f(x)=anxn+an-1xn-1+an-2xn-2+……+a1x+a0.
=(…(anx+an-1)x+an-2)x+…+a1)x+a0.
v1=anx+an-1,
v2=v1x+an-2,
v3=v2x+an-3,
……, vn=vn-1x+a0.
这是一个在秦九韶算法 中反复执行的步骤,因此 可用循环结构来实现.
人教版《普通高中课程标准实验教科书·数学》必修3
1.3.2秦九韶算法
秦九韶(1208年-1261 年)南宋官员、数学家, 与李冶、杨辉、朱世杰 并称宋元数学四大家。 字道古,汉族,自称鲁 郡(山东曲阜)人, 生于普州安岳(今属四川)。精研星象、音律、算 术、诗词、弓剑、营造之学,历任琼州知府、司农 丞,后遭贬,卒于梅州任所,著作《数书九章》, 其中的大衍求一术、三斜求积术和秦九韶算法是具 有世界意义的重要贡献。
((an x an1 ) x an2 ) x a1 ) x a0
这种将求一个n次多项式f(x)的值转化成求n个 一次多项式的值的方法,称为秦九韶算法。
例1:用秦九韶算法求多项式
f(x)=2x5-5x4-4x3+3x2-6x+7当x=5时的值.
解1:f(x)=((((2x-5)x-4)x+3)x-6)x+7 v0=2 v1=v0x-5=2×5-5=5
v0=an,
vK=vK-1x+an-k(k=1,2,……,n)
阅读课本
练习:
1.已知多项式f(x)=x5+5x4+10x3+10x2+5x+1