按比例分配应用题_2
- 格式:doc
- 大小:78.00 KB
- 文档页数:6
2、按⽐例分配引领教育-之-按⽐例分配常将有⽇想⽆⽇-1–莫到⽆时想有时按⽐例分配【精要点拨】【精要点拨】【精要点拨】【精要点拨】把⼀个数量按照⼀定的⽐例进⾏分配,叫做按⽐例分配。
在按⽐例分配的应⽤题中,有“单⽐分配、连⽐分配、复⽐分配”等⼏种基本类型。
(复⽐就是⼏个单⽐的所有前项的积做前项,所有后项的积做后项,这样所得的⽐是原来⼏个⽐的复⽐)按⽐例分配的应⽤题解法:可以⽤⽐例分配的⽅法;可以⽤正⽐例的⽅法;可以⽤分数应⽤题的⽅法。
例例例例11::::⿊⾊⽕药是⽤⽕硝、⽊炭和硫磺按15∶3∶2的⽐例制成的,要制造这种⽕药500千克,三种原料各需多少千克?※※※※举⼀反三举⼀反三举⼀反三举⼀反三※※※※1、修筑⼀座⼤桥,所⽤的混凝⼟由2份⽔泥、3份沙⼦、5份⽯⼦配制⽽成。
这座⼤桥约重2000吨,需⽔泥、沙⼦、⽯⼦各多少吨?2、某饲养场共养家禽1080只,鸡、鸭、鹅只数⽐是1∶5∶9,这个饲养场的鹅⽐鸡多多少只?3、有54个同学参加植树活动,如果平均分成3组,每组多少⼈?如果按2∶3∶4分成3组,最多的⼀组是多少⼈?例例例例22::::⼀块长⽅形地,周长400⽶,长与宽的⽐是3∶2,这块地的⾯积是多少平⽅⽶?※※※※举⼀反三举⼀反三举⼀反三举⼀反三※※※※1、甲、⼄两数的和是72,甲数与⼄数的⽐是∶2,甲、⼄两数各是74多少?2、⼀张长⽅形纸的周长是42厘⽶,长与宽的⽐是4∶3,长⽅形的⾯积是多少平⽅厘⽶?3、甲、⼄两个车间的平均⼈数是36⼈,如果两个车间⼈数的⽐是5∶7,甲、⼄两车间各有多少⼈?例例例例33::::长⽅体棱长的和是192厘⽶,长、宽、⾼的⽐是5∶4∶3,求引领教育-之-按⽐例分配常将有⽇想⽆⽇-2–莫到⽆时想有时长⽅体的体积是多少⽴⽅厘⽶?※※※※举⼀反三举⼀反三举⼀反三举⼀反三※※※※1、⼀根长144厘⽶的铁丝⽤去后,⽤剩下的部分要接成⼀个长⽅31体框架,使它的长、宽、⾼之⽐为3∶2∶1,求出这个长⽅体的体积是多少?2、把⼀根长112分⽶的铁条焊成⼀个长⽅体,它的长、宽、⾼的⽐是6∶5∶3。
青岛版小学数学六年级上册
按比例分配应用题练习2
1.一个长方形的周长是360为米,长与宽的比是4:2,这个长方形的长和宽各是多少?
2.有840吨粮食,分给两个运输队运出去。
甲运输队有载重5吨的汽车12辆,乙运输队有载重3吨的汽车15辆,按两个队的运输能力分配,甲乙两运输队各应运粮食多少吨?
3.甲乙丙三个班人数的和是420人,甲班和乙班的比是2:3,乙班和丙班的比是4:5,甲乙丙三个班各是多少人?
4.甲乙丙三个班的人数平均是25人,甲乙丙三个班人数的比是6:5:4,甲乙丙三个班各有多少人?
5.一个长方形的周长是28米,长与宽的比是4:3,这个长方形的面积是多少平方米?
6.长方体的长、宽、高的比是5:3:1,棱长之和是144米,这个长方体的体积是多少立方米?
7.三个人的平均年龄是40岁,这三个人年龄的比是2:5:3,最小的年龄是多少岁?
8.两个生产小组,甲组有7人,乙组有9人,要生产1600套同样的玩具,按人数分配生产任务,甲乙两组各应生产玩具多少套?
9.三个煤炭厂内共有煤炭1400万千克,甲厂和乙厂煤炭重量的比是3:4,乙厂与丙厂煤炭重量的比是6:7,三个煤炭厂各存煤炭多少万千克?
10.一个草坪的周长是360米,长与宽的比是7:5,这个草坪的面积是多少平方米?
11.甲乙丙的平均数是7.2,它们的比是4:2:3,甲乙丙三个数各是多少?
12. 甲和乙的身高比是2:3,乙和丙的身高比是4:5,甲和丙的身高比是多少?
13.甲乙丙三个班的平均人数是60,这三个班人数的比是2:3:5.这三个班人数各是多少?。
六年级数学上册按比例分配应用题1.甲、乙两人每天共做56个机器零件,甲、乙工作效率的比是3:5,问甲、乙两人每天各做多少个零件?解析:设甲每天做3x个零件,乙每天做5x个零件,则3x+5x=56,解得x=8,因此甲每天做24个零件,乙每天做40个零件。
2.石灰水是用石灰和水按1:100配成的,要配制4545千克的石灰水,需要石灰多少千克?解析:石灰和水的比是1:100,因此需要的水量是4545千克/100=45.45千克,石灰的重量也是45.45千克。
3.体育室有60根跳绳,按人数分配给甲乙两班,甲班有42人,乙班有48人,两个班各分得跳绳多少根?解析:甲班分得的跳绳数量是60×(42/90)=28根,乙班分得的跳绳数量是60×(48/90)=32根。
4.一个分数,它的分子和分母的和是80,分子和分母的比是3:7,求这个分数?解析:设分子为3x,分母为7x,则3x+7x=80,解得x=8,因此分子是24,分母是56,这个分数是24/56.5.一块长方形地,周长400米,长和宽的比是3:2,这块地的面积是多少平方米?解析:设长为3x,宽为2x,则周长为2(3x+2x)=10x,解得x=20,因此长为60米,宽为40米,面积是2400平方米。
6.甲、乙两个车间的平均人数是36人,如果两个车间人数的比是5:7,这两个车间各有多少人?解析:设甲车间的人数为5x,乙车间的人数为7x,则5x+7x=2×36,解得x=3.6,因此甲车间有18人,乙车间有25.2人,约为25人。
7.建筑工人用水泥、沙子、石子按2:3:5配制成96吨的混凝土,需要水泥、沙子、石子各多少吨?解析:设水泥、沙子、石子的比为2x:3x:5x,则2x+3x+5x=96,解得x=8,因此水泥需要16吨,沙子需要24吨,石子需要40吨。
8.一种药水是用药物和水按3:400配制成的。
1)要配制这种药水1612千克,需要药粉多少千克?2)用水60千克,需要药粉多少千克?3)用48千克药粉,可配制成多少千克的药水?解析:(1)药物和水的比是3:400,因此需要的药物重量是1612千克×(3/403)=12千克。
按比例分配(一)1、甲乙两数的和是72,甲乙两数的比是4:5,甲、乙两数各是多少?。
2、一个等腰三角形,顶角和一个底角的比是1:4,这个三角形两个底角各是多少。
3、六(1)班有女生24人,女生和男生人数的比是4:5,全班有多少人?5、某班学生参加体育运动队的人数与全班人数的比3:5,现知道参加体育运动队的有24人,未参加体育运动队的有多少人?6、工地有一批水泥,第一天运走80吨,第二天运走82吨,剩下的水泥与运走的水泥质量比是3:2,这批水泥共有多少吨?7、果园里有一些桃子,上午运走全部的30%,下午运走150千克,这时运走的和剩下的桃子的比是3:5,果园里原来一共有多少千克桃子?8小明看一本书,第一天看了一些,第二天又看了全书的10%,这时已看的页数与未看的页数比是5:3,已知第一天看后还有57页没看,全书一共多少页?9、甲、乙两桶油共重70千克,把甲桶的1/5倒入乙桶后,甲、乙两桶油的质量比是4:3,甲、乙两桶原来各有油多少千克?10、一杯糖水,糖与水的比是1:4,喝去半杯后又加满水,这时杯中糖与水的比是多少?11、某校六年级三个班,一班人数是二、三班人数的1/3,二班人数是一、三班人数和的1/2,三班有50人,六年级共有多少学生?12、一条绳子剪掉1/5,再接上80米,这时绳长与原来绳长得比是8:5,这条绳子原来长多少米?13、甲乙两车同时从东西两站相向开出,2小时后甲车到达中点,已知此时甲车与乙车所行得路程比是5:3,这时乙车离东站还有140千米。
问东西两站相距多远?《2》1、甲、乙两人每天共做56个机器零件,如果甲、乙工作效率的比是3:5,甲、乙两人每天各做多少个零件?2、石灰水是用石灰和水按1:100配成的,要配制4545千克的石灰水,需石灰多少千克?3、体育室有60根跳绳,按人数分配给甲乙两班,甲班有42人,乙班有48人,两个班各分得跳绳多少根?4、一个分数,它的分子和分母的和是80,分子和分母的比是3:7,求这个分数?5、一块长方形地,周长400米,长和宽的比是3:2,这块地的面积是多少平方米6、甲、乙两个车间的平均人数是36人,如果两个车间人数的比是5:7,这两个车间各有多少人?7、建筑工人用水泥、沙子、石子按2:3:5配制成96吨的混凝土,需要水泥、沙子、石子各多少吨?8、一种药水是用药物和水按3:400配制成的。
1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有:一、比和比例的性质性质1:若a : b =c :d ,则(a + c ):(b + d )= a :b =c :d ;性质2:若a : b =c :d ,则(a - c ):(b - d )= a :b =c :d ;性质3:若a : b =c :d ,则(a +x c ):(b +x d )=a :b =c :d ;(x 为常数)性质4:若a : b =c :d ,则a ×d = b ×c ;(即外项积等于内项积)正比例:如果a ÷b =k (k 为常数),则称a 、b 成正比;反比例:如果a ×b =k (k 为常数),则称a 、b 成反比.二、主要比例转化实例① x a y b = ⇒ y b x a =; x y a b=; a b x y =; ② x a y b = ⇒ mx a my b =; x ma y mb=(其中0m ≠); ③ x a y b = ⇒ x a x y a b =++; x y a b x a--=; x y a b x y a b ++=-- ;④ x a y b =,y c z d = ⇒ x ac z bd=;::::x y z ac bc bd =; ⑤ x 的c a等于y 的d b ,则x 是y 的ad bc ,y 是x 的bc ad . 三、按比例分配与和差关系 ⑴按比例分配例如:将x 个物体按照:a b 的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x 的比分别为():a a b +和():b a b +,所以甲分配到ax a b +个,乙分配到bx a b+个. ⑵已知两组物体的数量比和数量差,求各个类别数量的问题 例如:两个类别A 、B ,元素的数量比为:a b (这里a b >),数量差为x ,那么A 的元素数量为ax a b -,知识点拨 教学目标比例应用题(二)B的元素数量为bxa b-,所以解题的关键是求出()a b-与a或b的比值.四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l”。
类型三:已知A + B = 和,未知A :B = 比,按比例分配1)A + B = 220, A÷B = 1.2,A、B各多少?
2)学校把种70棵树的任务按人数分配给六年
级三个班,一班46人,二班44人,三班50人,
三个班各种多少棵树?
3)畜牧场鸡、鸭、鹅一共有380只,鸡的只数
与鸭的比是3:2 ,鸭的只数与鸡的比也是3:2,
问:鸡、鸭、鹅各多少只?
4)有牛和羊一共230头,牛的头数的2
5
与羊
的3
4
一样多,牛和羊各多少头?
5)一个等腰三角形,顶角与底角的比是3:1 这
个三角形的顶角是多少度?
6)有三位朋友一起拼车,按路程分摊路费,第
一位朋友坐到全程的
1
3
A地下车,第二位朋友
坐到全程的
3
4
B地下车,第三位朋友坐到终点
C地。
三们朋友共付车费57元,问三位朋友各
出多少元?
7)老李一家4口人和老王家3口人一起(AA制)
到餐厅吃饭,共花费175元。
老李、老王各出
多少元?
8)一个块长方形地,长边靠墙。
现在要用篱笆
把另外三边围起来种菜,共用篱笆18米,长与
宽的比是5:2,这块长方形地的面积是多少平方
米?
类型四:已知A - B = 差,已知A :B = 比,求A或B
9)A - B = 120, A :B = 2:5,A、B各多少?10)甲数减去乙数差是56,甲数与乙数的比是5:2,甲数乙数各是多少?。
1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有:一、比和比例的性质性质1:若a : b =c :d ,则(a + c ):(b + d )= a :b =c :d ;性质2:若a : b =c :d ,则(a - c ):(b - d )= a :b =c :d ;性质3:若a : b =c :d ,则(a +x c ):(b +x d )=a :b =c :d ;(x 为常数)性质4:若a : b =c :d ,则a ×d = b ×c ;(即外项积等于内项积)正比例:如果a ÷b =k (k 为常数),则称a 、b 成正比;反比例:如果a ×b =k (k 为常数),则称a 、b 成反比.二、主要比例转化实例①x a y b = ⇒ y b x a =; x y a b =; a b x y =; ② x a y b = ⇒ mx a my b =; x ma y mb=(其中0m ≠); ③ x a y b = ⇒ x a x y a b =++; x y a b x a--=; x y a b x y a b ++=-- ;④ x a y b =,y c z d= ⇒ x ac z bd =;::::x y z ac bc bd =; ⑤ x 的c a 等于y 的d b ,则x 是y 的ad bc ,y 是x 的bc ad. 三、按比例分配与和差关系 ⑴按比例分配例如:将x 个物体按照:a b 的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x 的比分别为():a a b +和():b a b +,所以甲分配到ax a b +个,乙分配到bx a b+个. ⑵已知两组物体的数量比和数量差,求各个类别数量的问题 例如:两个类别A 、B ,元素的数量比为:a b (这里a b >),数量差为x ,那么A 的元素数量为ax a b -,B 的元素数量为bx a b-,所以解题的关键是求出()a b -与a 或b 的比值. 知识点拨 教学目标比例应用题(二)四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l ”。
比例的应用题六年级一、按比例分配问题。
1. 学校把栽70棵树的任务,按照六年级三个班的人数分配给各班,一班有46人,二班有44人,三班有50人。
三个班各应栽树多少棵?- 解析:首先求出三个班的总人数:46 + 44+50=140(人)。
然后计算各班人数占总人数的比例,一班:(46)/(140),二班:(44)/(140),三班:(50)/(140)。
最后用树的总数乘以各班所占比例得到各班应栽树的棵数。
- 一班应栽树:70×(46)/(140) = 23(棵);- 二班应栽树:70×(44)/(140)=22(棵);- 三班应栽树:70×(50)/(140)=25(棵)。
2. 一种混凝土是由水泥、沙子和石子按2:3:5的比例混合而成的。
如果要配制20吨这种混凝土,需要水泥、沙子和石子各多少吨?- 解析:首先求出总份数:2 + 3+5 = 10份。
然后计算每份的重量:20÷10 = 2吨。
最后根据各自的份数求出水泥、沙子和石子的重量。
- 水泥:2×2 = 4吨;- 沙子:2×3 = 6吨;- 石子:2×5 = 10吨。
3. 某工厂有三个车间,第一车间、第二车间、第三车间的人数比是8:12:21,第一车间比第二车间少80人,三个车间共有多少人?- 解析:设第一车间有8x人,第二车间有12x人。
根据第一车间比第二车间少80人,可列方程12x-8x = 80,解得x = 20。
则三个车间总人数为(8 +12+21)×20=41×20 = 820人。
二、比例尺问题。
4. 在比例尺是1:6000000的地图上,量得A、B两地的距离是5厘米。
一辆汽车以每小时75千米的速度从A地开往B地,需要多少小时?- 解析:根据比例尺公式,实际距离=图上距离÷比例尺,所以A、B两地的实际距离为5÷(1)/(6000000)=5×6000000 = 30000000厘米=300千米。
例1一条路全长60千米,分成上坡、平路、下坡三段,各段路程长的比依次是1:2:3,某人走各段路程所用时间之比依次是4∶5∶6,已知他上坡的速度是每小时3千米,问此人走完全程用了多少时间?例2一块合金内铜和锌的比是2∶3,现在再加入6克锌,共得新合金36克,求新合金内铜和锌的比?例3 师徒两人共加工零件168个,师傅加工一个零件用5分钟,徒弟加工一个零件用9分钟,完成任务时,两人各加工零件多少个?例4洗衣机厂计划20天生产洗衣机1600台,生产5天后由于改进技术,效率提高25%,完成计划还要多少天?例5 一个长方形长与宽的比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米,那么原长方形面积是多少平方厘米?画出图便于解题:1.一块长方形的地,长和宽的比是3∶2,长比宽多24米,这块地的面积是多少平方米?2.一块长方形的地,长和宽的比是3∶2,长方形的周长是120米,求这块地的面积?3.化肥厂计划生产化肥1400吨,由于改进技术5天就完成了计划的25%,照这样计算,剩下的任务还需多少天完成?4.5.6. 甲乙丙三个班人数的和是175人,甲班和乙班的比是2:3,乙班和丙班的比是4:5,甲乙丙三个班各是多少人?7. 甲乙丙三个班的人数平均是20人,甲乙丙三个班人数的比是6:5:4,甲乙丙三个班各有多少人?8. 三个煤炭厂内共有煤炭2800万千克,甲厂和乙厂煤炭重量的比是3:4,乙厂与丙厂煤炭重量的比是6:7,三个煤炭厂各存煤炭多少万千克?9. 两个城市相距760千米,货车和客车同是从两城市相对开出,经过4小时相遇。
货车和客车的速度比是12:7。
货车和客车各行多少千米?10.图书馆里科技书和连环画的比8:5,科技书比连环画多90本,科技书和连环画各有多少本?11.甲乙丙三个组按2:3:5分配劳动力去完成一向任务,已知乙组要派120人,求甲丙两组应各派多少人?12. 加工一批零件,甲单独做需要8小时,乙单独做需要7小时,丙单独做需要14小时才能完成,三人合作2小时后,甲因另外有事离开,乙丙两人继续合作还需要几小时才能完成?13. 一列快车和一列慢车同时从两地相向开出,3小时后相遇。
按比例分配应用题
教学目标
1.使学生理解按比例分配问题的意义。
2.使学生掌握按比例分配应用题的结构及解答方法。
3.掌握解题关键:根据比算出总份数及各部分量占总数量的几分之几。
教学重点和难点
1.理解按比例分配问题的意义。
2.掌握怎样根据比算出总份数及各部分量占总数量的几分之几的解题方法。
教学过程设计
(一)复习准备
1.复习比的有关知识,为学习新知识做准备。
已知六年级1班男生人数和女生人数的比是3∶4。
男生人数与全班人数的比是()∶()。
女生人数与全班人数的比是()∶()。
2.创设情境,提出课题。
(1)妈妈有10块糖,平均分给哥哥和弟弟。
每人可以得到几块糖?(每人可分到5块糖。
)
提问:妈妈是怎样分的?(平均分)
(2)如果妈妈分给弟弟6块,分给哥哥4块,弟弟和哥哥糖数的比是多少?(弟弟和哥哥糖数的比是3∶2。
) 提问:这样分还是平均分吗?
日常生活中,很多分配问题并不是平均分配,那么,你们想知道还可以按照什么分配吗?好,今天我们继续研究有关分配的问题。
(二)学习新课
1.讲解例2。
例2一个农场计划在100公顷的地里种大豆和玉米,播种面积的比是3∶2。
两种作物各播种多少公顷?
(1)这道题是一道分配问题的应用题,想一想:分谁?按照什么分?求的是什么?
(2)分析思考:看到“播种大豆和玉米面积的比是3∶2”这句话你想到了哪些倍数关系?小组讨论。
④玉米的面积与播种总面积的比是2∶5,玉米面积是播种面积的
各小组选代表汇报,教师提前把学生要汇报的内容制成活动投影片,逐步出现。
(3)解答例2。
①试试看,用你学过的知识来解答例2,并在学习小组内说说你是怎样想的?
②说说你是怎样做的?
方法a:3+2=5
播种大豆的面积100÷5×3=60(公顷)
播种玉米的面积100÷5×2=40(公顷)
方法b:总面积平均分成的份数为
3+2=5
③比较一下这几种方法中哪种方法更好一些?为什么?(第二种方法好,好想好算。
)
说说这种方法的思路?(播种大豆和玉米面积的比是3∶2,就是说,在100公顷的地里,大豆地占3份,玉米地占2份,一共是5份,也就
(4)这道题做得对不对?如何进行检验?请你检验一下同组同学做得对不对?(可以把求得的大豆和玉米的总面积相加,看是不是等于播种的总面积。
或者可以把求得的大豆和玉米写成比的形式,看化简后是不是等于3∶2。
)
2.练习:第62页中的“做一做”(1)。
六一班和六二班订《少年科学》的人数比是3∶4,两个班共订了49份。
两个班各订了多少份?
(1)弄懂题意。
(2)提问:这道题分配的是什么?按照什么进行分配?(这道题分配的是49份报纸,按照3∶4的比例分给六一班和六二班。
)
(3)独立完成。
组员之间互相检验。
3.学习例3。
例3学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。
一班有47人,二班有45人,三班有48人。
三个班各应栽树多少棵?
(1)小组讨论:这道题分配的是什么?按照什么来分配?(分配的是280棵树,按照一班、二班、三班的人数的比来分配。
)
(2)提问:根据一班、二班、三班人数怎样算出各班栽的棵数占总棵数的几分之几?
(3)请你在练习本上独立完成。
①三个班的总人数:
47+45+48=140(人)
②一班应栽的棵数:
③二班应栽的棵数:
④三班应栽的棵数:
答:一班、二班、三班分别栽树94棵、90棵、96棵。
(4)同组同学互相检验。
4.练习:第62页中的“做一做”(2)。
一种什锦糖是由奶糖、水果糖和酥糖按照3∶5∶2混合成的。
要配制这样的水果糖500千克,需要奶糖、水果糖和酥糖各多少千克?
(1)在练习本上独立完成。
(2)同组同学互相检验。
(三)课堂总结
今天这节课我们学习了什么知识?(板书课题:按比例分配应用题)想想看这种应用题有什么特点?(已知总数量和部分量的比,求部分量是多少。
)解答这种应用题怎样想?(把一个总数量按照一定的比来进行分配,就要先求出总份数,再看各部分量占总数量的几分之几,接着就可以求出各部分量。
)
回到准备题,问:平均分按几比几分配的?是不是按比例分配的应用题?指出平均分应用题是按比例分配的应用题的一种特殊情况。
(四)巩固反馈
1.填空练习:
①把35千克苹果平均分成7份,每份()千克,2份()千克,5份是()千克。
2.专业户王大伯共养鸡和鸭2100只。
鸡和鸭只数的比是4∶3。
王大伯各养了多少只鸡和鸭?
3.第62页的“做一做”(3)。
一个三角形三条边的长度比是3∶5∶4,这个三角形的周长是36厘米。
三条边的长度分别是多少厘米?
与练习题2有什么区别?
如果求它的最短边、最长边怎么求?
4.判断练习:(正确举√,错误举×)
一个长方形的周长是20分米,长与宽的比是3∶2,这个长方形的长和宽各是多少分米?
(五)布置作业
第63页第1,2,3,4题。
课堂教学设计说明
本节课的复习分为两部分:首先是复习比的有关知识,为学习新知识做准备,接着通过与学生生活实际密切联系的题目为学习新知识创设情境,从而提出课题。
学习新课部分中,例2、例3的教学有扶有放,例2侧重于引导、讲解;例3则是先让学生分小组讨论,之后独立完成,最后说说怎么想的,从而掌握解题关键。
巩固反馈部分由易到难,逐步提高。
第4题是学生很容易错的一道题,所以采用了判断的方法,指出易错的地方,引起学生注意。
本节课采用小组协作学习的教学方法,课堂气氛活跃,调动了学生学习的积极性和主动性。