三 矩阵直接三角分解法
- 格式:doc
- 大小:30.00 KB
- 文档页数:3
矩阵的三角分解法矩阵的三角分解法是一种用于将一个矩阵分解为上三角矩阵和下三角矩阵的方法。
这种分解方法可以帮助我们更好地理解和解决矩阵相关的问题。
下面我将按要求逐段解释这个问题。
1. 什么是三角分解法三角分解法是一种将矩阵分解为上三角矩阵和下三角矩阵的方法。
在三角分解中,我们将原始矩阵分解为两个三角矩阵,一个是上三角矩阵,另一个是下三角矩阵。
上三角矩阵的主对角线以下的元素全为零,而下三角矩阵的主对角线以上的元素全为零。
这种分解法在解线性方程组、计算矩阵的行列式和求逆等问题中非常有用。
2. 如何进行三角分解三角分解的具体过程是通过一系列的行变换将原始矩阵转化为上三角矩阵或下三角矩阵。
这些行变换包括行交换、行缩放和行替换等操作。
首先,我们选择一个主元素,通常是第一行第一列的元素。
如果主元素为零,则需要进行行交换,将一个非零元素移动到主元素的位置。
然后,我们使用行缩放操作,将主元素所在列的其他元素变为零。
具体操作是将主元素所在行的每个元素除以主元素的值,然后将结果乘以其他行的主元素所在列的元素,并将其减去相应的行。
重复以上步骤,直到得到上三角矩阵或下三角矩阵。
最后,我们可以将得到的上三角矩阵和下三角矩阵合并为一个新的上三角矩阵或下三角矩阵。
3. 三角分解的应用领域有哪些三角分解法在数值计算和线性代数中有广泛的应用。
它可以用于求解线性方程组、计算矩阵的行列式和求逆等问题。
在求解线性方程组时,我们可以将系数矩阵分解为上三角矩阵和下三角矩阵,然后使用回代法或前代法来求解方程组。
这样可以简化计算过程,提高求解的精度和效率。
在计算矩阵的行列式时,我们可以通过三角分解将矩阵转化为上三角矩阵或下三角矩阵,然后将主对角线上的元素相乘即可得到行列式的值。
这种方法比直接计算行列式的方法更简单、高效。
在求解矩阵的逆时,我们可以将矩阵分解为上三角矩阵和下三角矩阵,然后通过对分解得到的上三角矩阵和下三角矩阵进行反向的行变换,得到原始矩阵的逆矩阵。
用矩阵的直接三角分解法解方程组矩阵的直接三角分解法(LU分解法)是解线性方程组的一种常用方法。
该方法通过将系数矩阵分解为一个下三角矩阵和一个上三角矩阵的乘积,从而简化方程组的求解过程。
下面我们就来详细分步骤地介绍一下这种方法的求解过程。
第一步,将原线性方程组表示为矩阵形式,即将系数矩阵、未知量矩阵和常数矩阵分别表示为A、X和B。
我们的目标是找到一个下三角矩阵L和一个上三角矩阵U,使得方程组可以表示为LUx = B的形式。
第二步,通过高斯消元法将系数矩阵A化为上三角矩阵U。
具体地,我们将系数矩阵A变换为U的过程可以分解为一系列的初等矩阵变换,例如交换两行、乘以一个非零常数和将某一行加上另一行的若干倍等等。
这些初等矩阵变换可以表示为一个矩阵M的乘积,即A =M1M2...MnU。
从而,我们得到了上三角矩阵U。
第三步,同样通过一系列初等矩阵变换将U转化为下三角矩阵L。
这些初等矩阵变换可以表示为一个矩阵N的乘积,即U = NL1L2...Lm。
从而,我们得到了下三角矩阵L。
第四步,将方程组表示为LUx = B的形式。
具体地,我们将A, X 和B分解为L, U和x的乘积,即A = LU,X = UL,B = Ux。
从而,原方程组可以表示为LUx = B,即L(Ux) = B。
第五步,解方程组L(Ux) = B。
由于L是下三角矩阵,因此可以通过前代法求解得到Ux。
具体地,我们先通过Lw = B求解出向量w,然后再通过Ux = w求解出未知量向量x。
总的来说,矩阵的直接三角分解法(LU分解法)是一种常用的解线性方程组的方法。
它将原方程组表示为LUx = B的形式,然后通过前代法和回代法求解得到未知量向量x。
这种方法具有求解速度快、计算量小的优点,因此在实际应用中得到了广泛的应用。
三角分解法
三角分解法亦称因子分解法,由消元法演变而来的解线性方程组的一类方法。
设方程组的矩阵形式为Ax=b,三角分解法就是将系数矩阵A分解为一个下三角矩阵L和一个上三角矩阵U之积:A=LU,然后依次解两个三角形方程组Ly=b 和Ux=y,而得到原方程组的解,例如,杜利特尔分解法、乔莱斯基分解法等就是三角分解法。
【基本介绍】
若能通过正交变换,将系数矩阵A分解为A=LU,其中L是单位下三角矩阵(主对角线元素为1的下三角矩阵),而U是上三角矩阵,则线性方程组Ax=b 变为LUx=b,若令Ux=y,则线性方程组Ax=b的求解分为两个三角方程组的求解:
(1)求解Ly=b,得y;
(2)再求解Ux=y,即得方程组的解x;
因此三角分解法的关键问题在于系数矩阵A的LU分解
【矩阵LU能分解的充分条件】
一般地,任给一个矩阵不一定有LU分解,下面给出一个矩阵能LU分解的充分条件。
定理1 对任意矩阵AϵR n×n(n≥2),若A的各阶顺序主子式均不为零,则A有唯一的Doolittle分解(或Crout分解)。
定理2 若矩阵AϵR n×n(n≥2)非奇异,且其LU分解存在,则A的LU 分解是唯一的。
§4矩阵的三角分解矩阵的三角分解定理:设n nA R ×∈,如果A 的前n-1个顺序主子式det()0,1,2,,1i A i n ≠=− ,则A 可分解为一个单位下三角矩阵L 与一个上三角矩阵U 的乘积,且这种分解是唯一的。
证明:1.存在性:利用高斯消去法来构L 和U(1)(2)()1122det()0,1,2,,1i i ii A a a a i n =≠=−1L A U −=,A LU=2112100101n n m L m m ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ ,(1)(1)(1)11121(2)(1)222()0nn n nn a a a a a U a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦2.唯一性:分A 非奇异和奇异两种情况来证 (1)A 非奇异考虑到A 的前n-1个顺序主子式非零,得 det()0,1,2,,i A i n ≠=设1122A LUL U ==,12,L L 为单位下三角矩阵,12,U U 为上三角矩阵。
因A 非奇异,所以1U 可逆,从而112121L L U U −−=112121112121(,)L L E U U L L U U −−−−⇒==因为单位下三角阵为上三角阵2121,L L U U ⇒==(2)A 奇异因det()0,1,2,,1i A i n ≠=− ,det()0n A =()0,1,2,,1i ii a i n ⇒≠=− ,()0n nn a = 设1122A LUL U ==,12,L L 为单位下三角矩阵,12,U U 为上三角矩阵。
对它们进行矩阵分块,得(1)(1)(1)(1)(1)(1)111222(1)(1)1122001010n n n n n n n n L U a L U a m a m a −−−−−−−−⎛⎞⎛⎞⎛⎞⎛⎞=⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠⎝⎠其中(1)(1)12,n n L L −−为n-1阶单位下三角矩阵,(1)(1)12,n n U U −−为可逆的n-1阶上三角矩阵(1)(1)(1)(1)(1)(1)(1)(1)11112222(1)(1)(1)(1)(1)(1)(1)(1)1111122222n n n n n n n n n n n n n n n n L U L a L U L a m U m a a m U m a a −−−−−−−−−−−−−−−−⎛⎞⎛⎞⇒=⎜⎟⎜⎟++⎝⎠⎝⎠由(1)(1)(1)(1)1122n n n n L U L U −−−−=(1)(1)(1)(1)2121,n n n n L L U U −−−−⇒==由(1)(1)(1)(1)1122n n n n L a L a −−−−=(1)(1)21n n a a −−⇒= 由(1)(1)(1)(1)1122n n n n m U m U −−−−=(1)(1)21n n m m −−⇒=由(1)(1)(1)(1)222111n n n n m a a m a a −−−−+=+21a a ⇒= 故2121,L L U U == 证毕。
列主元三角分解法分解三阶矩阵1.引言1.1 概述列主元三角分解法是一种经典的数值计算方法,用于将一个三阶矩阵分解为一个下三角矩阵和一个上三角矩阵的乘积形式。
这种分解方法可以帮助我们解决线性方程组和求逆矩阵等数值计算问题。
在实际问题中,我们经常会遇到需要求解线性方程组的情况。
而列主元三角分解法的主要作用就是将线性方程组的求解转化为两个步骤:矩阵分解和回代求解。
通过将一个矩阵分解为一个下三角矩阵和一个上三角矩阵的乘积形式,我们可以简化线性方程组的求解过程,提高计算效率。
列主元三角分解法的步骤包括:选取列主元、消元和回代。
其中,选取列主元的过程是为了减小计算误差,保证数值计算的稳定性。
消元过程则是通过逐行操作,将原始矩阵逐步转化为下三角和上三角矩阵的乘积形式。
回代过程是求解三角方程组,得到线性方程组的解。
在本篇文章中,我们将详细介绍列主元三角分解法的原理和步骤。
我们将首先讲解列主元三角分解法的原理,包括选取列主元的方法和消元过程的具体操作。
然后,我们将详细介绍回代过程,以及列主元三角分解法的优点和应用。
通过本文的学习,读者将能够了解到列主元三角分解法的基本原理和操作步骤,掌握如何应用列主元三角分解法求解线性方程组和求逆矩阵。
同时,读者还能够了解到列主元三角分解法在实际问题中的重要性和广泛应用,为进一步深入学习数值计算提供基础知识和思路。
1.2文章结构1.2 文章结构本文将按照以下结构来进行阐述列主元三角分解法分解三阶矩阵的原理、步骤以及应用。
第一部分,引言,将对列主元三角分解法进行概述。
首先介绍三阶矩阵的基本概念和性质,然后引出列主元三角分解法的出发点和主要思想。
通过对该方法的简要介绍,读者将能够掌握本文所要介绍的内容。
第二部分,正文,将详细介绍列主元三角分解法的原理和步骤。
首先,我们将解释列主元三角分解法的原理,包括如何选择主元元素和使用主元消去的思想。
接着,我们将逐步阐述列主元三角分解法的具体步骤,包括将矩阵转化为上三角矩阵和求解最终的解向量。
矩阵三角分解法矩阵三角分解法是一种常用的矩阵分解方法,它可以将一个矩阵分解为一个上三角矩阵和一个下三角矩阵的乘积。
这种分解方法在数值计算、线性代数、统计学等领域都有广泛的应用。
矩阵三角分解法的基本思想是将一个矩阵分解为一个上三角矩阵和一个下三角矩阵的乘积。
这种分解方法可以用来求解线性方程组、矩阵求逆、特征值和特征向量等问题。
在实际应用中,矩阵三角分解法通常比直接求解更加高效和稳定。
矩阵三角分解法的具体实现方法有很多种,其中最常用的是高斯消元法和LU分解法。
高斯消元法是一种基本的线性方程组求解方法,它通过消元和回代的过程将一个线性方程组转化为一个上三角矩阵。
LU分解法是一种更加通用的矩阵三角分解方法,它可以将任意一个矩阵分解为一个下三角矩阵和一个上三角矩阵的乘积。
在高斯消元法中,我们首先将线性方程组的系数矩阵进行初等变换,使其变为一个上三角矩阵。
这个过程可以通过矩阵的初等行变换来实现,例如将某一行乘以一个非零常数、将某一行加上另一行的若干倍等。
然后,我们可以通过回代的过程求解出线性方程组的解。
在LU分解法中,我们首先将矩阵A进行初等变换,使其变为一个下三角矩阵L和一个上三角矩阵U的乘积。
这个过程可以通过矩阵的初等行变换来实现,例如将某一行乘以一个非零常数、将某一行加上另一行的若干倍等。
然后,我们可以将线性方程组Ax=b转化为LUx=b,再通过回代的过程求解出线性方程组的解。
矩阵三角分解法的优点在于它可以将一个矩阵分解为两个三角矩阵的乘积,从而简化了计算过程。
这种分解方法可以大大提高计算效率和数值稳定性,特别是在求解大规模线性方程组时更加明显。
此外,矩阵三角分解法还可以用来求解矩阵的行列式、矩阵的秩、矩阵的特征值和特征向量等问题。
矩阵三角分解法是一种非常重要的矩阵分解方法,它在数值计算、线性代数、统计学等领域都有广泛的应用。
在实际应用中,我们可以根据具体问题的特点选择不同的矩阵三角分解方法,以提高计算效率和数值稳定性。
矩阵直接三角分解法算法将方程组Ax=b 中的A 分解为A=LU ,其中L 为单位下三角矩阵,U 为上三角矩阵,则方程组Ax=b 化为解2个方程组Ly=b ,Ux=y 。
具体算法:○1对j=1,2,3,…,n 计算 U 1j =a 1j对i=2,3,…,n 计算L i1=a i1/a 11○2对k=2,3…,n: a . 对j=k ,k+1,…,n 计算U kj=a kj -∑LkqUqj k−1q=1b.对i=k+1,k+2,…,n 计算l ik =(a ik -)∑LiqUqk k−1q=1/u kk○3y 1=b 1对k=2,3…,n 计算 Y k =b k -∑LkqUq k−1q=1○4X n =y n /U nn ,对k=n -1,n -2,…2,1计算 X k =(y k -∑UkqXq n q=k+1/U kk注:注由于计算u 的公式与计算y 的公式形式上一样,故可直接对增广矩阵[A|b]=[ a11 a12…a1n a1,n +1a21 a22…a2n a2,n +1:: ::an1 an2…ann an,n +1]施行算法○2○3,此时U 的第n+1列元素即为y 。
程序与实例求方程组Ax=bA=[1 2 −12 85 4 7 −2−3 7 9 56 −12 −8 3],b=[2741149]程序#include<stdio.h>void main(){float x[4];int i;float a[4][5]={1,2,-12,8,27,5,4,7,-2,4,-3,7,9,5,11,6,-12,-8,3,49};void DirectLU(float*,int,float[]);DirectLU(a[0],4,x);for(i=0;i<=3;i++)printf("x[%d]=%f\n",i,x[i]);}void DirectLU(float *u,int n,float x[]){int i,r,k;for(r=0;r<=n-1;r++){for(i=r;i<=n;i++)for(k=0;k<=r-1;k++)*(u+r*(n+1)+i)-=*(u+r*(n+1)+k)*(*(u+k*(n+1)+i));for(i=r+1;i<=n-1;i++){for(k=0;k<=r-1;k++)*(u+i*(n+1)+r)-=*(u+i*(n+1)+k)*(*(u+k*(n+1)+r));*(u+i*(n+1)+r)/=*(u+r*(n+1)+r);}}for(i=n-1;i>=0;i--){for(r=n-1;r>=i+1;r--)*(u+i*(n+1)+n)-=*(u+i*(n+1)+r)*x[r];x[i]=*(u+i*(n+1)+n)/(*(u+i*(n+1)+i));}}运行结果。