质。
3. 药物和生物分析电感耦合等离子体原子发射光谱(ICP-AES)技术也可用于药物和生物分析,它可以用于药物的成分检测,测定活性成份,进行食品安全性的检测,以及分析生物体内有用元素的含量等。
电感耦合等离子体原子发射光谱法检测稀土元素
电感耦合等离子体原子发射光谱法(ICP-AES)是一种常用的分析稀土元素的方法。
稀土元素是指原子序数为57到71的元素,它们在自然界中分布广泛,具有重要的应用价值。
稀土元素在材料科学、化工工业、电子工业、石油化工等领域有广泛的应用,因此对其进行准确快速的检测具有重要意义。
ICP-AES技术是一种基于原子发射光谱的分析方法。
其原理是将样品溶解在酸中,然后将其喷入高温等离子体中,产生电离和激发,从而产生原子发射光谱。
通过检测不同元素的特征光谱线,可以得到样品中各元素的含量。
ICP-AES技术具有高灵敏度、高准确度、高分辨率等优点,可以同时检测多种元素。
ICP-AES技术在稀土元素分析中的应用已经得到广泛认可。
一般情况下,稀土元素的检测需要对样品进行前处理,如样品的预处理和分离。
在ICP-AES技术中,可以通过合适的样品前处理方法和仪器参数设置,实现对稀土元素的高效快速检测。
ICP-AES技术不仅可以用于稀土元素的分析,还可以用于其他元素的分析。
ICP-AES技术在环境监测、食品安全、药物分析等领域也有广泛应用。
随着仪器技术的不断进步和改进,ICP-AES技术将会在更多领域得到应用。
总之,ICP-AES技术是一种有效的分析稀土元素的方法。
其高灵敏度、高准确度、高分辨率等优点使其在稀土元素分析中得到广泛应用。
随着仪器技术的不断进步和改进,ICP-AES技术将会在更多领域得到应用。
电感耦合高频等离子体原子发射光谱分析(ICP—AES)本章要求:电感耦合高频等离子体原子发射光谱法是以电感耦合等离子焰炬为激光源的一类新型光谱分析方法(Inductively Coupled Plasma—Atomic Emission Spectrometry,简称ICP—AES)。
由于该法具有检出限较低、准确度及精密度高、分析速度快和线性范围宽等许多独特的优点,因此在国外ICP—AES法已发展成为一种极为普遍、适用范围极广的常规分析方法,并广泛用于环境试样、岩石矿物、生物医学以及金属与合金中数十种元素的分析测定。
在国内ICP—AES法的研究工作始于1974年,现已有上千个科研单位、大专院校、工厂以及环境监测等部门拥有了此种分析手段,ICP—AES法已成为近年来我国分析测试领域中发展最快的测试方法之一。
为了使这种新型分析技术在环境监测中得到普及,环境监测人员必须对ICP—AES法有所了解,在学习中应掌握以下几方面的知识。
1、电感耦合等离子体(ICP)光谱技术的发展概况。
2、ICP光源的理论基础。
3、ICP所用的高频电源。
4、ICP所需的进样装臵。
5、ICP炬管及工作气体。
6、ICP仪器的分光、测光装臵。
7、ICP-AES法的分析技术。
8、ICP-AES法的应用。
9、有机试液的ICP光谱分析。
10、ICP-AES法和其他分析技术的比较。
参考文献1、光谱学与光谱分析编辑部,《ICP光谱分析应用技术》,1982年,北京大学出版社。
2、蔡德,《光谱分析辞典》,1987年,光谱实验室编辑部。
3、陈新坤,《电感耦合等离子体光谱法原理和应用》,1987年,南开大学出版社。
4、不破敬一郎,《ICP发射光谱分析》,1987年,化学工业出版社。
5、辛仁轩,《电感耦合等离子体光源—原理、装臵和应用》,1984年,光谱实验室编辑部。
6、《分析技术辞典,发射光谱分析》,1980年,科学出版社。
7、高铮德,《光谱分析常识》,1985年,光谱实验室编辑部。
电感耦合等离子体原子发射光谱法测定水样中锌和镁电感耦合等离子体原子发射光谱法(Inductively coupledplasma atomic emission spectrometry, ICP-AES)是一种广泛使用的分析技术,可用于测定水样中的锌和镁等元素。
该方法可提供高灵敏度、高精度和多元素分析的优点。
ICP-AES的原理是将样品中的元素原子化,并利用等离子体激发这些原子,使其发射特征光谱。
其基本操作过程如下:1.样品前处理:将水样进行样品前处理,如淬火、酸溶、稀释等,以便提高分析效果。
2.原子化:将样品通过喷雾器雾化成小颗粒,并进入电感耦合等离子体发射器中。
在电感耦合等离子体发射器中,样品中的颗粒会被加热到数千度,使元素被原子化。
3.激发和发射:利用高频电场和射频电感加热等离子体,激发原子产生发射光谱。
每个元素在激发和发射过程中所发射的特征光谱具有独特的波长,因此可以通过光谱分析来确定元素种类和浓度。
4.光谱分析和定量:通过光谱仪将发射光谱进行检测和分析,确定各个元素的存在和浓度。
根据样品中元素的发射光强度,可以与标准曲线进行比较,从而获得元素浓度的定量结果。
使用ICP-AES测定水样中的锌和镁可以获得准确且可靠的结果。
该方法具有以下优点:1.高灵敏度:ICP-AES具有极高的灵敏度,可达到ppb(10^-9)和ppm(10^-6)级别的浓度分析。
即使在水样中的微量元素也可以准确测定。
2.多元素分析:ICP-AES可以同时测定多个元素,提高分析效率。
对于水样中存在的多种元素来说,这是一种非常有优势的特点。
3.宽线性范围:ICP-AES具有很宽的线性范围,可以处理各种浓度级别的样品。
无论是低浓度还是高浓度,都可以准确测定。
在测定水样中锌和镁时,可以采用标准曲线法进行定量分析。
首先,准备一系列不同浓度的标准溶液,使用ICP-AES测定每个标准溶液的发射光谱,并绘制标准曲线。
然后,使用同样的方法测定待测水样的发射光谱,并根据标准曲线确定元素浓度。
电感耦合等离子体原子发射光谱法实验报告
电感耦合等离子体原子发射光谱(ICP-AES)法是当今分析化学中使用最广泛的原子发射
光谱技术。
它是利用电感耦合等离子体(ICP)作为原子离子源进行原子发射光谱分析,
并将原子发射射线测定术(AES)和离子化学分析术相结合,是一项精密,准确,可靠,
重复性好的分析技术。
电感耦合等离子体原子发射光谱(ICP-AES)法实验旨在使用ICP-AES进行超含氧量检测,以判断和表征样品中超含氧元素(如Si, Al, Ba等)的浓度。
实验用到的主要仪器是Perkin Elmer 400系列电感耦合等离子体发射光谱仪,其具有极好的稳定性和低的噪声。
实验从粉末样品中提取一定的量,放入带有细堵子的橄榄小瓶中,
将样品中的超含氧元素分解为离子流,
再由电管入口处的离子,经电感耦合等离子体发生器高能电场和电离过程,转化为原子态,并具有应变释放效应,将原子发射成发射射线,
经电光箱校正和滤波后,而穿过DDL D正电子探测器被检测出来,与吸光度计样品出口
上的流出比较,来获得超含氧元素的浓度,每种元素的吸光度下降的程度可以反映其含量大小。
本实验采用的是0.1mol/L的氯化铵溶液,其浓度稳定、持续不变,温度为低于200℃时
是稳定的。
根据试样中元素浓度的高低,可以选择合适的采样灵敏度,
以保证对元素的精准测定。
高浓度时,可以选择低灵敏度,反之,则可以选择高灵敏度,
以保证实验数据的准确性和稳定性。
实验采用Perkin Elmer 400系列电感耦合等离子体发射光谱仪进行实验,取得的结果良好,准确可靠,反映了超含氧元素在各种样品中浓度大小的变化,为对样品中构成进行全面研究及进一步应用奠定基础。
电感耦合等离子体原子发射光谱法(ICP-AES)的研究进展1 概述1.1 ICP-AES分析技术的发展电感耦合等离子体原子发射光谱法(ICP-AES)是以电感耦合等离子炬为激发光源的一类光谱分析方法,它是一种由原子发射光谱法衍生出来的新型分析技术。
它能够方便、快速、准确地测定水样中的多种金属元素和准金属元素,且没有显著的基体效应。
早在1884年Hittorf就注意到,当高频电流通过感应线圈时,装在该线圈所环绕的真空管中的残留气体会发生辉光,这是高频感应放电的最初观察。
1942年Babat采用大功率电子振荡器实现了石英管中在不同压强和非流动气流下的高频感应放电,为这种放电的实用化奠定了基础。
1961年Reed设计了一种从石英管的切向通入冷却气的较为合理的高频放电装置,它采用Ar或含Ar的混合气体为冷却气,并用碳棒或钨棒来引燃。
Reed把这种在大气压下所得到的外观类似火焰的稳定的高频无极放电称为电感耦合等离子炬(ICP)。
Reed的工作引起了Greenfield、Wenat和Fassel的极大兴趣,他们首先把Reed的ICP 装置用于AES,并分别于1964年和1965年发表了他们的研究成果,开创了ICP在原子光谱分析上的应用历史。
20世纪70年代,ICP-AES进入实质应用阶段。
1975年美国的ARL公司生产出了第一台商品ICP-AES多色仪,此后各种类型的商品仪器相继出现。
今天ICP-AES分析技术已成为现代检测技术的一个重要组成部分。
近年来,人们逐渐认识到,在有ICP产生的6000-10000K的高温下,试样中的大多数组分经原子化后又进一步发生了电离,所以由此得到的光谱实际上是一种离子光谱,而不是原先认为的原子光谱,所以在最近的一些文献资料中,一些作者将ICP-AES改名为ICP-OES。
1.2 ICP-AES方法的优缺点与其他方法相比,ICP-AES方法具有以下几个优点:(1)分析速度快。
ICP-AES法干扰低、时间分布稳定、线性范围宽,能够一次同时读出多种被测元素的特征光谱,同时对多种元素进行定量和定性分析。