05三角分解法
- 格式:doc
- 大小:144.50 KB
- 文档页数:6
矩阵的三角分解法矩阵的三角分解法是一种用于将一个矩阵分解为上三角矩阵和下三角矩阵的方法。
这种分解方法可以帮助我们更好地理解和解决矩阵相关的问题。
下面我将按要求逐段解释这个问题。
1. 什么是三角分解法三角分解法是一种将矩阵分解为上三角矩阵和下三角矩阵的方法。
在三角分解中,我们将原始矩阵分解为两个三角矩阵,一个是上三角矩阵,另一个是下三角矩阵。
上三角矩阵的主对角线以下的元素全为零,而下三角矩阵的主对角线以上的元素全为零。
这种分解法在解线性方程组、计算矩阵的行列式和求逆等问题中非常有用。
2. 如何进行三角分解三角分解的具体过程是通过一系列的行变换将原始矩阵转化为上三角矩阵或下三角矩阵。
这些行变换包括行交换、行缩放和行替换等操作。
首先,我们选择一个主元素,通常是第一行第一列的元素。
如果主元素为零,则需要进行行交换,将一个非零元素移动到主元素的位置。
然后,我们使用行缩放操作,将主元素所在列的其他元素变为零。
具体操作是将主元素所在行的每个元素除以主元素的值,然后将结果乘以其他行的主元素所在列的元素,并将其减去相应的行。
重复以上步骤,直到得到上三角矩阵或下三角矩阵。
最后,我们可以将得到的上三角矩阵和下三角矩阵合并为一个新的上三角矩阵或下三角矩阵。
3. 三角分解的应用领域有哪些三角分解法在数值计算和线性代数中有广泛的应用。
它可以用于求解线性方程组、计算矩阵的行列式和求逆等问题。
在求解线性方程组时,我们可以将系数矩阵分解为上三角矩阵和下三角矩阵,然后使用回代法或前代法来求解方程组。
这样可以简化计算过程,提高求解的精度和效率。
在计算矩阵的行列式时,我们可以通过三角分解将矩阵转化为上三角矩阵或下三角矩阵,然后将主对角线上的元素相乘即可得到行列式的值。
这种方法比直接计算行列式的方法更简单、高效。
在求解矩阵的逆时,我们可以将矩阵分解为上三角矩阵和下三角矩阵,然后通过对分解得到的上三角矩阵和下三角矩阵进行反向的行变换,得到原始矩阵的逆矩阵。
三角分解法解方程组三角分解法是一种用于求解线性方程组的数值方法。
这种方法通常被称为高斯消元法,它是由卡尔·高斯在19世纪提出的。
在三角分解法中,我们首先将线性方程组转化为一个三角矩阵的形式,然后使用递推的方法求解方程组。
假设我们有一个n元线性方程组,其中有n个未知数,则线性方程组可以表示为:a11x1 + a12x2 + … + a1n xn = b1 a21x1 + a22x2 + … + a2n xn = b2 … an1x1 + an2x2 + … + ann*xn = bn要使用三角分解法求解这个方程组,我们需要将方程组转化为一个三角矩阵的形式,并使用递推的方法求解。
首先,我们要使用高斯消元法将方程组转化为上三角矩阵的形式,这样就可以使用递推的方法求解了。
具体来说,我们需要进行如下步骤:1.对于第一个方程,我们将a11变为1,然后将其余的系数除以a11。
2.对于第二个方程,我们将a22变为1,然后将其余的系数除以a22,并将a21乘上第一个方程的系数a12。
3.对于第三个方程,我们将a33变为1,然后将其余的系数除以a33,并将a31和a32乘上第一个和第二个方程的系数a12和a22。
以此类推,直到我们消去了所有的系数,并使得方程组的系数矩阵变为一个上三角矩阵。
这样,我们就可以使用递推的方法来求解方程组了。
具体来说,我们从最后一个方程开始递推,并使用已知的xn的值来解出xn-1的值,然后再使用xn-1的值来解出xn-2的值,以此类推,直到解出x1的值。
例如,假设我们已经将方程组转化为了如下形式:a11x1 + a12x2 + a13x3 = b1 0x1 + a22x2 + a23x3 = b2 0x1 + 0x2 + a33*x3 = b3那么我们可以使用递推的方法求解方程组,具体来说:使用已知的x3的值来解出x2的值:x2 = (b2 - a23*x3) / a22使用已知的x2的值来解出x1的值:x1 = (b1 - a12x2 - a13x3) / a11这样,我们就可以使用三角分解法求解方程组了。
高中物理解题方法之极值法江苏省特级教师 戴儒京高中物理中的极值问题,是物理教学研究中的活跃话题。
本文通过例题归纳综合出极值问题的四种主要解法。
一、 二次函数求极值二次函数aacb a b x ac bx ax y 44)2(222--+=++=,当a b x 2-=时,y 有极值ab ac y m 442-=,若a>0,为极小值,若a<0,为极大值。
例1试证明在非弹性碰撞中,完全非弹性碰撞(碰撞后两物体粘合在一起)动能损失最大。
设第一个物体的质量为1m ,速度为1V 。
第二个物体的质量为2m ,速度为2V 。
碰撞以后的速度分别为'1V 和'2V 。
假使这四个速度都在一条直线上。
根据动量守恒定律有:'+'=+22112211V m V m V m V m (1)如果是完全非弹性碰撞,两物体粘合在一起,(1)则变为V m m V m V m '+=+)(212211,即212211m m V m V m V ++=' (2)现在就是要证明,在满足(1)式的碰撞中,动能损失最大的情况是(2)式。
碰撞中动能损失为ΔE k =()22()22222211222211'+'-+v m vm v m v m (3) 转变为数学问题:ΔE k 为v 的二次函数:由(1)得:v 2ˊ=2112211)(m v m v m v m '-+ (4)将(4)代入(3)得:k =++++-'12221112'1211)(2)(v m v m v m m v m m m m [2222112222112)(22m v m v m v m v m +-+] 二次函数求极值,当v 1ˊ=)()(212211m m v m v m ++ (5) 时∆E k 有极大值。
回到物理问题,将(5)代入(4)得v 2ˊ=)()(212211m m v m v m ++此两式表明,m 1和m 2碰后速度相等,即粘合在一起,此时动能损失(ΔE k )最大。
考点05 受力分析(三)——力的大小的计算1.掌握力的计算公式2.掌握求解平衡问题中力的大小的两种方法(矢量三角形、正交分解法)3.掌握求解非平衡问题中力的大小方法4.能利用牛顿第三定律求解力的大小力大小的计算主要有三种方法:公式法、力学方程、牛顿第三定律,这三种计算力的大小方法中,采用运动状态寻找力学关系,列方程式求解这一类型(第二类)的题目较多,本专题也是重在强化这一类型的训练。
具体情况如下:(一)公式法(二)结合运动状态,采用力学方程计算1.平衡状态(1)平衡状态的类型:①匀速运动;②静止;(2)平衡状态下物体的受力特点:F合=0(3)处理方法①矢量三角形:若物体受到三个力F 1、F 2、F 3处于平衡状态,一般采用矢量三角形中的三角函数来表示各个力的关系②正交分解法:若物体受到多个力F 1、F 2、F 3…F n 处于平衡状态,一般采用正交分解法,可列出的力学方程为: 在x 轴,ΣF X =0;在y 轴,ΣFX =02.非平衡状态非平衡状态求力的大小的解决方法多数情况下采用正交分解法,物体在非平衡状态对应的坐标轴上的力学方程为:F 合=ma(三)利用牛顿第三定律计算计算力的大小时可以采用作用力与反作用力的规律,通过转换受力对象来求解力的大小例1.(2019·原创经典)如图所示,光滑半球形容器固定在水平面上,O 为球心.一质量为 m 的小滑块,在水平力 F 的作用下静止于P 点,OP与水平方向的夹角为θ.则( )A.推力F 大小为mg/tanθB.推力F 大小为mgtanθC.若推着物体向上匀速滑动,F N 增大D.若推着物体向上匀速滑动,F N 将减小【答案】 AC【解析】本题考查应用矢量三角形、动态三角形解决平衡问题由题意可知,小滑块处于平衡状态,且它受力个数为3个,可采用矢量三角形来表示三个力间的力学关系。
滑块的受力示意图如图1,将三个力平移后构成下图2虚线所示的矢量三角形,则推力F 与重力的力学关系为:tanθ=mg/F ,所以F=mg/tanθ,A 对,B 错;若推着物体向上滑动,矢量三角形的最右端的顶点将沿水平虚线向右移动,FN 、F 对应的边在增大,所以FN 、F 两个力均增大,C 对,D 错。