ASTM G155-2005a
- 格式:pdf
- 大小:132.24 KB
- 文档页数:11
第 1 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of厦门必锐产品技术服务有限公司(业务范围)第 2 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 3 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 4 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 5 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 6 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 7 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 8 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 9 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 10 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 11 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 12 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 13 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 14 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 15 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 16 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 17 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 18 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 19 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 20 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 21 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 22 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 23 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 24 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 25 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 26 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 27 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 28 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 29 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 30 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 31 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 32 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 33 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 34 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 35 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope of第 36 页 共 37 页Should there be any inconsistencies between Chinese and English versions of the scope ofISO/IEC 17025 认可证书CNAS-PD20/09-B/3第37 页共37 页Should there be any inconsistencies between Chinese and English versions of the scope of accreditation,。
ASTM A系列标准ASTM A100-2004 硅铁ASTM A1011-2006 高强度低合金和改型高强度低合金热轧结构碳钢板材和带材规范ASTM A1011-A1011M-2006b 高强度低合金和改型高强度低合金热轧结构碳钢板材和带材规范ASTM A101-2004 铬铁ASTM A1017-2005 压力容器铬-钼-钨合金钢板规范ASTM A1018-A1018M-2006b含铌或钒的高强度低合金和改性高强度低合金热轧厚镀锡卷板结构碳钢板材和带材规范ASTM A102-2004 钒铁合金ASTM A1035-A1035M-2006 用于混凝土加固的变形和未变形的低碳含铬棒材规范ASTM A105&A105M-2002 管道用碳素钢锻件标准规范ASTM A105-1998 管道部件用碳素钢锻件ASTM A105-A105M-2003 管系部件用碳素钢锻件ASTM A106-1999 高温设备用无缝碳素钢管的标准规范ASTM A106-A106M-2004a 高温用无缝碳素钢管ASTM A106-A106M-2006 高温用无缝碳素钢管ASTM A108-2003 优质冷加工碳素钢棒材技术规范ASTM A109-A109M-2003 冷轧碳素钢带技术规范ASTM A111-99a(2004)e1 电话和电报线路用镀锌-铁-丝规格ASTM A116-2000 镀锌钢丝编织栏栅网ASTM A1-2001 碳素钢丁字轨ASTM A121-99(2004) 镀锌刺钢丝ASTM A123&A123M-2001a 铁和钢制品镀锌层(热浸镀锌)的标准规范ASTM A135-A135M-2006 电阻焊钢管ASTM A143-2001 热浸镀锌结构钢制品防脆化的标准实施规程和脆化探测方法ASTM A148-2001 结构用高强度钢铸件ASTM A148A148M-2001 结构用高强度钢铸件ASTM A153&A153M-2001a 铁及钢制金属构件上镀锌层(热浸)标准规范ASTM A153-2003 钢铁制金属构件上镀锌层(热浸)的标准规范ASTM A181-2001 普通锻制碳素钢管的规格ASTM A182-2002 高温下使用的锻制或轧制的合金钢管法兰、锻制管件、阀门及零件的标准规范ASTM A182-A182M-2006 高温设备用锻制或轧制的合金钢管法兰、锻制管件、阀门及零件ASTM A184-A184M-2006 混凝土加筋用变形钢筋编织网ASTM A193-2000 高温设备用合金钢和不锈钢螺栓材料的标准规范ASTM A193-A193M-2006 高温设备用合金钢和不锈钢螺栓材料ASTM A194-A194M-2006 高温和高压设备用碳素钢与合金钢螺栓和螺母的规格ASTM A197-A197M-2000(2006) 化铁炉用可锻铸铁ASTM A202-2003 压力容器用铬锰硅合金钢板ASTM A202-202M-2003 压力容器用铬锰硅合金钢板ASTM A20A20M-2001 压力容器用钢板材通用要求ASTM A20-A20M-2006 压力容器用钢板材通用要求ASTM A213-2001 无缝铁素体和奥氏体合金钢锅炉、过热器和热交换器管的标准规范ASTM A213-A213M-2006 无缝铁素体和奥氏体合金钢锅炉、过热器和换热器管ASTM A2-2002 普通型,带槽和防护型碳素工字钢轨ASTM A225-A225M-2003 压力容器用锰矾镍合金钢板ASTM A227-A227M-1999 机械弹簧用冷拉钢丝ASTM A227-A227M-2006 机械弹簧用冷拉钢丝ASTM A228-1993 乐器用优质弹簧钢丝标准规范ASTM A234&A234M-2000a 中温与高温设备用锻制碳素钢及合金钢管配件的标准规范ASTM A234&A234M-2005 中温与高温设备用锻制碳素钢及合金钢管配件的标准规范ASTM A239-1995(2004) 用普力斯试验法(硫酸铜浸蚀)确定铁或钢制品上镀锌层最薄点的测试方法ASTM A239-2004 用普力斯试验法(硫酸铜浸蚀)确定铁或钢制品上镀锌层最薄点的测试方法ASTM A240-1994 压力容器用耐热铬及铬镍不锈钢板、薄板及带材ASTM A240-2004a 压力容器用耐热铬及铬镍不锈钢板、薄板及带材ASTM A249-2001 锅炉焊接管ASTM A262-2002ae2 奥氏体不锈钢晶间浸蚀敏感性的检测ASTM A266&A266M-2003 压力容器部件用碳素钢锻件标准规范ASTM A268&A268M-20001 通用无缝和焊接铁素体与马氏体不锈钢管的标准规范ASTM A269-2001 普通设备用无缝和焊接奥氏体不锈钢管标准规范ASTM A27-1995 通用碳素钢铸件ASTM A276-2006 不锈钢棒材和型材1ASTM A27A27M-2000 通用碳素钢铸件ASTM A283A&283M-1998 低和中等抗拉强度碳素钢板标准规范ASTM A290-1995 减速器环用碳素钢和合金钢锻件ASTM A295-2005 高碳耐磨轴承钢技术规范ASTM A29-A29M-1999 热锻及冷加工碳素钢和合金钢棒ASTM A307-2000 抗拉强度为60000PSI的碳素钢螺栓和螺柱的标准规范ASTM A308-2003 经热浸处理镀有铅锡合金的薄板材的技术规范ASTM A309-2001 用三点试验法测定长镀锌薄钢板镀层的重量成分的试验方法ASTM A311-2000 有机械性能要求的消除应力的冷拉碳素钢棒ASTM A312&A312M-2001a 无缝、焊接和深度冷加工奥氏体不锈钢管的标准规范ASTM A31-2004 钢铆钉及铆钉和压力容器用棒材ASTM A312-A312M-2006 无缝和焊接奥氏体不锈钢管ASTM A3-2001(2006) 低、中、高碳素钢鱼尾(连接)板ASTM A320-A320M-2005 低温用合金钢螺栓材料规格ASTM A325M-2000 最小抗拉强度为830Mpa的热处理钢结构螺栓标准规范(米制)ASTM A327M-1991(2006) 铸铁冲击试验方法(米制)ASTM A333&A333M-1999 低温设备用无缝和焊接钢管的标准规范ASTM A333-2004 低温设备用无缝和焊接钢管的标准规范ASTM A335-A335M-2006 高温用无缝铁素体合金钢管ASTM A336-A336M-2006 压力与高温部件用合金钢锻件规格ASTM A338-1994(2004)铁路、船舶和其它重负荷设施在650F(345℃)温度内使用的可锻铸铁法兰、管道配件和阀门零件ASTM A340-2003a 有关磁性试验用符号和定义的术语ASTM A343-2003在电力频率下用瓦特计-安培计-伏特计法(100-1000赫兹)和25厘米艾普斯亭(EPSTEIN) 机架测定材料的交流电磁性能的试验方法ASTM A343-343M-2003在电力频率下用瓦特计-安培计-伏特计法(100-1000赫兹)和25厘米艾普斯亭(EPSTEIN) 机架测定材料的交流电磁性能的试验方法ASTM A345-2004 磁设备用平轧电炉钢ASTM A348-2005用瓦特计-安培计-伏特计法(100-10000赫兹)和25厘米艾普斯亭框测定材料的交流磁性能的试验方法ASTM A34-A34M-2001 磁性材料的抽样和采购试验的标准惯例ASTM A351A315M-2000 压力容器部件用奥氏体和双相奥氏体-铁素体铸件ASTM A351-A351M-2006 容压零件用奥氏体及奥氏体铁素体铸铁的技术规范ASTM A354-2004 淬火与回火合金钢螺栓,双头螺栓及其他外螺纹紧固件规格ASTM A36&A36M-1996 结构碳钢的标准规范ASTM A366e1-1997 冷轧碳钢规范ASTM A370-1996 钢制品机械试验的标准试验方法和定义(中文版)ASTM A370-2003a 钢制品机械试验的标准试验方法和定义ASTM A380-1999(2005) 不锈钢零件、设备和系统的清洗和除垢ASTM A384-2005ASTM A385-2005 提供高质量镀锌覆层(热浸)ASTM A400-69(2006) 钢棒的成分及机械性能选择指南ASTM A403-1997 锻制奥氏体管不锈钢配件标准规范ASTM A403-A403M-2006 锻制奥氏体不锈钢管配件ASTM A409-409M-2001 腐蚀场所或高温下使用的焊接大口径奥氏体钢管ASTM A416-A416M-2006 预应力混凝土用无涂层七股钢铰线ASTM A421 A421M-2005 预应力混凝土用无涂层消除应力钢丝的技术规范ASTM A421-2002 预应力混凝土用无涂层消除应力钢丝的技术规范ASTM A437A&437M-2004 高温设备用经特殊热处理的涡轮型合金钢螺栓材料标准规范ASTM A451-A451M-2006 高温用离心铸造的奥氏体钢管ASTM A47-A47M-1999 铁素体可锻铁铸件ASTM A485-2003 高淬透性耐磨轴承钢的技术规ASTM A48-A48M-2003 灰铁铸件ASTM A49-2001 经热处理的碳素钢鱼尾(连接)板,微合金鱼尾板及锻制碳素钢异型鱼尾板ASTM A494-2004 镍和镍合金铸件ASTM A496-2001 混凝土增强用变形钢丝的标准规范ASTM A512-96 (2001)冷拉对缝焊碳素钢机械管规格标准ASTM A513-2000 电阻焊碳素钢与合金钢机械钢管标准规范ASTM A513-2006 电阻焊碳素钢与合金钢机械钢管ASTM A514M-2000a焊接用经回火与淬火的高屈服强度合金钢板ASTM A514M-2005 焊接用经回火与淬火的高屈服强度合金钢板ASTM A516-A516M-2006 中温及低温压力容器用碳素钢板ASTM A517-2006 压力容器用经回火与淬火的高强度合金钢板ASTM A518–2003 耐蚀高硅铁铸件ASTM A524-1996(2001) 常温和低温用无缝碳素钢管ASTM A530A530M-2004a 特种碳素钢和合金钢管ASTM A532 A532M-1993a(2003) 耐磨铸铁ASTM A53-2002 黑色和热浸镀锌焊接及无缝钢管规范ASTM A53-2006 无镀层热浸的、镀锌的、焊接的及无缝钢管的技术规范ASTM A536-1984(2004) 球墨铸铁件中文版ASTM A537-A537M-2006 压力容器用经热处理的碳锰硅钢板ASTM A540-A540M-2006 特殊用途的合金钢螺栓材料ASTM A541 A541M-2005 压力容器部件用经淬火和回火的碳素钢及合金钢锻件ASTM A553A&553M-1995(00) 压力容器用经回火和淬火的含8%及9%镍的合金钢板的标准规范ASTM A563M-2003 碳合金钢螺母ASTM A564-2004 热轧及冷精轧时效硬化处理过的不锈钢棒材和型材技术规范ASTM A568-A568M-2006 热轧及冷轧高强度低合金碳素钢薄板ASTM A572-2006 高强度低合金钴钒结构钢技术规范ASTM A572-A572M-2006 高强度低合金钴钒结构钢技术规范ASTM A575-1996(2002) 商品级碳素钢棒(M级)ASTM A577 A577M-1990(2001) 钢板的超声角波束检验ASTM A578 A578M-1996(2001) 特殊设备用的普通钢板和包覆钢板的直波束超声探伤检验ASTM A578A578M-2001 特殊设备用的普通钢板和包覆钢板的直波束超声探伤检验的标准规范ASTM A579-2004 超高强度合金钢锻件ASTM A580 A580M-1998 耐热不锈钢丝ASTM A581 A581M-1995b(2000) 高速切削用耐热不锈钢丝和盘条ASTM A581A581M-1995b(2004) 高速切削用耐热不锈钢丝和盘条ASTM A582 A582M-2005 热轧或冷精轧的高速切削不锈及耐热钢棒ASTM A586-1998 镀锌平行和螺旋形钢丝绳ASTM A587-1996(2001) 化学工业用电阻焊低碳钢管ASTM A588 A588M-2004 高强度低合金结构钢4英寸(100mm)厚屈服点最小为50ksi(345MPa) ASTM A589 A589M-2006 水井用无缝和焊接碳素钢管ASTM A6&A6M-1989 轧制结构钢棒材、板材、型材和板桩一般要求的标准规范ASTM A606,656715,JIS G3106,3114中文ASTM A615-A615M-2006 钢筋混凝土配筋用变形和光面坯钢筋ASTM A6-2000 轧制结构钢棒材、板材、型材和板桩一般要求的标准规范ASTM A6-2004 轧制结构钢棒材、板材、型材和板桩一般要求的标准规范(中文)ASTM A633-A633M-2001(2006) 正火的高强度低合金结构钢ASTM A644-1998(R2003) 铁铸件的相关术语ASTM A65-2001 钢轨道钉ASTM A653-A653M-2006 热浸处理的镀锌铁合金或镀锌合金薄钢板的标准规范ASTM A656-2003 具有改良可模锻性的高强度低合金热轧结构钢板ASTM A66-2001 钢质螺旋道钉ASTM A663-A663M-1989(2006) 商品级碳素钢棒的机械特性ASTM A666-奥氏体不锈钢板ASTM A67-2000 热加工低碳钢和高碳钢垫板技术规范ASTM A691-1998(2002) 高温下高压装置用电熔焊碳素钢和合金钢管ASTM A696-2000 压力管道部件专用热锻或冷精轧碳素钢棒ASTM A6-A6M-2006 轧制结构钢板材、型材和薄板桩通用技术要求ASTM A703-2004a 受压部件用钢铸件ASTM A704-A704M-2006 混凝土加筋用焊接普通钢棒或杆的光面钢筋或钢筋网ASTM A706-2006a 混凝土配筋用低合金变形和光圆钢筋ASTM A706-A706M-2006 混凝土配筋用变形低合金光面无节钢筋ASTM A707-2002 低温设备用锻制碳素钢和合金钢法兰ASTM A709-A709M-2006 桥梁用结构钢ASTM A722A&722M-1998 预应力混凝土用未涂覆的高强度钢棒材的标准规范ASTM A732-2002 一般设备用熔模铸造碳素低合金钢及高强度加温钴合金钢铸件ASTM A732A732M-2002 一般设备用熔模铸造碳素低合金钢及高强度加温钴合金钢铸件ASTM A737-1999(2004) 高强度低合金钢压力容器板ASTM A74-2004 铸铁污水管及配件的技术规范ASTM A743A743M-2003 一般用途铁铬、铁铬镍耐腐蚀铸件ASTM A748-1987 压力容器用静态铸造的激冷白口铁-灰口铁双金属轧辊ASTM A754-A754M-2006 X射线荧光涂层厚度的试验方法ASTM A763-2004 铁素体不锈钢晶间腐蚀敏感性检测ASTM A775-A775M-2006 涂环氧树脂的钢筋钢棒ASTM A781-2002 一般工业用一般要求的钢和合金铸件ASTM A781A781M-2002 一般工业用一般要求的钢和合金铸件ASTM A782-A782M-1990[1996] 经淬火和回火的锰铬钼硅锆合金钢压力容器板ASTM A782-A782M-2006 经淬火和回火的锰铬钼硅锆合金钢压力容器板ASTM A795M-2004 防火用黑色及热浸镀锌的焊接和无缝钢管ASTM A796-A796M-2006雨水管和卫生污水管及其它地下埋设管道用波纹钢管、管托架及拱形架结构设计惯例ASTM A800-A800M-2001(2006) 奥氏体合金钢铸件中铁素体含量的估算ASTM A802-A802M-1995(2006) 钢铸件外观检验的表面验收标准ASTM A810-2001 镀锌钢管用绕网ASTM A815-2004 锻制铁素体、铁素体奥氏体和马氏体不锈钢管配件ASTM A817-2003 链接栅栏网用金属涂覆钢丝ASTM A820-A820M-2006 纤维增强混凝土用钢纤维ASTM A82-2002 钢筋混凝土用无节钢丝ASTM A832-1995 压力容器板用铬钼钒及铬钼钒钛硼合金钢ASTM A836-1995 搪瓷管和压力容器设备用钛稳定碳素体钢锻件ASTM A841-2001 压力容器用温度机械控制工艺加工的钢板ASTM A844A844M-1993(1999) 压力容器用直接淬火加工的含镍9%的合金钢板ASTM A887-1989(2004) 核能设备用经硼酸处理的不锈钢板、薄板及带材ASTM A897-A897M-2006 等温淬火球墨铸铁ASTM A90&A90M-2001 镀锌和镀锌合金钢铁制品镀层重量的标准试验方法ASTM A905-1993 压力容器缠绕用钢丝ASTM A917-2006 要求每一面标识有镀层质量用的电解工艺涂层的薄钢板材标准规范ASTM A923-2006 检测锻制双重奥氏体-铁素体不锈钢中有害金属间相的标准试验方法ASTM A946-1995 耐腐蚀和耐热用铬,铬-镍和硅合金钢板,薄板和带的标准规范ASTM A955-A955M-2006a 混凝土增强的变形的和无节钢筋技术规范ASTM A960-A960-2003 普通要求的锻制钢管管件的标准规范ASTM A967-2001 不锈钢零件化学钝化处理的标准规范ASTM A99-2003 锰铁合金ASTM A996-A996M-2006a 混凝土用条钢和车轴钢变形钢棒规范ASTM B 系列标准ASTM B103-1998 锡磷青铜板带材标准ASTM B117-2003 盐雾喷射(雾化)装置操作的标准实施规范 (中文版)ASTM B117-2003 盐雾喷射(雾化)装置操作的标准实施规范(EN)ASTM B117-2003 盐雾喷射装置操作的标准实施规范ASTM B137-1995 阳极镀铝层重量测定的标准试验方法ASTM B148-1997(2003) 铝青铜砂型铸件ASTM B152-152M-2000 铜薄板、带材、中厚板及轧制棒材技术规范ASTM B152M-2006 铜薄板、带材、中厚板及轧制棒材技术规范ASTM B16&B16M-2000 螺纹切削机用易切削黄铜杆材、棒材和型材的标准规范ASTM B16-2005 制螺钉机用易切削黄铜条材、棒材和型材ASTM B164-1998 镍铜合金杆材、棒材和线材标准规范ASTM B166-2004 镍铬铁合金及镍铬钴钼合金条材、棒材及线材ASTM B167-2001 无缝镍铬铁合金管ASTM B168-2001 镍铬铁合金及镍铬钴钼合金板、薄板和带材ASTM B179-2006 砂型铸件、永久型模铸件和压模铸件用铝合金锭及其熔化成形方式ASTM B183-1979(1997) 电镀用低碳钢的制备ASTM B187-B187M-2003 铜汇流棒、条和型材ASTM B208-2004 砂型、永久型、离心型和连续铸造铸件用的铜基合金拉伸试验样件制备标准惯例ASTM B230-B230M-2004 电气用1350-H19型铝线ASTM B231-B231M-2004 同心绞捻铝1350导线ASTM B232-B232M-2001 涂覆钢芯加强的同心绞捻铝导线(ACSR)ASTM B233-2003 电气用1350铝拉制坯料ASTM B234-2004 冷凝器及热交换器用拉制铝和铝合金无缝管ASTM B240-2004 压模铸造用锌及锌铝合金锭ASTM B242-1999(2004)e1 电镀用高碳钢的制备ASTM B249M-2006 铜和铜合金棒材、型材及锻件ASTM B311-1993(2002)e1 孔隙度小于2%的粉末冶金材料密度的标准测试方法ASTM B328-2003 烧结金属结构零件和油浸轴承密度与互连多孔性的试验方法规范ASTM B368-1997(2003) 加速铜氧化的醋酸盐喷雾试验(cass试验)ASTM B36M-2006 黄铜板、薄板、带材及轧制棒材ASTM B380-1997 装饰性电镀层的腐蚀膏试验中文版ASTM B388-2000 恒温双金属薄板和带材ASTM B389-1981(2004) 恒温双金属螺旋形线圈的热偏转率的测试方法ASTM B407-2001 镍铁铬合金无缝管ASTM B423-2005 镍铁铬钼铜合金无缝管ASTM B425-1999 镍铁铬钼铜合金(UNS N08825和UNS N08221)杆材和棒材标准规范ASTM B435-2003统一编制牌号为NO6002、NO6230、N12160和R30556的板材和带材及牌号为N06002、N06230和R30556的带材ASTM B439-2000 铁基烧结轴承(油浸的)ASTM B446-2000 镍铬钼钶合金(UNS N06625)条和棒规范ASTM B446-2003 镍铬钼钶合金(UNS N06625)条和棒规范ASTM B456-1995 铜+镍+铬及镍+铬的电解沉积镀层标准规范ASTM B466 B466M-2003 无缝铜镍合金管ASTM B488-2001(2006) 工程用电解沉积镀金层ASTM B527-1993用塔普-帕克(Tap-Pak)容量计测定金属粉末及化合物粉末的塔普(Tap)密度的标准试验方法ASTM B557-2002a 锻造和铸造的铝及镁合金制品的抗拉试验的标准试验方法ASTM B580-2000 铝阳极氧化镀层ASTM B594-2006 航空用铝合金锻件超声波检测ASTM B604-1991(97) 塑料表面装饰用铜加镍铬镀层标准规范ASTM B619-2005 焊接的镍和镍钴合金管ASTM B626-2004 焊接的镍和镍钴合金管ASTM B633-1998 钢和铁电积沉淀镀锌的标准(中文)ASTM B66-2003 蒸汽机车易损零件用青铜铸件ASTM B670-2002 高温设备用沉淀淬火镍合金(UNS N07718) 厚板、薄板及带材的标准规范ASTM B680-1980(00) 用酸溶解法测定铝的阳极镀层封闭质量的试验方法ASTM B68-2002 光亮退火的无缝铜管ASTM B689-1997(2003) 电镀工程镀镍层ASTM B689-2003 电镀工程镀镍层ASTM B733-2004 化学镀镍ASTM B735-1995(2000) 用硝酸蒸汽测试金属基体上金涂层孔隙度的方法ASTM B748-1990(2006) 用扫描电子显微镜测量横截面测定金属涂层厚度的方法ASTM B824-2004 铜合金铸件ASTM B870-2002 铜-铍合金锻制和挤制合金C17500和C17510的标准规范ASTM B912-2000 用电抛光法测定不锈钢钝化的标准规范ASTM B912-2002 电解抛光ASTM B93-2006 砂型铸件、永久型模铸件和压模铸件用镁合金锭ASTM B94-2005 镁合金压铸件ASTM C 系列标准ASTM C1005-2000 水硬水泥物理试验中质量和体积测定用标准质量与称重器具的标准规范ASTM C1017&C1017M-1998 生产流动混凝土用的化学混合物的标准规范ASTM C1025-2000 石墨电极芯挠曲断裂模数的试验方法ASTM C1038-2004 存放在水中的水硬性水泥灰浆棒膨胀的标准试验方法ASTM C1039-2000 石墨电极的表观孔隙率、表观比重和松密度的试验方法ASTM C1043-2006 使用护热板装置中线电源加热器时稳态热传导特性测量用的加热板温度的测定ASTM C109&C109M-2002ASTM C110-2006 生石灰,熟石灰和石灰石的物理试验方法ASTM C1107-2002 干包装水硬水泥砂浆(非收缩的)标准规范ASTM C113-1993 耐火砖的二次加热变化的标准试验方法ASTM C1134-1990 部分浸入后刚性热绝缘材料水分保持标准试验方法ASTM C114-2004a 水硬水泥化学分析的标准试验方法ASTM C1166-2000 致密及多孔弹性体衬垫和附件火焰蔓延的试验方法ASTM C1179-2000 室外加工碳素材料及石墨材料氧化质量损失试验方法ASTM C1222-2006 实验室试验水硬水泥的评定ASTM C1276-1994 利用旋转米度计测量模制粉末熔点以上粘度的标准试验方法ASTM C1293-2006 用测定碱-硅石反应引起的混凝土长度变化对混凝土集料的标准试验方法ASTM C1305-2006 液体外加防水薄膜的裂缝挖补能力的标准测定方法ASTM C131-2006 用洛杉机磨耗试验机测定小规格粗集料的抗磨性与抗冲击性的试验方法ASTM C1329-2004 砂浆水泥的标准规范ASTM C1398-1998(04)用吉尔摩水泥稠度试验针实验室测定含喷浆混凝土添加剂的水硬水泥砂浆凝固时间的标准试验方法ASTM C1437-2001 水硬水泥灰浆流动性的标准试验方法ASTM C146-1994a(1999) 玻璃沙的化学分析试验方法ASTM C148-2000 玻璃容器偏振检验的试验方法ASTM C149-1986(2000) 玻璃容器热冲击的试验方法ASTM C158-2002 玻璃的挠曲试验方法(测定玻璃挠折模量)ASTM C1587-2006Standard PraASTM CtiASTM Ce for Preparation of Field Removed ManufaASTM Ctured Masonry Units and Masonry SpeASTM Cimens for ASTM Compressive Strength TestingASTM C169-1992(2000) 碱石灰玻璃及硅酸盐玻璃的化学分析试验方法ASTM C170-1990(R1999) 天然建筑石料抗压强度的试验方法ASTM C186(2000) 玻璃容器的内压的试验方法ASTM C-1997 用护热板法测定稳态热通量和传导性的标准试验方法ASTM C224-78(2004)e1 玻璃容器的取样方法ASTM C225-1985(1999) 玻璃容器耐化学腐蚀的试验方法ASTM C24-2001(2006)耐火和高矾土耐溶材料的溶锥当量测试法ASTM C242-2001 卫生陶瓷及其制品术语ASTM C25-2006 石灰石,生石灰和熟石灰的化学分析方法ASTM C270-2006 砌块用的灰浆ASTM C273-2000 夹层结构或夹层芯材的平直剪切性能的试验方法ASTM C305-2006 塑性稠度的水硬性水泥泥浆和灰浆机械搅拌ASTM C32-2004 污水管及检查井用砖(粘土或页岩)ASTM C329-1988(2006) 焙烧卫生陶瓷材料比重的试验方法ASTM C428-05(2006) 石棉水泥无压污水管ASTM C428-2005(2006) 石棉水泥无压污水管ASTM C473-2006 石膏板制品和石膏板条的物理测试标准试验方法ASTM C51-2006 与石灰及石灰石相关的(工业用)名词术语ASTM C518-2004用热流计法测定稳态热通量和热传递特性的试验方法ASTM C559-2000 用物理测量法测定碳加工品及石墨制品松密度的试验方法ASTM C560-1998 石墨的化学分析试验方法ASTM C561-2000 石墨样品中灰分的检测方法ASTM C562-2000 石墨样品中水分的检测方法ASTM C565-1998 碳和石墨机械加工材料抗拉检验的试验方法ASTM C595-2006 混合水硬性水泥ASTM C61(2006)基恩(Keene)石膏水泥ASTM C611-1998 在室温时,炭加工品及石墨制品的电阻率的试验方法ASTM C625-2000 石墨辐射结果的报告ASTM C651-2000 在室温下用四点负荷法,测定炭加工品及石墨制品的抗挠强度的试验方法ASTM C662-1998 不透水的石墨管和插片ASTM C67-2006 砖及结构粘土瓦的取样和试验的试验方法ASTM C695 -2000 碳和石墨和抗压强度的试验方法ASTM C70-2006 细集料表面湿度的测试方法ASTM C704-2001 室温下耐火材料耐腐蚀的试验方法ASTM C709-2003 炭和石墨加工术语ASTM C714-2000 用热脉冲法测定炭和石墨的热扩散系数的测试方法ASTM C747-1998 用音响共振法测定炭精和石墨的弹性模量与基本频率的试验方法ASTM C748-1998 细粒石墨材料的洛氏硬度的测试方法ASTM C749-2002 碳和石墨抗拉应力的试验方法ASTM C769-1998 为获得近似扬氏模量测量加工的炭精及石墨材料中音速的试验方法ASTM C773-1988(2006) 预制封缝带泛油或增塑剂泛出的试验方法ASTM C781-2002 高温气冷核反应堆用试验石墨及硼酸化石墨元部件的标准操作ASTM C783-2003 预制封缝带柔软度的测试方法ASTM C808-2000 炭加工的及石墨制承重材料和密封材料的磨擦及磨蚀结果的报告指南ASTM C816-1998 用燃烧碘量滴定法测定石墨中硫含量的试验方法ASTM C838-2001 加工炭精及石墨型材松密度的试验方法ASTM C880-2006 天然建筑石料弯曲强度的试验方法ASTM C886-1998 细粒炭精和石墨材料肖氏硬度的试验方法ASTM C90-2006a 承重混凝土空心砌块ASTM C94-2004 搅拌好的混凝土规范ASTM C94-2006 搅拌好的混凝土规范ASTM C989-2006 混凝土和灰浆用研磨成颗粒状的高炉碎渣的技术规范ASTM C990-2006 使用预制接缝密封胶粘结的混凝土管道、检查孔和预制箱型型件ASTM C99-1987(R2006) 规格石料断裂模数的试验方法ASTM D 系列标准ASTM D0091-2002润滑油的沉淀值试验方法ASTM D1002-2001 用拉力负载测定金属之间胶粘剂抗剪切强度特性的试验方法ASTM D1002-2005 用拉力负载测定金属之间胶粘剂抗剪切强度特性的试验方法ASTM D1003-1997 ;RASTM DEWMASTM DMTUKVEASTM D1003-2000 ;RASTM DEWMASTM DM-ASTM D1004-1994 ;RASTM DEWMASTM DQTOTRBASTM D1004-1994a R03 ;RASTM DEWMASTM DQTOTRBUJAZASTM D1004-1994a R03 ;RASTM DEWMASTM DQTUKVEASTM D1004-2003 ;RASTM DEWMASTM DQ-ASTM D1004-2003 塑料薄膜和薄板的抗撕裂强度的测试方法ASTM D1005-1995 用千分尺测量有机涂层干膜厚度的试验方法ASTM D1007-2000 仲丁醇ASTM D1007-2005 仲丁醇ASTM D1015-1999高纯烃凝固点测定试验方法ASTM D1015-2004 高纯度烃冻结点的测试方法ASTM D1016-1999 烃纯度试验方法ASTM D1016-2004 冻结点测定烃纯度的试验方法ASTM D1018-2000 石油馏分中氢含量的测试方法ASTM D1018-2000 石油馏分中氢试验方法ASTM D1018-2000(2005) 石油馏分中氢含量的测试方法ASTM D1025-2000 聚合级丁二烯中不挥发性残余物的试验方法ASTM D1025-2000 聚合级丁二烯中固定渣滓试验方法ASTM D1042-1993 ;RASTM DEWNASTM DITOTM-ASTM D1042-2001 ;RASTM DEWNASTM DI-ASTM D1042-2001 ;RASTM DEWNASTM DITMASTM DE-ASTM D1042-2001 ;RASTM DEWNASTM DITUKVEASTM D1043-1999 ;RASTM DEWNASTM DMTOTK-ASTM D1043-1999 ;RASTM DEWNASTM DMTUKVEASTM D1043-2002 ;RASTM DEWNASTM DM-ASTM D1044-1999 ;RASTM DEWNASTM DQ-ASTM D1044-2005 透明塑料表面耐磨蚀性的试验方法ASTM D1045-1995 ;RASTM DEWNASTM DUTOTU-ASTM D1045-1995 R01 ;RASTM DEWNASTM DU-ASTM D1052-1999 用罗斯挠曲装置测定橡胶切口扩展的试验方法ASTM D1053-1997 橡胶特性试验.挠性聚合物和涂覆制品的低温劲度测试方法ASTM D1054-1991 用回跳摆锤法测定橡胶弹性的试验方法ASTM D1055-1997 ;RASTM DEWNTU-ASTM D1056-1998 ;RASTM DEWNTYTUKVEASTM D1056-2000 ;RASTM DEWNTY-ASTM D1062-1996 金属间粘结力抗裂强度的标准试验方法ASTM D1066-2001 蒸汽的抽样方法ASTM D1067-2002 水的酸性和碱性的测试方法ASTM D1068-2003 水中铁的测定ASTM D1068-2003 水中铁的测试方法ASTM D1076-1997 橡胶.浓缩的、氨储存的、乳状的和离心处理的天然胶乳ASTM D1078-2003 挥发性有机液体馏程的测定方法ASTM D1078-2003 挥发性有机液体馏程的试验方法ASTM D1083-1991(98)集装箱、大型船运箱和板条箱的机械搬运的试验方法ASTM D1084-1997 胶粘剂粘度的测试方法ASTM D1091-2000 润滑油和添加剂中磷含量的测试方法ASTM D1091-2000 润滑油及添加剂中磷试验方法ASTM D1092-1999 润滑油可测量表观粘度试验方法ASTM D1092-1999 润滑脂表观粘度的试验方法ASTM D1093-1998 液态烃和它们的蒸馏残余物酸度的测试方法ASTM D1094-00 航空燃料水反应性的试验方法ASTM D1094-2000 航空燃料水反应性的试验方法ASTM D1094-2000 航空燃料易溶于水成分试验方法ASTM D1101-1997a 室外用层压结构木制品的胶合接头完整性的试验方法ASTM D1102-1984(2001)木材中灰分的测试方法ASTM D1125-1999 水的电导性和电阻率的测试方法ASTM D1125-1999 水中的电导和电导率测定法ASTM D1126-2002 水硬度的测试方法ASTM D1126-2002 水中的总硬度 (以 CaCO3计)ASTM D1129-2004 与水相关的术语ASTM D1133-2004 烃类溶剂的贝壳杉脂丁醇值的测试方法ASTM D1141-2003 海水代用品ASTM D1144-1999 胶粘剂粘结强度提高的测定方法ASTM D1146-2000 有效粘结层粘结点的试验方法ASTM D1148-1995 橡胶变质.受热及紫外线使浅颜色表面退色的试验方法ASTM D1149-1999 橡胶变质试验.在小室中橡胶表面臭氧龟裂ASTM D1149-99 橡胶变质试验.在小室中橡胶表面臭氧龟裂ASTM D1151-2000 潮气和温度对胶粘剂粘结能力影响的试验方法ASTM D1152-2001 甲醇(甲基醇)ASTM D1153-2001 甲基异丁基甲酮ASTM D1157-1991 轻烃中TBC测试试验方法ASTM D1157-2000 轻质烃总抑制剂含量(TBC)的测试方法ASTM D1159-2001 电化学滴定法测量石油馏分及商用脂族烯烃的溴值试验方法ASTM D1159-2001 电位滴定法测试石油馏出物和脂肪烃溴数ASTM D1160-2002a 减压蒸馏石油产品试验方法ASTM D1160-2003 石油产品减压蒸馏方法ASTM D116-1986(2006) 电气设备用上釉陶瓷材料的试验ASTM D1171-1999 橡胶变质试验.室外或小室内橡胶表面臭氧龟裂(三角形试样) ASTM D1179-2004 水中氟化物离子的测试方法ASTM D1183-1996 胶粘剂耐周期性实验室老化条件的标准试验方法ASTM D1184-1998 胶粘剂粘结的层压部件抗挠强度的试验方法ASTM D1186-2001 铁基非磁性涂层干膜厚度的无损测量方法ASTM D1192-1998 水和蒸汽的抽样设备标准指南ASTM D1193-1999 试剂水(联邦试验方法No.7916)ASTM D1200-1994(2005) 福特粘度杯测定粘度的试验方法ASTM D1201-1999 ;RASTM DEYMASTM DE-ASTM D1203-1994 R03 ;RASTM DEYMASTM DM-ASTM D1203-1994 R99 ;RASTM DEYMASTM DMTOTRSOTLFMQ--ASTM D1204-1994 ;RASTM DEYMASTM DQTOTRFMQ--ASTM D1204-1994 ;RASTM DEYMASTM DQTUKVEASTM D1204-2002 ;RASTM DEYMASTM DQ-ASTM D1209-2000 透明液体色度的试验方法(铂钴标度)ASTM D1209-2000 无色透明液体色度的测定方法(铂钴标度)ASTM D1210-1996 颜料载体体系分散细度的测试方法ASTM D121-2005 煤和焦炭术语ASTM D1217-1993 宾汗比重瓶测试液体密度试验方法ASTM D1217-1993 用宾汉比重法测定液体密度和相对密度(比重)的试验方法ASTM D1217-2003 用宾汉比重法测定液体密度和相对密度(比重)的试验方法ASTM D1218-2002 碳氢化合物折射率试验方法ASTM D1218-2002 液态烃的折光率和折光分散度的测试方法。
非金属材料放在UV仪下的操作标准(ASTM G154-2006 非金属材料紫外线曝光用荧光设备使用标准惯例)(ASTM G154-2006 非金属材料荧光紫外线曝露设备的操作标准)该标准是在固定设计G154下出版的,它的数据是紧随原版的设计或就修订而言的,最后的修订。
A number in parentheses the year of last reapproval .A superscript epsilon indicates an editorial change since the last revision or reapproval.注:脚注在函数X2.1,表X2.3都加上胃肯新注释X2.8以及日期在2006年6月5日。
1.范围1.1该标准涵盖了用UV仪的基本规则肯操作程序以及水仪器能够重演(模拟)环境影响因素。
该环境因素是当材料被放在太阳下以及潮湿的环境就像下雨或露水在实际的应用中。
/本标准涉及实际使用的材料在用荧光紫外线-冷凝型曝晒仪模拟由阳光和雨、露等自然气候条件下引起的劣化的基本原则和操作过程。
该标准受获得,测量和控制暴露条件胡程序限制。
许多暴露条件在附录中例举出来了,该标准不能详细说明最合适测试材料的暴露条件/本标准限于获取、测量和控制曝晒条件的过程方法,并未规定最适合待测材料的曝晒条件,曝晒条件过程方法参考附录。
注:1-标准G151描述执行标准适合于所有用实验室光源胡暴露设施,它取代了标准G53,它描述了用于UV荧光暴露胡特定设施。
在G53标准中描述胡仪器在G151标准中取代了。
注:1-标准G151规定的操作过程方法适用于所有采用实验光源的曝露设备,本标准取代了有描述具体设计用于佛罗里达州的荧光紫外线曝露设备的G53标准。
本标准包含了在G53标准中规定的仪器设备。
1.2 测试样本放在可控环境条件下胡UV仪下。
不同类型的UV光源可以被描述。
在可控环境条件下试样用佛罗里达州的荧光紫外线进行曝露测试,规定了不同类型的佛罗里达州的荧光紫外线光源。
ASTM G155测试标准ASTM G155标准介绍本标准在指定名称ASTM G155标准的基础上发布,紧跟名称的数字为标准首次批准年限,如该标准属复审,该数字则表明最后一次复审的年限。
上标字母ε表示最近一次的复审或重新通过后的编辑更改。
1.范围1.1本标准描述了根据材料或产品特性的要求将样品曝晒于氙弧灯和溶液装置用来模拟自然环境的日光照射(直接照射或透过玻璃照射)或模拟露水或雨滴的潮湿环境作用进行定性测试所需使用的设备、一般操作步骤及有关注意事项。
附录中列出了一些曝晒操作步骤,不过该操作步骤并非必定是最为适应待测材料的操作步骤。
注意1---操作规程G151描述了所有使用实验室光源曝光装置的表现标准。
该操作规程代替了仅仅描述实验室特定氙弧灯光源曝光装置的操作规程G26。
本操作规程包括操作规程G26中描述的实验装置。
1.2待测样本需曝光于滤波氙弧灯和可控实验环境条件下。
本操作规程描述了不同种类的氙弧灯光源于不同的过滤装置的组合。
1.3样本的准备与评测结果评估在ASTM方法活特定材料的物性表中有详细说明。
在操作规程G151与ISO4892-1中规定了一般规程。
更多测定曝光以后性质改变的方法和特定信息以及这些结果的汇报在ISO4582中有详细说明。
1.4在SI组件中涉及的数值应被视为标准。
1.5ASTM G155并不旨在陈述所有与其使用相关的任何安全注意事项。
本标准的使用者有负责建立相关的安全和健康措施,并在进行测试前实施调整限制,进行预先的防护。
1.5.1任何实验过程中由灯源生成的臭氧物质都必须通过排除装置立即吸离样本及实验操作控制面板附近。
1.6该操作规程在技术上近似于以下ISO文件:ISO4892-2,ISO1134,ISO105B02,ISO105B04,ISO105B05,和ISO105B06。
2.参考文件2.1ASTM标准D3980跨实验室评估涂料及相关材料的测试方法E691进行跨实验室研究以确定测试方法精度的操作规则G26对非金属材料进行曝光测试所需有水或无水曝光装置(氙弧灯类)G133对非金属材料进行自然或人造气候测试的相关术语G151非金属材料在使用实验室光源装置进行加速测试中曝光测试的操作规程2.2CIE标准:CIE-Pub1.No.85:应测试需要模拟日光中对于照射综合辐照与光谱分布的建议数值。
美国无损检测ASTM 标准目录ASTM A20/A20M-99a 一般要求的压力容器钢板规范A-1UTMTASTM A21-94 铁路用热处理与非热处理碳钢轮轴规范A-1UTASTMA25-89 电力铁道用锻造钢车轮规范A-1UTMT1993 年撤销ASTM A27/A27M-95 一般用途碳素钢铸件规范A-1RTMTASTM A105/A105M-98 用于管道零件的碳钢锻件规范A-1MTPTASTM A125-96 经热处理的钢螺旋弹簧规范A-1MTASTM A135-97a 电阻焊钢管规范A-1UTETASTM 构件用高强度钢铸件规范A-1RTMTA148/A148M-93b1998ASTM A178/A178M-95 电阻焊碳钢和碳锰钢锅炉管和过热器管规范ASTM 高温使用的锻造或轧制合金钢管道法兰盘、锻造接头及阀门和A182/A182M-98a 部件规范A-1MTPTASTM A217/A217M-99 高温马氏体不锈钢和合金钢承压铸件规范A-1PTMTASTM A266/A266M-96 压力容器部件用碳钢锻件规范ASTM A288-91 涡轮发电机磁性扣环碳钢和合金钢锻件标准规范A-1UTMTASTM A289-8893 发电机非磁性扣环合金钢锻件标准规范A-1UTPTASTM A290-95 减速器齿轮环的碳钢和合金钢锻件规范A-1UTMT 减速器齿轮传动装置游星齿轮和齿轮用的碳钢和合金钢锻件规ASTM A291-95 范A-1UT 需作切口韧性试验的管道部件碳钢和低合金钢锻件规范ASTM A350/A350M-99A-1MTPTASTM 适用于低温承压铁素体和马氏体钢铸件规范(A1MTRT)A352/A352M-931998ASTM A356/A356M-98 汽轮机的厚壁碳素钢和低合金钢铸件规范A-1RTMTASTM A358/A358M-98 高温用电熔焊奥氏体铬镍合金钢管规范A-1RTASTM A366/A366M-97 商业级质量的冷轧碳钢规范A-1PTASTMA369/A369M-92 高温用碳钢和铁素体合金钢锻造及穿孔管规范A-1UTASTMA372/A372M-99 薄壁压力容器用碳钢及合金钢锻件规范A-1UTMTASTM A376 高温无缝奥氏体钢管技术条件ASTM A381-96 高压传输系统用金属弧焊钢管规范A-1RTASTM A403/A403M-99 锻制奥氏体不锈钢管接头规范A-1PTASTM 腐蚀或高温用大直径焊接奥氏体钢管规范A-1RTA409/A409M-95aASTM 低温用锻制碳素钢和合金钢管接头规范A-1RTMTPTA420/A420M-96aASTM A426-92 高温用离心铸造铁素体合金钢管规范A-1RTUTPTMTASTM 一般要求的碳钢、铁素体合金钢和奥氏体合金钢管规范A450/A450M-96a A-1UTETASTM A451-931997 高温用离心铸造奥氏?甯止芄娣禔-1RTPTASTM A452-88 高温用离心铸造奥氏体钢冷变形管规范A-1UT1995 年撤销ASTM A469-94a 发电机转子用真空处理钢锻件规范A-1UTMT 涡轮机转子和主轴用真空处理的碳钢和合金钢锻件规范ASTM A470-98 A-1UTMT 涡轮机转子圆盘和叶轮用的真空处理合金钢锻件规范ASTM A471-94 A-1UTMT 经热处理的150KSi1035MPa 抗拉强度钢结构螺栓规范ASTMA490-97 F-16MT 压力容器用淬火及回火真空处理的碳钢和合金钢锻件规范ASTM A508/A508M-95 A-1UTMTASTM A513-98 电阻焊机加工的碳钢和合金钢管规范A-1UTETASTM 可焊的高屈服强度、淬火及回火的合金钢板材规范A-1MTA514/A514M-94aASTM A521-96 一般工业用钢制封闭模锻件规范A-1RTUTMTASTM 低温用含8和9镍合金钢锻造或轧制法兰盘、接头、阀门和A522/A522M-95b 部件规范A-1UTPTASTM A530-87 一般要求的特殊碳钢和合金钢管技术条件ASTM A535-8592 特殊质量的滚珠和滚柱轴承钢规范A-1MT1998 年撤销ASTM A540/A540M-98 特殊用途的合金钢螺栓材料规范A-1UTMT 压力容器零件用淬火和回火碳钢及合金钢锻件规范ASTM A541/A541M-95 A-1UTMTASTMA556/A556M-96 无缝冷拉碳钢给水加热器管的标准规范A-1UTETASTM 电阻焊碳钢给水加热器管的标准规范A-1UTET1995 年撤销A557/A557M-90A 由A178 取代ASTM A579-921996 超高强度合金钢锻件规范A-1UTMTPTASTM A583-931999 铁路铸钢车轮规范A-1U TMTPTASTM A587-96 化工用电焊低碳钢管规范A-1UTETASTM A600-92a1999 高速工具钢规范A-1UTASTM A608-91a1998 高温承压离心铸造铁-铬-镍高合金管规范A-1RTPTASTM A632-98 公用设施用无缝和焊接奥氏体不锈钢小径管规范A-1PTASTM A646-95 航空航天锻件用优质合金钢大钢坯及钢坯规范A-1UTMTASTM 波纹纸板加工机用锻钢轧辊规范A-1MTA649/A649M-98aASTM A660-96 高温用离心铸造碳钢管规范A-1RTUTMTASTM A668-96 一般工业用碳钢及合金钢锻件规范A-1UTMTASTM A671-96 低于等于大气温度下用电熔焊钢管规范A-1UTMTPTASTM A672-96 中温高压用电熔焊钢管规范A-1U TMTPTASTM A681-94 合金工具钢规范A-1UTASTM A686-92 碳素工具钢规范A-1UTASTM A688/A688M-98 奥氏体不锈钢给水加热器焊接管规范A-1ETASTM A691-98 高温高压用电熔焊碳钢及合金钢管规范A-1RTUTMTPTASTM A703/A703M-99 普通承压钢铸件规范A-1RTUTMTPTASTM A707/A707M-98 低温用碳钢及合金钢锻造法兰盘规范A-1MTPTASTM A709-93A 桥梁结构钢规范A-1UTASTM A711-921996 锻造用碳钢和合金钢大钢坯、钢坯及扁钢坯规范A-1UTMTASTM A723/A723M-94 高强度承压件用合金钢锻件规范A-1UTMTASTM A727/A727M-97 有固有切口韧性要求的碳钢管锻件规范A-1MTPTASTM A729-93 公交及电力铁路系统用热处理合金钢车轴规范A-1UT普通碳钢和低合金钢熔模铸件及高温高强钴合金熔模铸件规范ASTMA732/A732M-98 A-1RTMTPTASTM A743/A743M-93 普通铁-铬、铁-铬-镍和镍基抗蚀铸件规范A-1RTMTPTASTM 恶劣条件下使用的铁-铬-镍及镍基抗蚀铸件规范A-1RTPTA744/A744M-98aASTM A747/A747M-99 沉淀硬化不锈钢铸件规范A-1RTMTPTASTM 承压与其他低温应用的铁素体和马氏体钢铸件规范A757/A757M-901996 A-1MTPTASTM A758/A758M-98 改善切口韧性的变形碳钢管接头对接焊规范A-1MTPTASTM 有强制性韧性要求的碳钢和低合金钢压力容器部件锻件规范A765/A765M-98a A-1UTMTPT 涡轮机转子和轴用真空处理12 铬合金钢锻件规范ASTM A768-95 A-1UTMTASTM 钢铸件表面目视检验实施方法A-1A802/A802M-951996 对进行钢、不锈钢和相关合金检验的试验室和机构进行评价的ASTM A880-95 准则ASTM A903/A903M-91 磁粉和液体渗透检验时钢铸件表面验收规范A-1ASTM A990-98 工作在腐蚀条件下特殊控制的铁-铬-镍合金铸造承压件规范ASTM B26-99 铝合金砂型铸件规范B-7RTPTASTM B42-98 标准尺寸无缝铜管规范B-5ETLTASTM B43-98 标准尺寸无缝红铜管规范B-5ETLTASTM B75-99 无缝铜管规范B-5ETLTASTM B80-97 镁合金砂型铸件规范B-7RTPTASTM B88-99 无缝铜水管规范B-5ETLTASTM B108-99 铝合金硬模铸件规范B-7RTPTASTM B111-98 铜和铜合金无缝冷凝器管和水管口密套材料规范B-5ETLTASTM B137-89 铝表面上的阳极钝化层重量的标准测试方法B-8ASTMB161-93 镍无缝管和管材规范B-2LTASTM B163-98a 无缝镍和镍合金冷凝器管和热交换器管规范B-2LTASTM B165-93 镍-铜合金UNS N04400无缝管和管材规范B-2LTASTM B234/B234M-95 冷凝器和热交换器用铝合金冷拉无缝管规范B-7LTASTM B302-98 无螺纹铜管规范B-5LTASTM B306-99 铜排水管DWV 规范B-5ETLTASTM B315-99 铜合金无缝管及管材规范B-5ETLT 冷凝器和热交换器用无缝和焊接?鸭邦押辖鸸芄娣禔STM B338-99 B-10UTLTASTM B350/B350M-96 核应用锆和锆合金锭规范B-10UTASTM B353-95 核应用变形锆和锆合金无缝及焊接管规范B-10UT 带整体散热片的铜和铜合金无缝冷凝器管和热交换器管规范ASTM B359-98 B-5ETLTASTM B363-99a 无缝和焊接非合金钛接头和钛合金接头规范B-10RTLTASTM B394-96 铌和铌合金无缝和焊接管规范B-10LTASTM B423-99 镍-铁-铬-钼-铜合金UNS N08825无缝管和管材规范B-2 LTASTM B444-94 镍-铬-钼-铌合金UNS N06625无缝管和管材规范B-2LT 镍- 铬- 铁- 铌- 钼- 钨合金UNS N06102 无缝管和管材规范ASTM B445-87 B-2LT1995 年撤销耐高温腐蚀的UNS N08020UNS N08024UNS N08026 和UNSASTM B462-97 N08367 合金管法兰盘锻造接头和阀门及零件规范B-2 LT UNS N08020UNS N08026 和UNS N08024 合金焊接管规范ASTM B464-99 B-2 LTASTM B466/B466M-98 铜-镍无缝管和管材规范B-5ETLTASTM B467-881997 铜-镍焊接管规范B-5RTETLT UNSN08020UNS N08026 和UNS N08024 合金焊接管规范ASTM B468-99B-2UTETLTASTM B469-94 承压的铜合金无缝管规范B-5 LT UNS N08020UNSN08024 和UNS N08026 镍合金电熔焊管规ASTM B474-99 范B-2RTLTASTMB491-95 一般用途铝和铝合金挤压圆管规范B-5LTASTM B495-901995 锆及锆合金锭规范B-10UTASTM B509-83 对核用镍合金板的补充要求1990 年撤销ASTMB510-83 核用镍合金棒和条的补充要求规范1990 年撤销ASTM B513-85 核用镍合金无缝管附加要求技术条件1990 年撤销ASTM B514-95 镍-铁-铬合金焊接管规范B-2UTETLTASTM B515-95 镍-铁-铬合金UNS N08800焊接管规范B-2UTETLTASTM B516-98 镍-铬-铁合金UNS N06600焊接管规范B-2UTETLTASTM B517-98 镍-铬-铁合金UNS N06600焊接管道管规范B-2UTETLTASTM B521-98 钽和钽合金无缝和焊接管规范B-10LTASTM B523-97 冷凝器和热交换器用无缝和焊接锆及锆合金管规范B-10LTASTM B543-96 铜和铜合金热交换器焊接管规范B-5ETLTASTM B546-98 镍-铁-铬-硅合金UNS N08330电熔焊管规范B-2RTLTASTM B547-95 铝合金成形和弧焊圆管规范B-7RT 非金属基体上金属涂层厚度的测量方法1987 年撤销由B659ASTM B554 取代ASTMB587-97 黄铜焊接管规范B-5ETLTASTM B608-95 铜合金焊接管规范B-5LT 用于空气调节和制冷设备的焊接铜管及焊接铜合金管规范ASTM B640-93 B-5ETASTM B641-93 无缝和焊接铜分配管D 型规范B-5ET1996 年撤销ASTM B 金属和无机物涂层测厚Measuring Thickness of Metallic and659-19901997 Inorganic CoatingsASTM B 用光切显微镜测量铝阳极化覆盖层厚度及不透明表面上其他透681-19881994 明覆盖层厚度的方法ASTM B 1149-87B 红外线热成象无损检测术语定义ASTM C 215-1997 混凝土试样横向、纵向和扭转基频的检测方法ASTM C 803-1997 检测硬化混凝土抗渗透性的方法ASTM C 805-1997 检测硬化混凝土回弹数的方法ASTM C 1040-932000 用核方法系统检测未硬化和已硬化混凝土密度的方法ASTM C1074-98 用老化法评估混凝土强度实施方法用无源被动γ射线分段扫描法无损鉴定低密度特殊核材料废ASTM C 1133-96 料方法高级陶瓷无损检验方法与标准指南ASTM C 1175-1999a Guide to Test Methods and Standards for Nondestructive Testingof Advanced CeramicsASTM C 1221-921998 用γ射线谱无损分析均匀溶液中特殊核材料的方法退火、热强化和充分回火平板玻璃中边缘和表面应力的无损光ASTM C 1279-94 弹测量法ASTM C 1316-95 用锎252 慢化器通过无源活化中子计数,无损检定核废料方法ASTM C 1458-2000 用热量计无损检定钚、氚和镅241 方法无损化验人员的选择、培训和资格鉴定的标准指南ASTM C1490-2001 Standard Guide for the Selection Training and Qualification of Nondestructive Assay NDA PersonnelASTM D129-78 石油产品含硫量的标准试验方法ASTM D808-76 石油产品含氯量的标准试验方法ASTM D1005-95 用测微计测量有机复盖层干膜厚度D-1 铁基非磁性涂层干膜厚度无损测量的标准试验方法Standard Test Methods for Nondestructive Measurement of DryASTM D1186-2001 Film Thickness of Nonmagnetic Coatings Applied to a Ferrous Base 非铁金属基表面非导电涂层干膜厚度的无损测量方法Test Method for Nondestructive Measurement of Dry FilmASTM D1400-1994 Thickness of Nonconductive Coatings Applied to a Nonferrous Metal Base 增强热固塑料模制部件中目视缺陷的分类ASTM D2562-1994 Classifying Visual Defects in Parts Molded from Reinforced Thermosetting PlasticsASTM D2563-94 玻璃增强塑料层压件目视缺陷?掷啾曜际凳┓椒―-20 用红外光谱法测定聚乙烯中乙烯叉不饱和性的试验方法ASTM D3124-1998 Test Method for Vinylidene Unsaturation in Polyethylene by Infrared Spectrophotometry 用红外分光光度法鉴别橡胶的试验方法ASTMD3677-1990 Test Methods for Rubber - Identification by Infrared Spectrophotometry 低分辨核磁共振谱法测定航空涡轮机燃料中氢含量的试验方法Test Method for Hydrogen Content of Aviation Turbine Fuels byASTM D3701-2001 Low Resolution Nuclear Magnetic Resonance Spectrometry 05.02 热固增强塑料产品目视缺陷分类ASTM D4385-1995 Practice for Classifying Visual Defects in Thermosetting Reinforced Plastic Pultruded Products 94-3 Items 58 100 08.03 使用循环负荷动态偏转设备的路面无损检测ASTM D4602-1993 Nondestructive Testing of Pavements UsingCyclic-Loading Dynamic Deflection Equipment 用便携式粘合试验仪测定涂层脱落强度的试验方法ASTM D4541-1995 Test Method for Pull-off Strength of Coatings Using Portable Adhesion TestersASTM D4748-1996 用短脉冲雷达测量粘合路面层厚度方法利用红外温度记录法探测桥面分层的试验方法ASTM D4788-1988 Test Method for Detecting Delaminations in Bridge Decks Using Infrared Thermography 用真空法进行空容器泄漏检测的试验方法ASTM D4991-1994 Test Method for Leakage Testing of Empty Containers by Vacuum Method 傅里叶转换红外光谱法FTIR识别聚合层或夹杂物的实施规程ASTM D5477-1995 Practice for Identification of Polymer Layers or Inclusions by Fourier Transform Infrared Spectroscopy FT-IR 08.03 用红外光谱法测定汽油中MTBE、ETBE、TAME、DIPE、甲醇、乙醇和叔丁醇的试验方法ASTM D5845-1996 Test Method for Determination of MTBE ETBE TAME DIPE Methanol Ethanol and Tert-Butanol in Gasoline by Infrarred Spectroscopy 利用紫外荧光测定液化石油气和气态烃中总挥发硫的试验方法Test Method for Determination of Total Volatile Sulfur in GaseousASTM D6667-2001 Hydrocarbons and Liquefied Petroleum Gases by Ultraviolet FluorescenceASTM E140-2002 金属硬度换算表Hardness Conversion Tables for Metals 红外定量分析的通用技术General Techniques of InfraredASTM E168-1999 Quantitative AnalysisASTM E215-86 测量残余应力用х射线衍射仪装置的确定方法ASTM E251-86 粘贴式电阻应变仪特性的检测方法ASTM E283 外部窗户防护墙、门的空气泄漏检测方法ASTM E425-85 泄漏试验名词定义用卤素检漏器碱离子二极管检漏的实施方法ASTM Practice for Testing for Leaks Using the Halogen Leak DetectorE427-19962000 Alkali-Ion DiodeASTM 检漏方法选用指南Guide for Selection of a Leak TestingMethodE432-19972004ASTM E448-1982 金属材料的肖氏(回跳)硬度试验Scleroscope Hardness Testing of Metallic MaterialsASTM E453-791996 燃料元件包复层检验及机械性能的测定ASTM 泄漏检测规范制定指南Guide for Preparation of a Leak TestingE479-19962000 Specification 用质谱检漏仪以外漏方式检验的试验方法ASTM E493-1997 Test Methods for Leaks Using the Mass Spectrometer Leak Detector in the Inside-Out Testing Mode 用质谱检漏仪或残余气体分析仪以示踪探头方式检漏的试验方ASTM 法E498-19962000 Test Methods for Leaks Using the Mass Spectrometer Leak Detector or Residual Gas Analyzer in the Tracer Probe Mode 用质谱检漏仪以探头方式检漏的试验方法ASTM Test Methods for Leaks Using the Mass Spectrometer LeakE499-19952000 Detector in the Detector Probe Mode 应用发泡技术的泄漏检测Test for Leaks Using Bubble .。
ASTM G 154-00a 非金属材料荧光紫外曝露设备的操作标准1. 范围1.1 本标准的内容包括紫外荧光试验的基本原理和操作程序。
试验利用紫外荧光和水来模拟一种老化效果,即材料在实际使用中曝露于太阳光(直接照射或透过玻璃)和潮气(雨或露)时所发生的老化现象。
本标准仅限于曝露条件的实现、测量和控制。
附件中给出了一些曝露程序,但是,并没有给出最适用于被检测材料的曝露条件。
注1——G 151给出了所有使用实验室光源的曝露设备需要满足的性能要求。
这一标准代替了G 53,G 53对用作紫外荧光曝露设备的装置进行了非常详细的描述。
本标准涵盖了G 53中的内容。
1.2 样品曝露于环境条件得到控制的荧光紫外灯下。
本标准中给出了不同类型的紫外荧光光源。
1.3 样品的制备和结果的评价在具体材料对应的ASTM标准和规范中给出。
一般性的导则见标准G 151和ISO 4892-1。
更多的关于曝露后性能变化的试验方法和报告的具体信息见ISO 4582。
1.4 数值以SI单位制表示。
1.5 安全警告1.6 本标准在技术上与ISO 4892-3和ISO DIS 11507相近。
2. 引用文件3. 术语3.1 定义——术语G 113中给出的定义适用于本标准。
3.2 本标准中的定义——本标准中的“太阳光”等同于“日光”和“太阳辐照”,“全球”的定义同术语G 113中给出的。
4. 方法概述4.1 在受控的环境条件下,将样品曝露于光照和潮湿的重复循环作用下。
4.1.1 潮湿通常通过水蒸气在样品表面冷凝或向样品表面喷洒软化去离子水实现。
4.2 曝露条件可能会因以下因素的不同而不同:4.2.1 紫外灯4.2.2 紫外灯的辐照水平4.2.3 提供潮湿的方式4.2.4 曝露于光照和潮湿的时间4.2.5 光照时的温度4.2.6 潮湿时的温度4.2.7 光照/黑暗周期进行的周期数4.3 同一型号试验设备得出的试验结果不宜进行比较,除非针对被测材料进行了设备间重现性验证试验。
非金属材料放在UV仪下的操作标准(ASTM G154-2006 非金属材料紫外线曝光用荧光设备使用标准惯例)(ASTM G154-2006 非金属材料荧光紫外线曝露设备的操作标准)该标准是在固定设计G154下出版的,它的数据是紧随原版的设计或就修订而言的,最后的修订。
A number in parentheses the year of last reapproval .A superscript epsilon indicates an editorial change since the last revision or reapproval.注:脚注在函数X2.1,表X2.3都加上胃肯新注释X2.8以及日期在2006年6月5日。
1.范围1.1该标准涵盖了用UV仪的基本规则肯操作程序以及水仪器能够重演(模拟)环境影响因素。
该环境因素是当材料被放在太阳下以及潮湿的环境就像下雨或露水在实际的应用中。
/本标准涉及实际使用的材料在用荧光紫外线-冷凝型曝晒仪模拟由阳光和雨、露等自然气候条件下引起的劣化的基本原则和操作过程。
该标准受获得,测量和控制暴露条件胡程序限制。
许多暴露条件在附录中例举出来了,该标准不能详细说明最合适测试材料的暴露条件/本标准限于获取、测量和控制曝晒条件的过程方法,并未规定最适合待测材料的曝晒条件,曝晒条件过程方法参考附录。
注:1-标准G151描述执行标准适合于所有用实验室光源胡暴露设施,它取代了标准G53,它描述了用于UV荧光暴露胡特定设施。
在G53标准中描述胡仪器在G151标准中取代了。
注:1-标准G151规定的操作过程方法适用于所有采用实验光源的曝露设备,本标准取代了有描述具体设计用于佛罗里达州的荧光紫外线曝露设备的G53标准。
本标准包含了在G53标准中规定的仪器设备。
1.2 测试样本放在可控环境条件下胡UV仪下。
不同类型的UV光源可以被描述。
在可控环境条件下试样用佛罗里达州的荧光紫外线进行曝露测试,规定了不同类型的佛罗里达州的荧光紫外线光源。
Designation:G155–05aStandard Practice forOperating Xenon Arc Light Apparatus for Exposure of Non-Metallic Materials1This standard is issued under thefixed designation G155;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.1.Scope1.1This practice covers the basic principles and operating procedures for using xenon arc light and water apparatus intended to reproduce the weathering effects that occur when materials are exposed to sunlight(either direct or through window glass)and moisture as rain or dew in actual use.This practice is limited to the procedures for obtaining,measuring, and controlling conditions of exposure.A number of exposure procedures are listed in an appendix;however,this practice does not specify the exposure conditions best suited for the material to be tested.N OTE1—Practice G151describes performance criteria for all exposure devices that use laboratory light sources.This practice replaces Practice G26,which describes very specific designs for devices used for xenon-arc exposures.The apparatus described in Practice G26iscovered by this practice.1.2Test specimens are exposed tofiltered xenon arc light under controlled environmental conditions.Different types of xenon arc light sources and differentfilter combinations are described.1.3Specimen preparation and evaluation of the results are covered in ASTM methods or specifications for specific materials.General guidance is given in Practice G151and ISO 4892-1.More specific information about methods for deter-mining the change in properties after exposure and reporting these results is described in Practice D5870.1.4The values stated in SI units are to be regarded as the standard.1.5This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.1.5.1Should any ozone be generated from the operation of the lamp(s),it shall be carried away from the test specimens and operating personnel by an exhaust system.1.6This practice is technically similar to the following ISO documents:ISO4892-2,ISO11341,ISO105B02,ISO105 B04,ISO105B05,and ISO105B06.2.Referenced Documents2.1ASTM Standards:2D3980Practice for Interlaboratory Testing of Paint and Related MaterialsD5870Practice for Calculating Property Retention Index of PlasticsE691Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test MethodG26Practice for Operating Light-Exposure Apparatus (Xenon-Arc Type)With and Without Water for Exposure of Nonmetallic MaterialsG113Terminology Relating to Natural and Artificial Weathering Tests for Nonmetallic MaterialsG151Practice for Exposing Nonmetallic Materials in Ac-celerated Test Devices That Use Laboratory Light Sources 2.2CIE Standards:CIE-Publ.No.85:Recommendations for the Integrated Irradiance and the Spectral Distribution of Simulated Solar Radiation for Testing Purposes32.3International Standards Organization Standards:ISO1134,Paint and Varnishes—Artificial Weathering Ex-posure to Artificial Radiation to Filtered Xenon Arc Radiation4ISO105B02,Textiles—Tests for Colorfastness—Part B02 Colorfastness to Artificial Light:Xenon Arc Fading Lamp Test4ISO105B04,Textiles—Tests for Colorfastness—Part B04 Colorfastness to Artificial Weathering:Xenon Arc Fading Lamp Test4ISO105B05,Textiles—Tests for Colorfastness—Part B051This practice is under the jurisdiction of ASTM Committee G03on Weathering and Durability and is the direct responsibility of Subcommittee G03.03on Simulated and Controlled Exposure Tests.Current edition approved Oct.1,2005.Published November2005.Originally approved st previous edition approved in2005as G155–05.2For referenced ASTM standards,visit the ASTM website,,or contact ASTM Customer Service at service@.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website.3Available from American National Standards Institute,11W.42d St.,13th Floor,New York,NY10036).4Available from American National Standards Institute(ANSI),25W.43rd St., 4th Floor,New York,NY10036.Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.Detection and Assessment of Photochromism 4ISO 105B06,Textiles—Tests for Colorfastness—Part B06Colorfastness to Artificial Light at High Temperatures:Xenon Arc Fading Lamp Test 4ISO 4892-1,Plastics—Methods of Exposure to Laboratory Light Sources,Part 1,General Guidance 4ISO 4892-2,Plastics—Methods of Exposure to Laboratory Light Sources,Part 2,Xenon-Arc Sources 42.4Society of Automotive Engineers’Standards:SAE J1885,Accelerated Exposure of Automotive Interior Trim Components Using a Controlled Irradiance Water Cooled Xenon Arc Apparatus 5SAE J1960,Accelerated Exposure of Automotive Exterior Materials Using a Controlled Irradiance Water Cooled Xenon Arc Apparatus 5SAE J2412,Accelerated Exposure of Automotive Interior Trim Components Using a Controlled Irradiance Xenon-Arc Apparatus 5SAE J2527Accelerated Exposure of Automotive Exterior Materials Using a Controlled Irradiance Xenon-Arc Ap-paratus 53.Terminology3.1Definitions—The definitions given in Terminology G 113are applicable to this practice.3.2Definitions of Terms Specific to This Standard:3.2.1As used in this practice,the term sunlight is identical to the terms daylight and solar irradiance,global as they are defined in Terminology G 113.4.Summary of Practice4.1Specimens are exposed to repetitive cycles of light and moisture under controlled environmental conditions.4.1.1Moisture is usually produced by spraying the test specimen with demineralized/deionized water or by condensa-tion of water vapor onto the specimen.4.2The exposure condition may be varied by selection of:4.2.1Lamp filter(s),4.2.2The lamp’s irradiance level,4.2.3The type of moisture exposure,4.2.4The timing of the light and moisture exposure,4.2.5The temperature of light exposure,4.2.6The temperature of moisture exposure,and 4.2.7The timing of a light/dark cycle.4.3Comparison of results obtained from specimens exposed in the same model of apparatus should not be made unless reproducibility has been established among devices for the material to be tested.4.4Comparison of results obtained from specimens exposed in different models of apparatus should not be made unless correlation has been established among devices for the material to be tested.5.Significance and Use5.1The use of this apparatus is intended to induce property changes associated with the end use conditions,including theeffects of sunlight,moisture,and heat.These exposures may include a means to introduce moisture to the test specimen.Exposures are not intended to simulate the deterioration caused by localized weather phenomena,such as atmospheric pollu-tion,biological attack,and saltwater exposure.Alternatively,the exposure may simulate the effects of sunlight through window glass.Typically,these exposures would include mois-ture in the form of humidity.N OTE 2—Caution:Refer to Practice G 151for full cautionary guidance applicable to all laboratory weathering devices.5.2Variation in results may be expected when operating conditions are varied within the accepted limits of this practice.Therefore,no reference shall be made to results from the use of this practice unless accompanied by a report detailing the specific operating conditions in conformance with the Report Section.5.2.1It is recommended that a similar material of known performance (a control)be exposed simultaneously with the test specimen to provide a standard for comparative purposes.It is recommended that at least three replicates of each material evaluated be exposed in each test to allow for statistical evaluation of results.6.Apparatus6.1Laboratory Light Source —The light source shall be one or more quartz jacketed xenon arc lamps which emit radiation from below 270nm in the ultraviolet through the visible spectrum and into the infrared.In order for xenon arcs to simulate terrestrial daylight,filters must be used to remove short wavelength UV radiation.Filters to reduce irradiance at wavelengths shorter than 310nm must be used to simulate daylight filtered through window glass.In addition,filters to remove infrared radiation may be used to prevent unrealistic heating of test specimens that can cause thermal degradation not experienced during outdoor exposures.6.1.1The following factors can affect the spectral power distribution of filtered xenon arc light sources as used in these apparatus:6.1.1.1Differences in the composition and thickness of filters can have large effects on the amount of short wavelength UV radiation transmitted.6.1.1.2Aging of filters can result in changes in filter transmission.The aging properties of filters can be influenced by the composition.Aging of filters can result in a significant reduction in the short wavelength UV emission of a xenon burner.6.1.1.3Accumulation of deposits or other residue on filters can effect filter transmission.6.1.1.4Aging of the xenon burner itself can result in changes in lamp output.Changes in lamp output may also be caused by accumulation of dirt or other residue in or on the burner envelope.6.1.2Follow the device manufacturer’s instructions for recommended maintenance.5Available from Society of Automotive Engineers (SAE),400Commonwealth Dr.,Warrendale,PA15096-0001.6.1.3Spectral Irradiance of Xenon Arc with Daylight Filters —Filters are used to filter xenon arc lamp emissions in a simulation of terrestrial sunlight.The spectral power distri-bution of xenon arcs with new or pre-aged filters 6,7shall comply with the requirements specified in Table 1.6.1.4Spectral Irradiance of Xenon Arc With Window Glass Filters —Filters are used to filter xenon arc lamp emissions in a simulation of sunlight filtered through window glass.8Table 2shows the relative spectral power distribution limits for xenon arcs filtered with window glass filters.The spectral power distribution of xenon arcs with new or pre-aged filters shall comply with the requirements specified in Table 2.6.1.5Spectral Irradiance of Xenon Arc With Extended UV Filters —Filter that transmit more short wavelength UV are sometimes used to accelerate test result.Although this type of filter has been specified in some tests,they transmit significantradiant energy below 300nm (the typical cut-on wavelength for terrestrial sunlight)and may result in aging processes not occurring outdoors.The spectral irradiance for a xenon arc with extended UV filters shall comply with the requirements of Table 3.6.1.6The actual irradiance at the tester’s specimen plane is a function of the number of xenon burners used,the power applied to each,and the distance between the test specimens and the xenon burner.If appropriate,report the irradiance and the bandpass in which it was measured.6.2Test Chamber —The design of the test chamber may vary,but it should be constructed from corrosion resistant material and,in addition to the radiant source,may provide for means of controlling temperature and relative humidity.When required,provision shall be made for the spraying of water on the test specimen,for the formation of condensate on the exposed face of the specimen or for the immersion of the test specimen in water.6.2.1The radiation source(s)shall be located with respect to the specimens such that the irradiance at the specimen face complies with the requirements in Practice G 151.6Ketola,W.,Skogland,T.,Fischer,R.,“Effects of Filter and Burner Aging on the Spectral Power Distribution of Xenon Arc Lamps,”Durability Testing of Non-Metallic Materials,ASTM STP 1294,Robert Herling,Editor,ASTM,Philadelphia,1995.7Searle,N.D.,Giesecke,P.,Kinmonth,R.,and Hirt,R.C.,“Ultraviolet Spectral Distributions and Aging Characteristics of Xenon Arcs and Filters,”Applied Optics ,V ol.No.8,1964,pp.923–927.8Ketola,W.,Robbins,J.S.,“UV Transmission of Single Strength Window Glass,”Accelerated and Outdoor Durability Testing of Organic Materials,ASTM STP 1202,Warren D.Ketola and Douglas Grossman,Editors,ASTM,Philadelphia,1993.TABLE 1Relative Ultraviolet Spectral Power Distribution Specification for Xenon Arc with Daylight Filters A ,BSpectral Bandpass Wavelength l in nm Minimum Percent CBenchmark Solar Radiation Percent D ,E ,FMaximum Percent C l <2900.15290#l #320 2.6 5.87.9320<l #36028.340.040.0360<l #40054.254.267.5AData in Table 1are the irradiance in the given bandpass expressed as a percentage of the total irradiance from 290to 400nm.The manufacturer is responsible for determining conformance to Table 1.Annex A1states how to determine relative spectral irradiance.BThe data in Table 1are based on the rectangular integration of 112spectral power distributions for water and air cooled xenon-arcs with daylight filters of various lots and ages.The spectral power distribution data is for filters and xenon-burners within the aging recommendations of the device manufacturer.The minimum and maximum data are at least the three sigma limits from the mean for all measurements.CThe minimum and maximum columns will not necessarily sum to 100%because they represent the minimum and maximum for the data used.For any individual spectral power distribution,the calculated percentage for the band-passes in Table 1will sum to 100%.For any individual xenon-lamp with daylight filters,the calculated percentage in each bandpass must fall within the minimum and maximum limits of Table 1.Test results can be expected to differ between exposures using xenon arc devices in which the spectral power distributions differ by as much as that allowed by the tolerances.Contact the manufacturer of the xenon-arc devices for specific spectral power distribution data for the xenon-arc and filters used.DThe benchmark solar radiation data is defined in ASTM G 177and is for atmospheric conditions and altitude chosen to maximize the fraction of short wavelength solar UV.This data is provided for comparison purposes only.EPrevious versions of this standard used solar radiation data from Table 4of CIE Publication Number 85.See Appendix X4for more information comparing the solar radiation data used in this standard with that for CIE 85Table 4.FFor the benchmark solar spectrum,the UV irradiance (290to 400nm)is 9.8%and the visible irradiance (400to 800nm)is 90.2%expressed as a percentage of the total irradiance from 290to 800nm.The percentages of UV and visible irradiances on samples exposed in xenon arc devices may vary due to the number and reflectance properties of specimens being exposed.TABLE 2Relative Ultraviolet Spectral Power Distribution Specification for Xenon-Arc with Window Glass Filters A ,BSpectral Bandpass Wavelength l in nm Minimum Percent CWindow Glass Filtered Solar Radiation Percent D ,E ,FMaximum Percent C l <3000.00.29300#l #3200.1#0.5 2.8320<l #36023.834.235.5360<l #40062.565.376.1AData in Table 2are the irradiance in the given bandpass expressed as a percentage of the total irradiance from 300to 400nm.The manufacturer is responsible for determining conformance to Table 2.Annex A1states how to determine relative spectral irradiance.BThe data in Table 2are based on the rectangular integration of 36spectral power distributions for water cooled and air cooled xenon-arcs with window glass filters of various lots and ages.The spectral power distribution data is for filters and xenon-burners within the aging recommendations of the device manufacturer.The minimum and maximum data are at least the three sigma limits from the mean for all measurements.CThe minimum and maximum columns will not necessarily sum to 100%because they represent the minimum and maximum for the data used.For any individual spectral power distribution,the calculated percentage for the band-passes in Table 2will sum to 100%.For any individual xenon-lamp with window glass filters,the calculated percentage in each bandpass must fall within the minimum and maximum limits of Table 2.Test results can be expected to differ between exposures using xenon arc devices in which the spectral power distribu-tions differ by as much as that allowed by the tolerances.Contact the manufacturer of the xenon-arc devices for specific spectral power distribution data for the xenon-arc and filters used.DThe window glass filtered solar data is for a solar spectrum with atmospheric conditions and altitude chosen to maximize the fraction of short wavelength solar UV (defined in ASTM G 177)that has been filtered by window glass.The glass transmission is the average for a series of single strength window glasses tested as part of a research study for ASTM Subcommittee G3.02.8While this data is provided for comparison purposes only,it is desirable for a xenon-arc with window glass filters to provide a spectrum that is a close match to this window glass filtered solar spectrum.EPrevious versions of this standard used window glass filtered solar radiation data based on Table 4of CIE Publication Number 85.See Appendix X4for more information comparing the solar radiation data used in the standard with that for CIE 85Table 4.FFor the benchmark window glass filtered solar spectrum,the UV irradiance (300to 400nm)is 8.2%and the visible irradiance (400to 800nm)is 91.8%expressed as a percentage of the total irradiance from 300to 800nm.The percentages of UV and visible irradiances on samples exposed in xenon arc devices with window glass filters may vary due to the number and reflectance properties of specimens being exposed,and the UV transmission of the window glass filtersused.6.3Instrument Calibration —To ensure standardization and accuracy,the instruments associated with the exposure appa-ratus (that is,timers,thermometers,wet bulb sensors,dry bulb sensors,humidity sensors,UV sensors,radiometers)require periodic calibration to ensure repeatability of test results.Whenever possible,calibration should be traceable to national or international standards.Calibration schedule and procedure should be in accordance with manufacturer’s instructions.6.4Radiometer —The use of a radiometer to monitor and control the amount of radiant energy received at the specimen is recommended.If a radiometer is used,it shall comply with the requirements in Practice ASTM G 151.6.5Thermometer —Either insulated or un-insulated black or white panel thermometers may be used.Thermometers shall conform to the descriptions found in Practice G 151.The type of thermometer used,the method of mounting on specimen holder,and the exposure temperature shall be stated in the test report.6.5.1The thermometer shall be mounted on the specimen rack so that its surface is in the same relative position and subjected to the same influences as the test specimens.6.5.2Some specifications may require chamber air tempera-ture control.Positioning and calibration of chamber air tem-perature sensors shall be in accordance with the descriptions found in Practice G 151.6.6Moisture —The test specimens may be exposed to mois-ture in the form of water spray,condensation,immersion,or high humidity.6.6.1Water Spray —The test chamber may be equipped with a means to introduce intermittent water spray onto the front or the back of the test specimens,under specified conditions.The spray shall be uniformly distributed over the specimens.The spray system shall be made from corrosion resistant materials that do not contaminate the water employed.6.6.1.1Quality of Water for Sprays and Immersion —Spray water must have a conductivity below 5µS/cm,contain less than 1-ppm solids,and leave no observable stains or deposits on the specimens.Very low levels of silica in spray water can cause significant deposits on the surface of test specimens.Care should be taken to keep silica levels below 0.1ppm.In addition to distillation,a combination of deionization and reverse osmosis can effectively produce water of the required quality.The pH of the water used should be reported.See Practice G 151for detailed water quality instructions.6.6.1.2Condensation —A spray system designed to cool the specimen by spraying the back surface of the specimen or specimen substrate may be required when the exposure pro-gram specifies periods of condensation.6.6.2Relative Humidity —The test chamber may be equipped with a means to measure and control the relative humidity.Such instruments shall be shielded from the lamp radiation.6.6.3Water Immersion —The test chamber may be equipped with a means to immerse specimens in water under specified conditions.The immersion system shall be made from corro-sion resistant materials that do not contaminate the water employed.6.7Specimen Holders —Holders for test specimens shall be made from corrosion resistant materials that will not affect the test results.Corrosion resistant alloys of aluminum or stainless steel have been found acceptable.Brass,steel,or copper shall not be used in the vicinity of the test specimens.6.7.1The specimen holders are typically,but not necessar-ily,mounted on a revolving cylindrical rack that is rotated around the lamp system at a speed dependent on the type of equipment and that is centered both horizontally and vertically with respect to the exposure area.6.7.2Specimen holders may be in the form of an open frame,leaving the back of the specimen exposed,or they may provide the specimen with a solid backing.Any backing used may affect test results and shall be agreed upon in advance between the interested parties.6.7.3Specimen holders may rotate on their own axis.When these holders are used,they may be filled with specimens placed back to back.Rotation of the holder on its axis alternately exposes each specimen to direct radiation from the xenon burner.6.8Apparatus to Assess Changes in Properties —Use the apparatus required by the ASTM or other standard that describes determination of the property or properties being monitored.7.Test Specimen7.1Refer to Practice G 151.TABLE 3Relative Ultraviolet Spectral Power Distribution Specification for Xenon Arc with Extended UV Filters A ,BSpectral Bandpass Wavelength l in nm Minimum Percent CBenchmark Solar Radiation Percent D ,E ,FMaximum Percent C250#l <2900.10.7290#l #320 5.0 5.811.0320<l #36032.340.037.0360<l #40052.054.262.0AData in Table 3are the irradiance in the given bandpass expressed as a percentage of the total irradiance from 250to 400nm.The manufacturer is responsible for determining conformance to Table 3.Annex A1states how to determine relative spectral irradiance.BThe data in Table 3are based on the rectangular integration of 81spectral power distributions for water cooled and air cooled xenon-arcs with extended UV filters of various lots and ages.The spectral power distribution data is for filters and xenon-burners within the aging recommendations of the device manufacturer.The minimum and maximum data are at least the three sigma limits from the mean for all measurements.CThe minimum and maximum columns will not necessarily sum to 100%because they represent the minimum and maximum for the data used.For any individual spectral power distribution,the calculated percentage for the band-passes in Table 3will sum to 100%.For any individual xenon-arc lamp with extended UV filters,the calculated percentage in each bandpass must fall within the minimum and maximum limits of Table 3.Test results can be expected to differ between exposures using xenon arc devices in which the spectral power distribu-tions differ by as much as that allowed by the tolerances.Contact the manufacturer of the xenon-arc devices for specific spectral power distribution data for the xenon-arc and filters used.DThe benchmark solar radiation data is defined in ASTM G 177and is for atmospheric conditions and altitude chosen to maximize the fraction of short wavelenght solar UV.This data is provided for comparison purposes only.EPrevious versions of this standard used solar radiation data from Table 4of CIE Publication Number 85.See Appendix X4for more information comparing the solar radiation data used in the standard with that for CIE 85Table 4.FFor the benchmark solar spectrum,the UV irradiance (290to 400nm)is 9.8%and the visible irradiance (400to 800nm)is 90.2%expressed as a percentage of the total irradiance from 290to 800nm.The percentages of UV and visible irradiances on samples exposed in xenon arc devices may vary due to the number and reflectance properties of specimens beingexposed.8.Test Conditions8.1Any exposure conditions may be used as long as the exact conditions are detailed in the report.Appendix X1lists some representative exposure conditions.These are not neces-sarily preferred and no recommendation is implied.These conditions are provided for reference only.9.Procedure9.1Identify each test specimen by suitable indelible mark-ing,but not on areas to be used in testing.9.2Determine which property of the test specimens will be evaluated.Prior to exposing the specimens,quantify the appropriate properties in accordance with recognized interna-tional standards.If required(for example,destructive testing), use unexposedfile specimens to quantify the property.See Practice D5870for detailed guidance.9.3Mounting of Test Specimens—Attach the specimens to the specimen holders in the equipment in such a manner that the specimens are not subject to any applied stress.To assure uniform exposure conditions,fill all of the spaces,using blank panels of corrosion resistant material if necessary.N OTE3—Evaluation of color and appearance changes of exposed materials must be made based on comparisons to unexposed specimens of the same material which have been stored in the dark.Masking or shielding the face of test specimens with an opaque cover for the purpose of showing the effects of exposure on one panel is not recommended. Misleading results may be obtained by this method,since the masked portion of the specimen is still exposed to temperature and humidity that in many cases will affect results.9.4Exposure to Test Conditions—Program the selected test conditions to operate continuously throughout the required number of repetitive cycles.Maintain these conditions throughout the exposure.Interruptions to service the apparatus and to inspect specimens shall be minimized.9.5Specimen Repositioning—Periodic repositioning of the specimens during exposure is not necessary if the irradiance at the positions farthest from the center of the specimen area is at least90%of that measured at the center of the exposure area. Irradiance uniformity shall be determined in accordance with Practice G151.9.5.1If irradiance at positions farthest from the center of the exposure area is between70and90%of that measured at the center,one of the following three techniques shall be used for specimen placement.9.5.1.1Periodically reposition specimens during the expo-sure period to ensure that each receives an equal amount of radiant exposure.The repositioning schedule shall be agreed upon by all interested parties.9.5.1.2Place specimens only in the exposure area where the irradiance is at least90%of the maximum irradiance.9.5.1.3To compensate for test variability,randomly position replicate specimens within the exposure area that meets the irradiance uniformity requirements as defined in section9.5.1.9.6Inspection—If it is necessary to remove a test specimen for periodic inspection,take care not to handle or disturb the test surface.After inspection,the test specimen shall be returned to the test chamber with its test surface in the same orientation as previously tested.9.7Apparatus Maintenance—The test apparatus requires periodic maintenance to maintain uniform exposure conditions. Perform required maintenance and calibration in accordance with manufacturer’s instructions.9.8Expose the test specimens for the specified period of exposure.See Practice G151for further guidance.9.9At the end of the exposure,quantify the appropriate properties in accordance with recognized international stan-dards and report the results in conformance with Practice G151.N OTE4—Periods of exposure and evaluation of test results are ad-dressed in Practice G151.10.Report10.1The test report shall conform to Practice G151.11.Precision and Bias11.1Precision:11.1.1The repeatability and reproducibility of results ob-tained in exposures conducted according to this practice will vary with the materials being tested,the material property being measured,and the specific test conditions and cycles that are used.In round-robin studies conducted by Subcommittee G03.03,the60°gloss values of replicate PVC tape specimens exposed in different laboratories using identical test devices and exposure cycles showed significant variability.The vari-ability shown in these round-robin studies restricts the use of “absolute specifications”such as requiring a specific property level after a specific exposure period.11.1.2If a standard or specification for general use requiresa definite property level after a specific time or radiant exposure in an exposure test conducted according to this practice,the specified property level shall be based on results obtained in a round-robin that takes into consideration the variability due to the exposure and the test method used to measure the property of interest.The round-robin shall be conducted according to Practice E691or Practice D3980and shall include a statistically representative sample of all labo-ratories or organizations who would normally conduct the exposure and property measurement.11.1.3If a standard or specification for use between two or three parties requires a definite property level after a specific time or radiant exposure in an exposure test conducted accord-ing to this practice,the specified property level shall be based on statistical analysis of results from at least two separate, independent exposures in each laboratory.The design of the experiment used to determine the specification shall take into consideration the variability due to the exposure and the test method used to measure the property of interest.11.1.4The round-robin studies cited in11.1.1demonstrated that the gloss values for a series of materials could be ranked with a high level of reproducibility between laboratories.When reproducibility in results from an exposure test conducted according to this practice have not been established through round-robin testing,performance requirements for materials shall be specified in terms of comparison(ranked)to a control material.The control specimens shall be exposed simulta-neously with the test specimen(s)in the same device.The specific control material used shall be agreed upon bythe。