列主元三角分解法在matlab中的实现
- 格式:doc
- 大小:51.00 KB
- 文档页数:5
1.先用你所熟悉的的计算机语言将不选主元和列主元Gauss 消去法编写成通用的子程序;然后用你编写的程序求解84阶方程组;最后将你的计算结果与方程的精确解进行比较,并就此谈谈你对Gauss 消去法的看法。
Sol :(1)先用matlab 将不选主元和列主元Gauss 消去法编写成通用的子程序,得到P U L ,,: 不选主元Gauss 消去法:[])(,A GaussLA U L =得到U L ,满足LU A = 列主元Gauss 消去法:[])(,,A GaussCol P U L =得到P U L ,,满足LU PA = (2)用前代法解()Pb or b Ly =,得y用回代法解y Ux =,得x求解程序为()P U L b A Gauss x ,,,,=(P 可缺省,缺省时默认为单位矩阵) (3)计算脚本为ex1_1 代码%算法1.1.3(计算三角分解:Gauss 消去法) function [L,U]=GaussLA(A) n=length(A); for k=1:n-1A(k+1:n,k)=A(k+1:n,k)/A(k,k);A(k+1:n,k+1:n)=A(k+1:n,k+1:n)-A(k+1:n,k)*A(k,k+1:n); endL=tril(A);L=L-diag(diag(L))+diag(ones(1,n));end%算法1.2.2(计算列主元三角分解:列主元Gauss消去法)function [L,U,P]=GaussCol(A)n=length(A);for k=1:n-1[s,t]=max(abs(A(k:n,k)));p=t+k-1;temp=A(k,1:n);A(k,1:n)=A(p,1:n);A(p,1:n)=temp;u(k)=p;if A(k,k)~=0A(k+1:n,k)=A(k+1:n,k)/A(k,k);A(k+1:n,k+1:n)=A(k+1:n,k+1:n)-A(k+1:n,k)*A(k,k+1:n); elsebreak;endendL=tril(A);U=triu(A);L=L-diag(diag(L))+diag(ones(1,n)); P=eye(n);for i=1:n-1temp=P(i,:);P(i,:)=P(u(i),:);P(u(i),:)=temp;endend%高斯消去法解线性方程组function x=Gauss(A,b,L,U,P)if nargin<5P=eye(length(A));endn=length(A);b=P*b;for j=1:n-1b(j)=b(j)/L(j,j);b(j+1:n)=b(j+1:n)-b(j)*L(j+1:n,j);endb(n)=b(n)/L(n,n);y=b;for j=n:-1:2y(j)=y(j)/U(j,j);y(1:j-1)=y(1:j-1)-y(j)*U(1:j-1,j);endy(1)=y(1)/U(1,1);x=y;endex1_1clc;clear;%第一题A=6*eye(84)+diag(8*ones(1,83),-1)+diag(ones(1,83),1); b=[7;15*ones(82,1);14];%不选主元Gauss消去法[L,U]=GaussLA(A);x1_1=Gauss(A,b,L,U);%列主元Gauss消去法[L,U,P]=GaussCol(A);x1_2=Gauss(A,b,L,U,P);%解的比较subplot(1,3,1);plot(1:84,x1_1,'o-');title('Gauss'); subplot(1,3,2);plot(1:84,x1_2,'.-');title('PGauss'); subplot(1,3,3);plot(1:84,ones(1,84),'*-');title('精确解');结果为(其中Gauss 表示不选主元的Gauss 消去法,PGauss 表示列主元Gauss消去法,精确解为[]'⨯8411,,1 ):由图,显然列主元消去法与精确解更为接近,不选主元的Gauss 消去法误差比列主元消去法大,且不如列主元消去法稳定。
matlab有限元三角形单元编程
在MATLAB中进行有限元分析,可以使用其自带的有限元分析工具箱(FEATool)进行编程。
以下是一个简单的例子,演示如何使用三角形单元进行有限元分析:
1. 打开MATLAB,进入FEATool环境。
2. 创建新的有限元模型。
选择“Model”菜单下的“New Model”选项,进入“Model Builder”界面。
3. 在“Model Builder”界面中,选择“2D Triangle”单元类型,并在绘图区域中绘制出三角形网格。
4. 在“Model Builder”界面中,设置材料属性、边界条件和载荷等参数。
5. 运行有限元分析。
选择“Model”菜单下的“Solve”选项,进行有限元求解。
6. 查看结果。
选择“Model”菜单下的“Results”选项,可以查看位移、应力、应变等结果。
以上是一个简单的例子,演示了如何使用三角形单元进行有限元分析。
在实际应用中,还需要根据具体问题进行详细的建模和计算。
第三讲 Matlab 求解代数方程组理论介绍:直接法+迭代法,简单介绍相关知识和应用条件及注意事项 软件求解:各种求解程序讨论如下表示含有n 个未知数、由n 个方程构成的线性方程组:11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ (1)一、直接法 1.高斯消元法:高斯消元法的基本原理: 在(1)中设110,a ≠将第一行乘以111,k a a -加到第(2,3,,),k k n = 得: (1)(1)(1)(1)11112211(2)(1)(2)22112(2)(2)(2)22n n n n n nn n n a x a x a x b a x a x b a x a x b ⎧+++=⎪++=⎪⎨⎪⎪++=⎩(2)其中(1)(1)1111,.k k aa b b ==再设(2)220,a ≠将(2)式的第二行乘以(2)2(2)22,(3,,)k a k n a -= 加到第k 行,如此进行下去最终得到:(1)(1)(1)(1)11112211(2)(1)(2)22112(1)(1)(1)1,111,1()()n n n n n n n n n n n n n n n n nn n n a x a x a x b a x a x b a x a x b a x b --------⎧+++=⎪++=⎪⎪⎨⎪+=⎪⎪=⎩(3) 从(3)式最后一个方程解出n x ,代入它上面的一个方程解出1n x -,并如此进行下去,即可依次将121,,,,n n x x x x - 全部解出,这样在()0(1,2,,)k kk a k n ≠= 的假设下,由上而下的消元由下而上的回代,构成了方程组的高斯消元法. 高斯消元法的矩阵表示:若记11(),(,,),(,,)T T ij n n n n A a x x x b b b ⨯=== ,则(1)式可表为.Ax b =于是高斯消元法的过程可用矩阵表示为:121121.n n M M M Ax M M M b --=其中:(1)21(1)111(1)1(1)11111n a a M a a ⎛⎫ ⎪ ⎪- ⎪=⎪ ⎪ ⎪ ⎪- ⎪⎝⎭ (2)32(2)222(2)2(2)221111n a a M a a ⎛⎫⎪⎪ ⎪-⎪=⎪ ⎪ ⎪⎪- ⎪⎝⎭高斯消元法的Matlab 程序: %顺序gauss 消去法,gauss 函数 function[A,u]=gauss(a,n) for k=1:n-1%消去过程 for i=k+1:n for j=k+1:n+1%如果a(k,k)=0,则不能削去 if abs(a(k,k))>1e-6 %计算第k 步的增广矩阵 a(i,j)=a(i,j)-a(i,k)/a(k,k)*a(k,j); else%a(k,k)=0,顺序gauss 消去失败 disp (‘顺序gauss 消去失败‘); pause; exit; end end end end%回代过程 x(n)=a(n,n+1)/a(n,n); for i=n-1:-1:1 s=0; for j=i+1:n s=s+a(i,j)*x(j); endx(i)=(a(i,n+1)-s)/a(i,i); end%返回gauss 消去后的增广矩阵 A=triu(a); %返回方程组的解 u=x ;练习和分析与思考: 用高斯消元法解方程组:12345124512345124512452471523814476192536x x x x x x x x x x x x x x x x x x x x x x ++++=⎧⎪+++=⎪⎪++++=⎨⎪+++=⎪+++=⎪⎩2.列主元素消元法在高斯消元法中进行到第k 步时,不论()k ik a 是否为0,都按列选择()||(,,)k ik a i k n = 中最大的一个,称为列主元,将列主元所在行与第k 行交换再按高斯消元法进行下去称为列主元素消元法。
科学计算—理论、方法及其基于MATLAB的程序实现与分析 三、 解线性方程组(线性矩阵方程)解线性方程组是科学计算中最常见的问题。
所说的“最常见”有两方面的含义:1) 问题的本身是求解线性方程组;2) 许多问题的求解需要或归结为线性方程组的求解。
关于线性方程组B A x B Ax 1-=⇒=(1)其求解方法有两类:1) 直接法:高斯消去法(Gaussian Elimination ); 2) 间接法:各种迭代法(Iteration )。
1、高斯消去法1) 引例考虑如下(梯形)线性方程组:()⎪⎩⎪⎨⎧==+==+-=⇒⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⇔⎪⎩⎪⎨⎧==-=+-5.0141315.3221122004301211214322332321321332321x x x x x x x x x x x x x x x 高斯消去法的求解思路:把一般的线性方程组(1)化成(上或下)梯形的形式。
2)高斯消去法——示例考虑如下线性方程组:⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⇔⎪⎩⎪⎨⎧=++-=-+-=+-306015129101.2001.221113060129501.2001.221321321321321x x x x x x x x x x x x 1) 第一个方程的两端乘12加到第二个方程的两端,第一个方程的两端乘-1加到第三个方程的两端,得⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3060031110001.0001.00111321x x x2) 第二个方程的两端乘001.010-加到第三个方程的两端,得 ⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--60600311010001.0001.00111321x x x3) 从上述方程组的第三个方程依此求解,得()⎪⎩⎪⎨⎧==+-==+-=600300001.03100024011332321x x x x x x 3)高斯消去法的不足及其改进——高斯(全、列)主元素消去法在上例中,由于建模、计算等原因,系数2.001而产生0.0005的误差,实际求解的方程组为⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---306015129101.20005.22111321x x x ⎪⎩⎪⎨⎧===⇒70.4509.30142.2565321x x x注:数值稳定的算法高斯列主元素消去法就是在消元的每一步选取(列)主元素—一列中绝对值最大的元取做主元素,高斯列主元素消去法是数值稳定的方法。
数值实验 线性方程组与MATLAB 应用王1.实验目的:理解矩阵的范数与条件数。
实验内容:已知矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛------=1111111111111111A 求1A ,2A ,∞A 和)(2A cond 。
解:编写了一个M 文件来求矩阵A 的范数与条件数:test3_1.m 如下:A=[1 1 1 1;-1 1 -1 1;-1 -1 1 1;1 -1 -1 1]; norm(A,1) norm(A,2) norm(A,inf) cond(A,2)计算结果依次是: 4 2 4 1.00002.实验目的:研究高斯消去法的数值稳定性(出现小主元)。
实验内容:设方程组b Ax =,其中两个矩阵如下,分别对以上两个方程组(1)⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--⨯=-11212592.1121130.6291.51314.59103.0151A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2178.4617.591b (2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=201015152699990999999999.23107102A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1500019000000000.582b (1)计算矩阵的条件数,判断系数矩阵是良态的还是病态的?解: 本题编写了一个test3_21的M 文件如下:A1=[0.3*1e-15 59.14 3 1;5.291 -6.130 -1 2;11.2 9 5 2;1 2 1 1]; A2=[10 -7 0 1;-3 2.099999999999999 6 2;5 -1 5 -1;0 1 0 2]; cond(A1) cond(A2)求得两个矩阵的条件数分别为68.4296和8.9939,易知这矩阵A1的条件数远远大于1,而矩阵A2的条件数刚大于1,故这,矩阵A1为病态矩阵,矩阵A2为良态矩阵。
(2)用列主元消去法求得L 和U 及解向量412,∈R x x ;解:本题利用Matlab 的列主元三角分解函数lu();具体求解如下: >> A1=[0.3*1e-15 59.14 3 1;5.291 -6.130 -1 2;11.2 9 5 2;1 2 1 1]; >> A2=[10 -7 0 1;-3 2.099999999999999 6 2;5 -1 5 -1;0 1 0 2];>> b1=[59.17;46.78;1;2];>> b2=[8;5.0000000000001;5;1];>> [L1,U1]=lu(A1)L1 = 0.0000 1.0000 0 00.4724 -0.1755 1.0000 01.0000 0 0 00.0893 0.0202 -0.1738 1.0000 U1 = 11.2000 9.0000 5.0000 2.00000 59.1400 3.0000 1.00000 0 -2.8354 1.23070 0 0 1.0151 >> [L2,U2]=lu(A2)L2 =1.0000 0 0 0 -0.3000 -0.0000 1.0000 00.5000 1.0000 0 00 0.4000 -0.3333 1.0000 U2 =10.0000 -7.0000 0 1.00000 2.5000 5.0000 -1.50000 0 6.0000 2.30000 0 0 3.3667 >> y1=L1\b1;>> x1=U1\y1x1 =3.84571.6095-15.476110.4113>> y2=L2\b2;>> x2=U2\y2x2 =0.1337-0.82180.88420.9109用不选主元的高斯消去法求得L和U及解向量412, Rx x;解:编写一个LU_Fact的M文件储存不选主元的LU分解法然后调用求解。
实验一 线性方程组直接解法实验一、实验目的1.运用matlab 软件完成线性方程组的直接实验;2.通过实验,了解Doolittle 分解方法和列主元消去法解方程组的过程,并比较两种方法的优点。
二、实验题目分别用Doolittle 分解方法和列主元消去法解方程组123410-7018-3 2.09999962 5.9000015-15-1521021⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭x x x x . 输出A ,b ;Doolittle 分解方法的L 和U ;解向量x,det A ;列主元方法的行交换次序,解向量x,det A ;比较两种方法所得的结果。
三、实验原理1) Doolittle 分解方法的原理算法原理:应用高斯消去法解n 阶线性方程Ax b =经过1n -步消去后得出一个等价的上三角形方程组()()n n A x b =,对上三角形方程组用逐步回代就可以求出解来。
这个过程也可通过矩阵分解来实现。
将非奇异阵分解成一个下三角阵L 和上三角阵U 的乘积称为对矩阵A 的三角分解,又称LU 分解。
根据LU 分解,将Ax b =分解为Ly bUx y =⎧⎨=⎩形式,简化了求解问题。
程序框图:变量说明:ij a 为系数矩阵元素,i b 为常数矩阵系数,,ij ij l u 分别为下、上三角矩阵元素。
2)列主元消去法解方程组的原理算法原理:列选主元是当变换到第k步时,从k列的kk a及以下的各元素中选取绝对值a的位置上,然后再进行消元过程。
交换系数矩阵中最大的元素,通过行交换将其交换到kk的两行(包括常数项),相当于两个方程的位置交换了。
程序框图:Array变量说明:k表示消元到a为消元第k步时第k步,kk主对角线元素3)四、实验过程及结果1)Doolittle分解方法的输出结果----------计算实习题----------Page64 第1题用Doolittle分解方法解方程组A =10.0000 -7.0000 0 1.0000-3.0000 2.1000 6.0000 2.00005.0000 -1.0000 5.0000 -1.00002.0000 1.0000 0 2.0000b =8.00005.90005.00001.0000L =1.0e+006 *0.0000 0 0 0-0.0000 0.0000 0 00.0000 -2.5000 0.0000 00.0000 -2.4000 0.0000 0.0000 U =1.0e+007 *0.0000 -0.0000 0 0.00000 -0.0000 0.0000 0.00000 0 1.5000 0.57500 0 0 0.0000 X =-0.0000-1.00001.00001.0000det(A)值为-762.00009000----------输出完毕----------2)列主元消去法输出结果----------计算实习题----------Page64 第1题列主元消去法解方程组A =10.0000 -7.0000 0 1.0000-3.0000 2.1000 6.0000 2.00005.0000 -1.0000 5.0000 -1.00002.0000 1.0000 0 2.0000b =8.00005.90005.00001.0000X =0.0000-1.00001.00001.0000detA值为-762.00009000----------输出完毕----------五、实验分析1.运用LU分解法可以成批地解方程组,且速度快.若c先求LU=A3,再解(LU)x=b,则要重新计算,计算量增加;如果按照上述方法计算,能够减少运算次数,加快运算速度.3. ⑴无论当n=10、n=100、n=1000时,x1与x2的值都相等,且随着n的增大,变化的只是解的中间部分数字,头、前后几位数都没有变化.⑵高斯消去法应用于三对角方程组得到的就是所谓的“追赶法”.追赶法不需要对零元素计算,只有6n-5次乘除法计算量,求解速度快.且当系数矩阵对角占优时数值稳定,是解三对角方程组的优秀解法.⑶用LU分解法解此方程组速度慢.顺序高斯消去法实际上就是将方程组的系数矩阵分解成单位下三角矩阵与上三角矩阵的乘积.顺序高斯消去法的消元过程相当于LU分解过程和Ly=b的求解,回代过程则相当于解线性方程组Ux=y,故其求解速度慢.六、附原程序1)Doolittle分解方法原程序fprintf('----------计算实习题----------\n')fprintf('Page64 第1题用Doolittle分解方法解方程组\n')A=[10 -7 0 1 ; -3 2.099999 6 2 ;5 -1 5 -1 ; 2 1 0 2];b=[8;5.900001;5;1];n=length(A);U=zeros(n,n);L=eye(n,n);U(1,:)=A(1,:);L(2:n,1)=A(2:n,1)/U(1,1);for i=2:n;U(i,i:n)=A(i,i:n)-L(i,1:i-1)*U(1:i-1,i:n);L(i+1:n,i)=(A(i+1:n,i)-L(i+1:n,1:i-1)*U(1:i-1,i))/U(i,i); endY=zeros(n);Y(1)=b(1);for i=2:nY(i)=b(i)-L(i,1:i-1)*Y(1:i-1,1);endX=zeros(n,1);if det(U)==0;X=0;elseX(n)=Y(n)/U(n,n);for i=n-1:-1:1X(i)=(Y(i)-U(i,i+1:n)*X(i+1:n,1))/U(i,i);endendAbLUXfprintf('det(A)值为%9.8f\n',det(A))fprintf('----------输出完毕 ----------\n')2)列主元消去法原程序fprintf('----------计算实习题----------\n')fprintf('Page64 第1题列主元消去法解方程组\n')A=[10 -7 0 1 ; -3 2.099999 6 2 ;5 -1 5 -1 ; 2 1 0 2];b=[8;5.900001;5;1];C=[A b];n=length(A);D=zeros(n,n+1);l=zeros(n,1);for i=1:nD=C;k=min(find(C(i:n,i)==max(C(i:n,i))));C(i,i:n+1)=D(k+i-1,i:n+1);C(k+i-1,i:n+1)=D(i,i:n+1);l(i+1:n,1)=C(i+1:n,i)/C(i,i);C(i+1:n,i:n+1)= C(i+1:n,i:n+1)- l(i+1:n,1)*C(i,i:n+1); endX=zeros(n,1);X(n)=C(n,n+1)/C(n,n);for i=n-1:-1:1X(i)=(C(i,n+1)-C(i,i+1:n)*X(i+1:n,1))/C(i,i); endAbXfprintf('detA值为%9.8f\n',det(A))fprintf('----------输出完毕----------\n')。
列主元三角分解法在matlab中的实现
摘要:介绍了M atlab语言并给出用M atlab语言实现线性方程组的列主元三角分解法,其有效性已在计算机实现中得到了验证。
关键词:M atlab语言;高斯消去法;列主元三角分解法
0前言
M atlab是M atrix Laboratory(矩阵实验室)的缩写,它是由美国M athwork公司于1967年推出的软件包,现已发展成为一种功能强大的计算机语言。
它编程简单,使用方便,在M a tlab环境下数组的操作与数的操作一样简单,进行数学运算可以像草稿纸一样随心所欲,使计算机兼备高级计算器的优点。
M atlab语言具有强大的矩阵和向量的操作功能,是Fo rtran和C语言无法比拟的;M a tlab语言的函数库可任意扩充;语句简单,内涵丰富;还具有二维和三维绘图功能且使用方便,特别适用于科学和工程计算。
在科学和工程计算中,应用最广泛的是求解线性方程组的解,一般可用高斯消去法求解,如果系数矩阵不满足高斯消去法在计算机上可行的条件,那么消元过程中可能会出现零主元或小主元,消元或不可行或数值不稳定,解决办法就是对方程组进行行交换或列交换来消除零主元或小主元,这就是选主元的思想。
1 定义
列主元三角分解:如果A为非奇异矩阵,则存在排列矩阵P,使PA=LU,其中L为单位下三角矩阵,U为上三角阵。
列主元三角分角法是对直接三角分解法的一种改进,主要目的和列主元高斯消元法一样,
就是避免小数作为分母项.
2 算法概述
列主元三角分解法和普通三角分解法基本上类似,所不同的是在构造Gauss 变换前,先在对应列中选择绝对值最大的元素(称为列主元),然后实施初等行交换将该元素调整到矩阵对角线上。
例如第)1,,2,1(-=n k 步变换叙述如下:
选主元:确定p 使{}1)1(
max -≤≤-=k ik n
i k k pk a a ; 行交换:将矩阵的第k 行和第p 行上的元素互换位置,即
.
实施Gauss 变换:通过初行变换,将列主对角线以下的元素消为零.即
3 列主元三角分解在matlab 中的实现
其程序如下:
function [l,u,p]=mylu(A)
[m,n]=size(A);
if m~=n
error('矩阵不是方阵')
return
end
if det(A)==0
error('矩阵不能被三角分解')
end
u=A;p=eye(m);l=eye(m);
for i=1:m
for j=i:m
t(j)=u(j,i);
for k=1:i-1
t(j)=t(j)-u(j,k)*u(k,i);
end
end
a=i;b=abs(t(i));
for j=i+1:m
if b<abs(t(j))
b=abs(t(j));
a=j;
end
end
if a~=i
for j=1:m
c=u(i,j);
u(i,j)=u(a,j);
u(a,j)=c;
end
for j=1:m
c=p(i,j);
p(i,j)=p(a,j);
p(a,j)=c;
end
c=t(a);
t(a)=t(i);
t(i)=c;
end
u(i,i)=t(i);
for j=i+1:m
u(j,i)=t(j)/t(i);
end
for j=i+1:m
for k=1:i-1
u(i,j)=u(i,j)-u(i,k)*u(k,j);
end
end
end
l=tril(u,-1)+eye(m);
u=triu(u,0);。