第10章 光交换(交换原理与技术课件)
- 格式:ppt
- 大小:1.20 MB
- 文档页数:23
光交换技术密集波分复用技术的进步使得一根光纤上能够承载上百个波长信道,传输带宽最高记录已经达到了T比特级。
同时,现有的大部分情况是光纤在传输部分带宽几乎无限——200Tb/s,窗口200nm。
相反,在交换部分,仅仅只有几个Gb/s,这是因为电子的本征特性制约了它在交换部分的处理能力和交换速度。
所以,许多研究机构致力于研究和开发光交换/光路由技术,试图在光子层面上完成网络交换工作,消除电子瓶颈的影响。
当全光交换系统成为现实,就足够可以满足飞速增长的带宽和处理速度需求,同时能减少多达75%的网络成本,具有诱人的市场前景。
光信号处理可以是线路级的、分组级的或比特级的。
WDM光传输网属于线路级的光信号处理,类似于现存的电路交换网,是粗粒度的信道分割;光时分复用OTDM 是比特级的光信号处理,由于对光器件的工作速度要求很高,尽管国内外的研究人员做了很大努力,但离实用还有相当的距离;光分组交换网属于分组级的光信号处理,和OTDM相比对光器件工作速度的要求大大降低,与WDM相比能更加灵活、有效地提高带宽利用率。
随着交换和路由技术在处理速度和容量方面的巨大进步,OPS技术已经在一些领域取得了重大进展。
全光分组交换网可分成两大类:时隙和非时隙。
在时隙网络中,分组长度是固定的,并在时隙中传输。
时隙的长度应大于分组的时限,以便在分组的前后设置保护间隔。
在非时隙网络中,分组的大小是可变的,而且在交换之前,不需要排列,异步的,自由地交换每一个分组。
这种网络竞争性较大,分组丢失率较高。
但是结构简单,不需要同步,分组的分割和重组不需要在输入输出节点进行,更适合于原始IP业务,而且缓存容量较大的非时隙型网络性能良好。
光交换技术在光网络设计中,对网络设计者来说,非常重要的是减少当前网络中协议层的数目,保留已有功能,并尽量利用现有的光技术。
而光分组交换技术独秀之处在于:大容量、数据率和格式的透明性、可配置性等特点,支持未来不同类型数据能提供端到端的光通道或者无连接的传输带宽利用效率高,能提供各种服务,满足客户的需求把大量的交换业务转移到光域,交换容量与WDM传输容量匹配,同时光分组技术与OXC、MPLS等新技术的结合,实现网络的优化与资源的合理利用因而,光分组交换技术势必成为下一代全光网网络规划的“宠儿”。
9.3光交换原理9.3.1光电路交换在光电路交换(OCS)中,网络需要为每一个连接请求建立从源端到目的地端的光路(每一个链路上均需要分配一个专业波长)。
交换过程共分三个阶段:①链路建立阶段,是双向的带宽申请过程,需要经过请求与应答确认两个处理过程。
②链路保持阶段,链路始终被通信双方占用,不允许其他通信方共享该链路。
③链路拆除阶段,任意一方首先发出断开信号,另一方收到断开信号后进行确认,资源就被真正释放。
OCS所涉及的技术有空分(SD)交换技术、时分(TD)交换技术、波分/频分(WD/FD)交换技术、混合型交换技术、多维交换技术和ATM光交换等。
9.3.1.1空分光交换空分光交换是在空间域上将光信号进行交换,是OCS中最简单的一种。
空分光交换的核心器件是光开关。
其基本原理是用光开关组成门阵列开关,通过控制开关矩阵的状态使输入端的任一信道与输出端的任一信道连接或断开,以此完成光信号的交换。
开关矩阵可由机械、电、光、声、磁、热等方式进行控制。
目前机械式控制光节点技术是比较成熟和可靠的空分光交换节点技术。
空分光交换按光矩阵开关所使用的技术可分成波导空分和自由空分光交换技术;按交换元件的不同可分为机械型、光电转换型、复合波导型、全反射型和激光二极管门开关等。
9.3.1.2时分光交换时分光交换与程控交换中的时分交换系统概念相同,也是以时分复用为基础,用时隙交换原理实现光交换功能。
它采用光存储器实现,把光时分复用信号按一种顺序写入光存储器,然后再按另一种顺序读出来,以便完成时隙交换。
光时分复用和电时分复用类似,也是把一条复用信道划分成若干个时隙,每个基带数据光脉冲流占用一个时隙,N个基带信道复用成高速光数据流信号进行传输。
9.3.1.3波分/频分光交换在光纤通信系统中,波分复用(WDM)或频分复用(FDM)都是利用一根光纤来传输多个不同光波长或不同光频率的载波信号来携带信息的。
波分复用技术在光传输系统中已经得到广泛地应用。