第八讲 传感器(2)
- 格式:ppt
- 大小:485.50 KB
- 文档页数:49
“传感器”知识总览传感器是人类五官的延长,又称之为电五官。
传感器是获取信息的主要途径与手段。
没有传感器,现代化生产就失去了基础。
传感器是边缘学科开发的先驱。
传感器已渗透到诸如工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等等极其广泛的领域。
从茫茫的太空到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。
可见,传感器技术在发展经济、推动社会进步等方面起着重要作用。
“传感器”是高中物理的重要章节,是电磁学的基础内容,也是高考的热点内容之一。
下面对这一章作一归纳、例析,供参考。
一、知识网络二、知识要点传感器是指能将所感受到的物理量(如力、热、光、声等)转换成便于测量的量(一般是电学量)的一类元件,其工作过程是通过对某一物理量敏感的元件将感受到的信号按一定规律转换成便于利用的信号。
传感器可以根据其利用的元件进行分类(如电容传感器、电阻传感器等),也可以按其转换的信号来分类(如光电、热电传感器等)。
下面介绍常见的传感器的要点。
要点1.力电传感器力电传感器主要是利用敏感元件和变阻器把力学信号(位移、速度、加速度等)转化为电学信号(电压、电流等)的仪器。
力电传感器广泛地应用于社会生产、现代科技中,如安装在传感器温 度 传感器意义:传感器是把非电学物理量(如位移、速度、压力、温度、湿度、流量、声强、光照度等)转换成易于测量、传输、处理的电学量(如电压、电流、电容等)或电路的通断的一种组件。
起自动控制作用。
机械鼠标器 火灾报警器光控开关光传感器 敏感元件 光敏电阻:是一种能感知光强的传感器,电阻随光照的增强而减小 热敏电阻:是一种能感知温度的传感器,电阻一般随温度升高电阻减小 金属热电阻:是一种能感知温度的传感器,温度升高电阻增大 霍尔元件:是一种能感知磁场强弱的传感器 电容式位移传感器:是一种能感知位移变化的传感器 干簧管:一种能感知磁场存在的传感器 常见传感器及应用 力传感器----电子秤:将应变片的形变量转化为电压差 声传感器----话 筒:将声学量转化为电学量 电熨斗:双金属片温度传感器的作用:控制电路的通断 电饭锅:双金属片温度传感器的作用:控制电路的通断 测温仪:将温度转化为电学量(不同温度发射红外线不同) 温度报警器:导弹、飞机、潜艇和宇宙飞船上的惯性导航系统及ABS防抱死制动系统等。
传感器工作原理详解传感器是一种能够感知外部环境并将信号转化为可用电信号的器件。
它在各个领域中起着重要的作用,例如工业自动化、航空航天、医疗设备等。
为了更好地了解传感器的工作原理,我们需要先了解传感器的分类。
一、分类传感器可分为多种类型,其中常见的有光学传感器、压力传感器、温度传感器、湿度传感器、加速度传感器等。
每种传感器都有其独特的工作原理。
二、光学传感器光学传感器是利用光的特性进行测量的传感器。
其工作原理主要是基于光的吸收、散射、透射等现象。
例如,红外线传感器利用人体的热辐射发出红外线并通过传感器接收到的红外线来检测人体的存在。
三、压力传感器压力传感器是用于测量压力变化的传感器。
其工作原理是利用压力作用在传感器上产生的变形来测量压力大小。
一般采用钢片或薄膜等材料制成传感器,通过测量材料的变形程度来获得压力值。
四、温度传感器温度传感器是用于测量温度变化的传感器。
其工作原理是基于物质的热膨胀性质。
常见的温度传感器有热敏电阻传感器和热电偶传感器。
热敏电阻传感器的电阻值随温度变化而变化,通过测量电阻值的变化来获得温度值。
五、湿度传感器湿度传感器是用于测量空气湿度的传感器。
其工作原理主要是基于湿度对某种物质的影响。
例如,湿度对一些带有水分敏感性的材料的电导率、电容率等产生影响,通过测量这些物质的性质变化来获得湿度值。
六、加速度传感器加速度传感器是用于测量物体加速度的传感器。
其工作原理基于牛顿第二定律,通过测量传感器所受到的惯性力来获得加速度值。
常见的应用包括汽车碰撞检测、手机屏幕旋转等。
七、其他传感器除了以上常见的传感器之外,还有许多其他类型的传感器,如声音传感器、气体传感器、磁力传感器等。
每种传感器都有其独特的工作原理和应用领域。
综上所述,传感器是一类能够感知外部环境并将信号转化为可用电信号的器件。
不同类型的传感器有不同的工作原理,如光学传感器基于光的特性测量、压力传感器基于压力的变形测量等。
深入了解传感器的工作原理将有助于我们更好地理解其应用和优化设计。
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 可编辑修改精选全文完整版传感器(传感器教学课件)传感器(传感器教学课件) 1、传感器:(1)广义:能感受规定的被测量并按照一定的规律转换成可用输出信号的器件和装置,狭义:在本教材中是指一个能将被测的非电量变换成电量的器件。
(2)、通常由敏感元件和转换元件组成。
(3)分类从应用目的角度(被测量性质):机械量传感器:位移、速度、加速度、振动、力、尺寸热工量传感器:温度、压力、流量、物位化学量传感器:浓度、化学成分状态量传感器:颜色、透明度、磨损量、裂纹从研究目的角度(输出量性质/工作原理):参量型传感器:电阻式、电容式、电感式(无源电参量)发电型传感器:热电偶、光电、磁电、压电等(输出电压或电流)三、检测系统组成 2、灵敏度传感器或检测系统在稳态下输出量变化和引起此变化的输入量变化的比值。
1/ 6若系统的输出和输入间有线性关系,则灵敏度 k 是一个常数。
3、测量过程:比较、示差、平衡、读数四个步骤 4、测量误差:检测结果和被测量的客观真值之间存在的差别。
(1)绝对误差仪表的指示值(测量值)与被测量真值之间的差值。
x x0 (2)相对误差仪表指示值的绝对误差与被测量真值(实际值)的比值。
我国电工仪表的准确度等级就是按照满度误差分级的。
仪表的准确度等级和基本误差实际测量时,为防止测量值超量程太多而损坏仪表,应先在大量程下测得被测量大致数值,然后选择合适的量程测量,以尽可能减小相对误差。
实际测量中,若真值未知,或测量误差不大,可用指示值代替真值计算相对误差,即示值相对误差例:现有一重约 15g 的物体待测,请从下列几个称重仪中选出最合适的一台,并做必要的计算和说明。
可编辑修改精选全文完整版第一章 传感器的概述1.传感器的定义能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置叫做传感器。
2.传感器的共性:利用物理定律或物质的物理、化学、生物等特性,将非电量(位移、速度、加速度、力等)转换成 电量(电压、电流、电容、电阻等)输出。
3.传感器的组成:传感器由有敏感元件、转换元件、信号调理电路、辅助电源组成。
传感器基本组成有敏感元件和 转换元件两部分,分别完成检测和转换两个基本功能。
第二章 传感器的基本特性1.传感器的基本特性:静态特性、动态特性。
2.衡量传感器静态特性的主要指标有:线性度 、灵敏度 、分辨率迟滞 、重复性 、漂移。
3.迟滞产生原因:传感器机械部分存在摩擦、间隙、松动、积尘等。
4.产生漂移的原因:①传感器自身结构参数老化;②测试过程中环境发生变化。
5.例题:1.用某一阶环节传感器测量100Hz 的正弦信号,如要求幅值误差限制在±5%以内,时间常数应取多少?如果用该传感器测量50Hz 的正弦信号,其幅值误差和相位误差各为多少? 解:一阶传感器的频率响应特性: 幅频特性:2.在某二阶传感器的频率特性测试中发现,谐振发生在频率为216Hz 处,并得到最大福祉比为1.4比1,试估算该传感器的阻尼比和固有频率的大小。
1)(1)(+=ωτωj j H )(11)(ωτω+=A srad f n n /135********.014.121)(A )(4)(1)(A n max n 21222=⨯=======⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡-=-ππωωξξωωωωωξωωω所以,时共振,则当解:二阶系统3.玻璃水银温度计通过玻璃温包将热量传给水银,可用一阶微分方程来表示。
现已知某玻璃水银温度计特性的微分方程是x y dtdy310224-⨯=+ ,y 代表水银柱的高度,x 代表输入温度(℃)。
求该温度计的时间常数及灵敏度。
解:原微分方程等价于:x y dt dy3102-=+所以:时间常数T=2S, 灵敏度Sn=10-3第三章 电阻式传感1.应变式电阻传感器的特点: 1)优点:①结构简单,尺寸小,质量小,使用方便,性能稳定可靠;②分辨力高,能测出极微小的应变;③灵敏度 高,测量范围广,测量速度快,适合静、动态测量;④易于实现测试过程自动化和多点同步测量、远距离 测量和遥测;⑤价格便宜,品种多样,工艺较成熟,便于选择和使用,可以测量多种物理量。
《传感器》讲义一、什么是传感器在我们的日常生活和现代科技的各个领域中,传感器扮演着至关重要的角色。
那么,究竟什么是传感器呢?简单来说,传感器就是一种能够感知外界环境中的物理量、化学量或生物量,并将其转换成电信号或其他形式的易于处理和传输的信号的装置。
它就像是我们的“感觉器官”,能够敏锐地捕捉到各种信息,并将其传递给后续的处理系统。
传感器的应用范围极其广泛,从智能手机中的加速度计和陀螺仪,到汽车中的压力传感器和温度传感器,再到工业生产中的各种检测设备,都离不开传感器的身影。
二、传感器的工作原理为了更好地理解传感器,我们需要了解一下它的工作原理。
传感器通常由敏感元件和转换元件组成。
敏感元件负责直接感受被测量的物理量,并将其转换为另一种物理量;而转换元件则将敏感元件输出的物理量转换为电信号。
以温度传感器为例,常见的热敏电阻就是一种敏感元件。
当温度发生变化时,热敏电阻的电阻值会随之改变。
而与热敏电阻相连的电路就能将电阻值的变化转换为电压或电流的变化,这就是转换元件的作用。
不同类型的传感器,其工作原理各不相同。
比如压力传感器可以基于应变效应,利用应变片在压力作用下产生形变从而导致电阻变化来测量压力;光传感器则可以通过光电效应将光信号转换为电信号。
三、传感器的分类传感器的种类繁多,可以按照不同的标准进行分类。
按照被测量的物理量分类,传感器可以分为温度传感器、压力传感器、湿度传感器、位移传感器、速度传感器、加速度传感器、光照传感器等等。
按照工作原理分类,传感器又可以分为电阻式传感器、电容式传感器、电感式传感器、压电式传感器、光电式传感器、磁电式传感器等等。
此外,还可以按照输出信号的类型分为模拟式传感器和数字式传感器;按照使用的材料分为金属传感器、陶瓷传感器、半导体传感器等。
四、常见传感器介绍1、温度传感器温度传感器是最常见的传感器之一。
它广泛应用于各种领域,如家用电器、工业自动化、医疗设备等。
常见的温度传感器有热电偶、热电阻和热敏电阻。
传感器课件传感器课件引言:传感器是现代科技发展中的重要组成部分,它们在各个领域起着至关重要的作用。
本文将介绍传感器的基本原理、应用领域以及未来发展趋势,帮助读者更好地了解传感器的重要性和潜力。
一、传感器的基本原理传感器是一种能够将感知到的信息转化为可用信号的装置。
它们通过感知物理量的变化,如温度、压力、湿度等,将这些变化转化为电信号或其他形式的信号,以便我们能够理解和利用这些信息。
传感器的基本原理是通过感知元件和信号转换器两个部分共同完成的。
感知元件负责感知物理量的变化,如温度传感器中的热敏电阻,压力传感器中的压力敏感膜片等。
信号转换器则将感知元件输出的信号转化为我们能够理解和利用的信号,如模拟信号或数字信号。
二、传感器的应用领域传感器在各个领域都有广泛的应用,以下将介绍几个典型的应用领域。
1. 工业自动化领域:传感器在工业自动化中起到了至关重要的作用。
例如,温度传感器可以用于监测机器的温度,以确保机器正常运行;压力传感器可以用于监测管道的压力,以确保管道的安全运行。
2. 医疗健康领域:传感器在医疗健康领域的应用也非常广泛。
例如,心率传感器可以用于监测患者的心率,以及心电图传感器可以用于监测患者的心电图,从而帮助医生进行诊断。
3. 环境监测领域:传感器在环境监测中也起着重要作用。
例如,空气质量传感器可以用于监测空气中的有害气体浓度,以及土壤湿度传感器可以用于监测土壤的湿度,从而帮助我们更好地了解环境状况。
三、传感器的未来发展趋势传感器作为一项前沿技术,其未来发展趋势也备受关注。
以下将介绍几个传感器未来发展的趋势。
1. 微型化和集成化:随着科技的不断进步,传感器将越来越小型化和集成化。
微型化的传感器可以更好地适应各种应用场景,而集成化的传感器可以实现多种功能的集成,提高传感器的整体性能。
2. 智能化和无线化:传感器的智能化和无线化也是未来的发展趋势。
智能化的传感器可以通过内置的处理器和算法,实现更加智能的数据处理和决策,而无线化的传感器可以实现远程监测和控制,提高传感器的灵活性和便利性。
传感器知识点总结传感器知识点总结导语:总结是社会团体、企业单位和个人在自身的某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而肯定成绩,得到经验,找出差距,以下是小编整理的传感器知识点总结,希望能够帮助到大家!传感器的定义传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化。
它是实现自动检测和自动控制的首要环节。
传感器的存在和发展,让物体有了触觉、味觉和嗅觉等感官,让物体慢慢变得活了起来。
通常根据其基本感知功能分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类。
传感器的分类目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种:1、按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器。
2、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅热电偶等传感器。
3、按传感器输出信号的性质分类,可分为:输出为开关量(“ 1” 和“ 0” 或“ 开” 和“ 关” )的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。
传感器的静态特性传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。
因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。
表征传感器静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞等。
传感器的动态特性所谓动态特性,是指传感器在输入变化时,它的输出的特性。
在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。