材料力学 第三章习题讲解
- 格式:ppt
- 大小:330.50 KB
- 文档页数:15
第三章扭转一、是非判断题1.圆杆受扭时,杆内各点处于纯剪切状态。
(×)2.杆件受扭时,横截面上的最大切应力发生在距截面形心最远处。
(×)3.薄壁圆管和空心圆管的扭转切应力公式完全一样。
(×)4.圆杆扭转变形实质上是剪切变形。
(×)5.非圆截面杆不能应用圆截面杆扭转切应力公式,是因为非圆截面杆扭转时“平截面假设”不能成立。
(√)6.材料相同的圆杆,他们的剪切强度条件和扭转强度条件中,许用应力的意义相同,数值相等。
(×)7.切应力互等定理仅适用于纯剪切情况。
(×)8.受扭杆件的扭矩,仅与杆件受到的转矩(外力偶矩)有关,而与杆件的材料及其横截面的大小、形状无关。
(√)9.受扭圆轴在横截面上和包含轴的纵向截面上均无正应力。
(√)10.受扭圆轴的最大切应力只出现在横截面上。
(×)11.受扭圆轴内最大拉应力的值和最大切应力的值相等。
(√)12.因木材沿纤维方向的抗剪能力差,故若受扭木质圆杆的轴线与木材纤维方向平行,当扭距达到某一极限值时,圆杆将沿轴线方向出现裂纹。
(×)二、选择题1.内、外径之比为α的空心圆轴,扭转时轴内的最大切应力为τ,这时横截面上内边缘的切应力为 ( B )A τ;B ατ;C 零;D (1- 4α)τ 2.实心圆轴扭转时,不发生屈服的极限扭矩为T ,若将其横截面面积增加一倍,则极限扭矩为( C )0 B 20T 0 D 40T 3.两根受扭圆轴的直径和长度均相同,但材料C 不同,在扭矩相同的情况下,它们的最大切应力τ、τ和扭转角ψ、ψ之间的关系为( B )A 1τ=τ2, φ1=φ2B 1τ=τ2, φ1≠φ2C 1τ≠τ2, φ1=φ2D 1τ≠τ2, φ1≠φ2 4.阶梯圆轴的最大切应力发生在( D ) A 扭矩最大的截面; B 直径最小的截面; C 单位长度扭转角最大的截面; D 不能确定。
5.空心圆轴的外径为D ,内径为d, α=d /D,其抗扭截面系数为 ( D ) A ()31 16p D W πα=- B ()321 16p D W πα=-C ()331 16p D W πα=- D ()341 16pD Wπα=-6.对于受扭的圆轴,关于如下结论: ①最大剪应力只出现在横截面上;②在横截面上和包含杆件的纵向截面上均无正应力;③圆轴内最大拉应力的值和最大剪应力的值相等。
第三章 扭转3.1 作图示各杆的扭矩图。
(a )解:1)求 1-1截面上的扭矩假设T 1为正,方向如上图所示。
由 ∑m=0 T 1+m+m=0得T 1= -2m , 所以其实际为负。
2)求 2-2截面上的扭矩假设T 2为正,方向如上图所示。
由 ∑m=0 T 2 +m=0得T 2= -m , 所以其实际为负。
(b )解:1)求 1-1截面上的扭矩假设T 1为正,方向如上图所示。
由 ∑m=0 T 1+m =0得T 1= -m , 所以其实际为负。
2)求 2-2截面上的扭矩假设T 2为正,方向如上图所示。
由 ∑m=0 T 2+m-3m=0 得T 2= 2m , 所以其实际为正 (c )解:1)求 1-1截面上的扭矩假设T 1为正,方向如上图所示。
由 ∑m=0 T 1-10-15-20+30=0得T 1= 15KN.m , 所以其实际为正。
T 1T 2(a2(b )mTT 12)求 2-2截面上的扭矩假设T 2为正,方向如上图所示。
由 ∑m=0 T 2-15-20+30=0得T 2= 5KN.m , 所以其实际为正。
3)求 3-3截面上的扭矩 假设T 3为正,方向如上图所示。
由 ∑m=0 T 3-20+30=0得T 3= -10KN.m , 所以其实际为负。
4)求 4-4截面上的扭矩假设T 4为正,方向如上图所示。
由 ∑m=0 T 4 +30=0得T 4= -30KN.m , 所以其实际为负。
3.2 T 为圆杆横截面上的扭矩,试画出截面上与T 对应的剪应力分布图。
解:3.5 D=50mm 直径的圆轴,受到扭矩T=2.15KN .m 的作用。
试求在距离轴心10mm 处的剪应力,并求轴横截面上的最大剪应力。
T 230kN.m T 3T 4(题3.2图(a ) (b )解:求距离轴心10mm 处的剪应力, 由 I P =πD 4/32=π×0.054/32=6.13×10-7 m 4 W t = I P /R=6.13×10-7/0.025=2.454×10-5 m 3τρ=Tρ/ I P =2.15×103×10×10-3/(6.13 ×10-7 ) =35MPa求轴横截面上的最大剪应力τmax =T/ W t =2.15×103/(2.454 ×10-5 ) =87.6MPa3.8 阶梯形圆轴直径分别为d 1=40mm ,d 2=70mm ,轴上装有三个皮带轮,如图所示。
40第三章3 —1图示圆截面阶梯杆,承受轴向荷载Fi=50kN与F2的作用,与BC段的直径分别为6^1=20mm与"2 = 30mm,如欲使AB与BC段横截面上的正应力相同,试求荷载之值。
L/F i , ------ /-- -------- 1 -------------------------- /A B c解题思路:(1)分段用截面法求轴力并画轴力图。
(2)山式(3 — 1)求AB、BC两段的应力。
(3)令佔、BC两段的应力相等,求出尸2。
答案:F2=62.5kN3—5变截面直杆如图所示。
已知Ai = 8cm2, A2=4cm2, E=200GPa 。
求杆的总伸长量。
解题思路:C1)画轴力图。
(2)由式(3 — 11)求杆的总伸长量。
答案:A/=0.075mm3-7图示结构中,为水平放置的刚性杆,1、2、3杆材料相同,其弹性模量E=210GPa , 已知Z=lm, Ai =A2= 100mm2 , A3 = 150mm2 , F P=20kN。
试求C 点的水平位移和铅垂位移。
解题思路:(1)画杆ACB的受力图,求1、2、3杆的受力。
(2)由1、2杆受力相同,3杆受力为零知1、2杆伸长量相等并转动,3杆不变形但可转动。
(3)杆ACB为刚杆,所以C点的位移和A点相同。
(4)由变形关系图求C点的水平位移和铅垂位移。
答案:zl Cl = 0.476mm , zl Cy=0.476mm3-8在图示结构中,AB为刚性杆,CD为钢斜拉杆。
已知F P1 = 5kN , F P2 = 10kN , l=lm , 杆CD 的截面积A = 100mm2,钢的弹性模量E=200GPa。
试求杆CD的轴向变形和刚性杆在端点B的铅垂位移。
解题思路:(1)画杆ACB的受力图,求杆CD的受力。
(2)山式(3—9)求杆CD的伸长量。
(3)画杆ACB的变形关系图,注意到杆ACB只能绕A点转动,杆CD可伸长并转动。
(4)山变形关系图求B的铅垂位移。