第4讲 平面向量应用举例
- 格式:docx
- 大小:59.17 KB
- 文档页数:4
[方法与技巧]1.向量的坐标运算将向量与代数有机结合起来,这就为向量和函数的结合提供了前提,运用向量的有关知识可以解决某些函数问题.2.以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法. [失误与防范]1.注意向量夹角和三角形内角的关系,两者并不等价. 2.注意向量共线和两直线平行的关系.3.利用向量解决解析几何中的平行与垂直,可有效解决因斜率不存在使问题漏解的情况.典例 已知A ,B ,C ,D 是函数y =sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2一个周期内的图象上的四个点,如图所示,A ⎝⎛⎭⎫-π6,0,B 为y 轴上的点,C 为图象上的最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,CD →在x 轴上的投影为π12,则ω, φ的值为( )A .ω=2,φ=π3B .ω=2,φ=π6C .ω=12,φ=π3D .ω=12,φ=π6解析 由E 为该函数图象的一个对称中心,作点C 的对称点为M ,作MF ⊥x 轴,垂足为F ,如图.B 与D 关于点E 对称,CD →在x 轴上的投影为π12,知OF =π12.又A ⎝⎛⎭⎫-π6,0,所以AF =T 4=π2ω=π4,所以ω=2.同时函数y =sin(ωx +φ)图象可以看作是由y =sin ωx 的图象向左平移得到,故可知φω=φ2=π6,即φ=π3.答案 A温馨提醒 对于在图形中给出解题信息的题目,要抓住图形的特点,通过图形的对称性、周期性以及图形中点的位置关系提炼条件,尽快建立图形和欲求结论间的联系.题型一 向量在平面几何中的应用例1 已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( ) A .内心 B .外心 C .重心 D .垂心答案 C解析 由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD (D 为BC 的中点)所对应向量AD →的2倍,所以点P 的轨迹必过△ABC 的重心. 引申探究在本例中,若动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,λ∈(0,+∞),则点P 的轨迹一定通过△ABC的________________________________________________________________________. 答案 内心解析 由条件,得OP →-OA →=λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,即AP →=λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,而AB →|AB →|和AC →|AC →|分别表示平行于AB →,AC →的单位向量,故AB →|AB →|+AC →|AC →|平分∠BAC ,即AP →平分∠BAC ,所以点P 的轨迹必过△ABC 的内心.思维升华 解决向量与平面几何综合问题,可先利用基向量或坐标系建立向量与平面图形的联系,然后通过向量运算研究几何元素之间的关系.(1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE→=1,则AB =________.(2)平面四边形ABCD 中,AB →+CD →=0,(AB →-AD →)·AC →=0,则四边形ABCD 是( ) A .矩形B .梯形C .正方形D .菱形答案 (1)12(2)D解析 (1)在平行四边形ABCD 中,取AB 的中点F ,则BE →=FD →,∴BE →=FD →=AD →-12AB →,又∵AC →=AD →+AB →,∴AC →·BE →=(AD →+AB →)·(AD →-12AB →)=AD →2-12AD →·AB →+AD →·AB →-12AB →2=|AD →|2+12|AD →||AB →|cos 60°-12|AB →|2=1+12×12|AB →|-12|AB →|2=1.∴⎝⎛⎭⎫12-|AB →||AB →|=0,又|AB →|≠0,∴|AB →|=12. (2)AB →+CD →=0⇒AB →=-CD →=DC →⇒平面四边形ABCD 是平行四边形,(AB →-AD →)·AC →=DB →·AC →=0⇒DB →⊥AC →,所以平行四边形ABCD 是菱形. 题型二 向量在解析几何中的应用例2 (1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A 、B 、C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________.(2)设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则yx=________. 答案 (1)2x +y -3=0 (2)±3解析 (1)∵AB →=OB →-OA →=(4-k ,-7), BC →=OC →-OB →=(6,k -5),且AB →∥BC →, ∴(4-k )(k -5)+6×7=0, 解得k =-2或k =11.由k <0可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y -3=0.(2)∵OM →·CM →=0,∴OM ⊥CM ,∴OM 是圆的切线,设OM 的方程为y =kx , 由|2k |1+k 2=3,得k =±3,即yx =± 3.思维升华 向量在解析几何中的作用:(1)载体作用,向量在解析几何问题中出现,多用于“包装”,解决此类问题关键是利用向量的意义、运算,脱去“向量外衣”;(2)工具作用,利用a ⊥b ⇔a ·b =0;a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题.已知圆C :(x -2)2+y 2=4,圆M :(x -2-5cos θ)2+(y -5sin θ)2=1(θ∈R ),过圆M 上任意一点P 作圆C 的两条切线PE ,PF ,切点分别为E ,F ,则PE →·PF →的最小值是( ) A .5 B .6 C .10 D .12 答案 B解析 圆(x -2)2+y 2=4的圆心C (2,0),半径为2,圆M (x -2-5cos θ)2+(y -5sin θ)2=1,圆心M (2+5cos θ,5sin θ),半径为1,∵CM =5>2+1,故两圆相离.如图所示,设直线CM 和圆M 交于H ,G 两点,则PE →·PF →最小值是HE →·HF →,HC =CM -1=5-1=4,HE =HC 2-CE 2=16-4=23, sin ∠CHE =CE CH =12,∴cos ∠EHF =cos 2∠CHE =1-2sin 2∠CHE =12,HE →·HF →=|HE →|·|HF →|cos ∠EHF =23×23×12=6,故选B.题型三 向量的综合应用例3 (1)已知x ,y 满足⎩⎪⎨⎪⎧y ≥x ,x +y ≤2,x ≥a ,若OA →=(x,1),OB →=(2,y ),且OA →·OB →的最大值是最小值的8倍,则实数a 的值是( ) A .1 B.13C.14D.18(2)函数y =sin(ωx +φ)在一个周期内的图象如图所示,M 、N 分别是最高点、最低点,O 为坐标原点,且OM →·ON →=0,则函数f (x )的最小正周期是________.答案 (1)D (2)3 解析 (1)因为OA →=(x,1),OB →=(2,y ),所以OA →·OB →=2x +y ,令z =2x +y ,依题意,不等式组所表示的可行域如图中阴影部分所示,观察图象可知,当目标函数z =2x +y 过点C (1,1)时,z max =2×1+1=3,目标函数z =2x +y 过点F (a ,a )时,z min =2a +a =3a ,所以3=8×3a ,解得a =18,故选D.(2)由图象可知,M ⎝⎛⎭⎫12,1,N ()x N ,-1,所以OM →·ON →=⎝⎛⎭⎫12,1·(x N ,-1)=12x N -1=0,解得x N =2,所以函数f (x )的最小正周期是2×⎝⎛⎭⎫2-12=3. 思维升华 利用向量的载体作用,可以将向量与三角函数、不等式结合起来,解题时通过定义或坐标运算进行转化,使问题的条件结论明晰化.(1)设O 是平面上一定点,A ,B ,C 是平面上不共线的三点,动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎫AB →|AB →|·cos B +AC →|AC →|·cos C ,λ∈[0,+∞),则点P 的轨迹经过△ABC 的( ) A .外心 B .内心 C .重心D .垂心(2)已知在平面直角坐标系中,O (0,0),M (1,1),N (0,1),Q (2,3),动点P (x ,y )满足不等式0≤OP →·OM →≤1,0≤OP →·ON →≤1,则z =OQ →·OP →的最大值为________. 答案 (1)D (2)3解析 (1)∵BC →·⎝⎛⎭⎪⎫AB →|AB →|cos B +AC →|AC →|cos C =-|BC →|+|BC →|=0,∴BC →与λ⎝⎛⎭⎪⎫AB →|AB →|cos B +AC →|AC →|cos C 垂直. ∵OP →=OA →+λ⎝⎛⎭⎪⎫AB →|AB →|cos B +AC →|AC →|cos C , ∴点P 在BC 的高线上,即点P 的轨迹过△ABC 的垂心. (2)∵OP →=(x ,y ),OM →=(1,1),ON →=(0,1),OQ →=(2,3), ∴OP →·OM →=x +y ,OP →·ON →=y ,OQ →·OP →=2x +3y ,即在⎩⎪⎨⎪⎧0≤x +y ≤1,0≤y ≤1条件下,求z =2x +3y 的最大值,由线性规划知识得,当x =0,y =1时,z max =3.。
第4讲 平面向量应用举例
一、选择题
1.△ABC 的三个内角成等差数列,且(AB →
+AC →)·BC →=0,则△ABC 一定是( ). A .等腰直角三角形
B .非等腰直角三角形
C .等边三角形
D .钝角三角形
解析 △ABC 中BC 边的中线又是BC 边的高,故△ABC 为等腰三角形,又A ,B ,C 成等差数列,故B =π3
.
答案 C
2. 半圆的直径AB =4,O 为圆心,C 是半圆上不同于A 、B 的任意一点,若P 为半径OC 的中点,则(PA →+PB →)·PC →的值是( )
A .-2
B .-1
C .2
D .无法确定,与C 点位置有关
解析 (PA →+PB →)·PC →=2PO →·PC →=-2.
答案 A
3. 函数y =tan π4x -π2的部分图象如图所示,则(OA →+OB →)·AB
→= ( ). A .4
B .6
C .1
D .2
解析 由条件可得B (3,1),A (2,0),
∴(OA →+OB →)·AB →=(OA →+OB →)·(OB
→-OA →)=OB →2-OA →2=10-4=6.
答案 B
4.在△ABC 中,∠BAC =60°,AB =2,AC =1,E ,F 为边BC 的三等分点,则
AE →·AF →=( ). A.53 B.54 C.109 D.158 解析 法一 依题意,不妨设BE →=12
E C →,B
F →=2FC →, 则有AE →-AB →=12(AC →-AE →),即AE →=23AB →+13
AC →; AF →-AB →=2(AC →-AF →),即AF →=13AB →+23
AC →. 所以AE →·AF →=⎝ ⎛⎭⎪⎫23AB →+13AC →·⎝ ⎛⎭
⎪⎫13AB →+23AC → =19(2AB →+AC →)·(AB →+2AC
→) =19(2AB →2+2AC →2+5AB →·AC
→) =19(2×22+2×12+5×2×1×cos 60°)=53,选A.
法二 由∠BAC =60°,AB =2,AC =1可得∠ACB
=90°,
如图建立直角坐标系,则A (0,1),E ⎝
⎛⎭⎪⎫-233,0,F ⎝ ⎛⎭
⎪⎫-33,0, ∴AE →·AF →=⎝ ⎛⎭⎪⎫-233,-1·⎝ ⎛⎭⎪⎫-33,-1=⎝
⎛⎭⎪⎫-233·⎝ ⎛⎭⎪⎫-33+(-1)·(-1)=23+1=53,选A.
答案 A
5.如图所示,已知点G 是△ABC 的重心,过G 作直线与AB ,AC 两边分别交于M ,
N 两点,且AM →=xAB →,AN →=yAC →
,则x ·y x +y
的值为( ).
A .3 B.13 C .2 D.12
解析 (特例法)利用等边三角形,过重心作平行于底边BC 的直线,易得x ·y x +y
=13
. 答案 B 6.△ABC 的外接圆圆心为O ,半径为2,OA
→+AB →+AC →=0,且|OA →|=|AB →|,则CA →在CB
→方向上的投影为 ( ). A .1 B .2 C. 3 D .3
解析 如图,由题意可设D 为BC 的中点,
由OA →+AB →+AC →=0,得OA →+2AD →=0,即AO
→=2AD
→,∴A ,O ,D 共线且|AO →|=2|AD →|,又O 为△ABC 的外心,
∴AO 为BC 的中垂线,
∴|AC
→|=|AB →|=|OA →|=2,|AD →|=1, ∴|CD
→|=3,∴CA →在CB →方向上的投影为 3. 答案 C
二、填空题
7. △ABO 三顶点坐标为A (1,0),B (0,2),O (0,0),P (x ,y )是坐标平面内一点,满足AP →·OA →≤0,BP →·OB →≥0,则OP →·AB →的最小值为________.
解析 ∵AP →·OA →=(x -1,y )·(1,0)=x -1≤0,∴x ≤1,∴-x ≥-1, ∵BP →·OB →=(x ,y -2)·(0,2)=2(y -2)≥0,∴y ≥2.
∴OP →·AB →=(x ,y )·(-1,2)=2y -x ≥3.
答案 3
8.已知平面向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为π3
.以a ,b 为邻边作平行四边形,则此平行四边形的两条对角线中较短的一条的长度为
________.
解析 ∵|a +b |2-|a -b |2=4a ·b =4|a ||b |cos π3
=4>0, ∴|a +b |>|a -b |,又|a -b |2=a 2+b 2-2a ·b =3,∴|a -b |= 3. 答案 3
9.已知向量a =(x -1,2),b =(4,y ),若a ⊥b ,则9x +3y 的最小值为________. 解析 若a ⊥b ,则4(x -1)+2y =0,即2x +y =2.
9x +3y =32x +3y ≥2×32x +y =2×32=6.
当且仅当x =12,y =1时取得最小值.
答案 6
10.已知|a |=2|b |≠0,且关于x 的函数f (x )=13x 3+12|a |x 2+a ·b x 在R 上有极值,则
a 与
b 的夹角范围为________.
解析 由题意得:f ′(x )=x 2+|a |x +a ·b 必有可变号零点,即Δ=|a |2-4a ·b >0,
即4|b |2-8|b |2cos 〈a ,b 〉>0,即-1≤cos 〈a ,b 〉<12.所以a 与b 的夹角范围
为⎝ ⎛⎦
⎥⎤π3,π. 答案 ⎝ ⎛⎦
⎥⎤π3,π。