差动变压位移传感器.
- 格式:doc
- 大小:12.00 KB
- 文档页数:3
差动式位移传感器原理
差动式位移传感器是将检测物体的位移变化,转换成电路中相应的信号给出,并由后续的电子装置把检出的信号变成数字信号或模拟信号,发送给相应的仪表或计算机,以它实现所需要的调节控制或自动控制。
其实质是利用两个可被触碰的滑动磨擦接触体,依靠其相对运动,产生接触回路中的磁电路变化,当接触边移动时,电路中有一个平衡常数变化,以产生一个检测信号。
使用一种差动式位移传感器的原理如下:首先,两个可触碰的滑动磨擦接触体(它们可以用哑铃,钢板或其他滑动表面)被设置在一起,使它们可以相对运动。
当接触体压在一起时,它们之间存在一个可用磁极感应器计算出的连接电流,并将其信号输入到一个双极性功率放大器中,这个功率放大器让它们保持一致电流,这样就将它们保持在一个平衡状态。
然后,当接触体相对运动(例如,由于位置的改变)时,磁性电路中的电流就会发生变化,结果是发生不完全的接触,即传感器就产生了差动,这个差动用来检测物体的位移变化。
此外,被感应出来的信号能够发送给下游电子装置,从而控制或调节物体的运动。
差动变压器式位移传感器的原理“同学们,今天咱们来好好讲讲差动变压器式位移传感器的原理。
”我站在讲台上对学生们说道。
差动变压器式位移传感器是一种常用的测量位移的传感器。
它主要是基于变压器的原理来工作的。
想象一下,有一个初级线圈,就像一个中心轴一样,然后在它的两边对称地放置两个次级线圈。
当有一个可移动的铁芯在这个线圈中间移动时,就会引起磁场的变化。
比如说,我们有一个实际的例子,在工业生产中,需要精确测量某个部件的微小位移。
这时就可以用到差动变压器式位移传感器。
当部件发生位移时,铁芯也跟着移动,这就导致两个次级线圈中的感应电动势发生变化。
通过测量这个变化,我们就能知道位移的大小和方向。
这种传感器有很多优点。
首先,它的测量精度比较高,可以检测到非常微小的位移变化。
其次,它的线性度好,输出信号与位移之间的关系比较简单直接,容易处理和分析。
而且,它的稳定性也不错,在不同的环境条件下都能可靠地工作。
同学们可能会问,那它有没有什么局限性呢?当然有啦。
比如,它对磁场干扰比较敏感,如果周围有强磁场存在,可能会影响测量结果。
还有,它的测量范围相对来说不是特别大,对于一些非常大的位移可能不太适用。
为了让大家更好地理解,我们再来看一个例子。
在汽车制造中,为了确保汽车的质量和性能,需要对一些关键部件的位移进行精确测量。
比如发动机的活塞位移,就可以用差动变压器式位移传感器来监测。
这样就能及时发现问题,保证汽车的正常运行。
在实际应用中,我们还需要注意一些问题。
比如要正确安装传感器,保证铁芯的运动顺畅。
还要对传感器进行定期校准,以确保测量的准确性。
总之,差动变压器式位移传感器是一种非常重要的传感器,在很多领域都有着广泛的应用。
希望同学们通过今天的学习,能对它有更深入的了解。
浅谈差动变压器式传感器及其应用
差动变压器式传感器是一种常用的非接触式传感器,主要用于测量物理量的变化,如位移、压力、力等。
它是由一对相互独立的电路组成,其中一个电路作为输入电路,另一个电路作为输出电路。
差动电路根据输入电路和输出电路的电势差进行测量,从而得出物理量的变化。
差动变压器式传感器的工作原理是输入电路和输出电路同时作用于磁性芯,在信号输入时,由于输入和输出电路的磁场相互作用,使得电路的感应电压发生变化。
这种电压变化的量与输入信号成正比,所以可以通过变压器的变比关系来测量输入物理量的变化。
在实际应用中,差动变压器式传感器的适用范围广泛。
其主要应用在工业自动化、航空航天、科学研究等领域。
具体应用包括以下几个方面:
1.位移测量:差动变压器式传感器可以测量物体的位移,
例如用于汽车的制动离合器,以及用于机械手和机器人系统的控制。
2.压力测量:差动变压器式传感器可以测量液体和气体的
压力,例如用于工业管道和油井等。
3.力测量:差动变压器式传感器可以测量力的大小和方向,例如用于桥梁、建筑和机器等的结构分析。
4.温度测量:差动变压器式传感器可以测量物体的温度、热量、热电势等,例如用于工业加热和冷却系统的控制。
总的来说,差动变压器式传感器具有响应速度快、测量精度高、稳定性好、可靠性高等特点,使其在工程领域中应用广泛。
同时,随着科技的不断发展和创新,差动变压器式传感器也将不断发展和完善。
[8] ANALOG DEVICES. LVDTsignal conditioner AD598.一、引言差动变压器式传感器的特点是灵敏度高、分辨力大,能测出0.1um更小的机械位移变化;传感器的输出信号强,有利于信号的传输;重复性好,在一定位移范围内,输出特性的线性度好,并且比较稳定,因此广泛应用于压力、位移传感器的设计制造中,尤其在航空、航天等环境恶劣、环境温度高的压力测量方面,也得到了广泛的应用。
二、方案论证1.参数要求给定原始数据及技术要求1).最大输入位移为100mm2)灵敏度不小于80V/m3)非线性误差不大于10%4)零位误差不大于1mv5).电源为9v,400HZ6).最大尺寸结构为160mmX21mm2.方案讨论根据给定技术要求选择电感变换元件的类型及测量电路的形式,如图1所示图1、传感器的组成框图1)传感器电感变换元件类型的选择(1)测量范围小,如位移零点几微米至数百微米,且当线性范围也小时,常用E形或II形平膜硅钢片叠成的电感式传感器或差动变压器。
(2) 螺线管,常用于测量1mm以上至数百毫米的大位移,其线性范围也较大。
2)测量电路的选择测量电路主要依据选定的电感变换器的种类、用途、灵敏度、精度及输出形式等技术要求来确定。
3.螺管型差动变压器的工作原理差动输出电动势为。
所以,差动变压器输出电动势为两副边线圈互感之差的函数。
螺管型差动变压器结构复杂,常用二节式、三节式、一节式的灵敏度高,但三节式的零点较好。
差动变压器的工作原理类似变压器的作用原理。
这种类型的传感器主要包括有衔铁、一次绕组和二次绕组等。
一、二次绕组间的耦合能随衔铁的移动而变化,即绕组间的互感随被测位移改变而变化。
由于在使用时采用两个二次绕组反向串接,以差动方式输出,所以把这种传感器称为差动变压器式电感传感器,通常简称差动变压器。
图2为三节式螺管型差动变压器的示意图。
图2 三节式差动变压器的结构形式三.螺管型差动变压器的参数计算现以三节式螺管型差动变压器式传感器为例来说明参数的设计计算方法,其结构如图3。
[工学]实验6差动变压器测量位移实验目的:1.了解差动变压器的原理及其应用。
2.熟练掌握测量位移的方法及其主要错误来源。
实验仪器:1.差动变压器1台;2.计时器1台;3.位移传感器1台;4.直流电源、万用表等。
实验原理:差动变压器是利用互感原理制作的,通常由两个沿核心轴线方向定位的线圈构成。
在这两个线圈中,一个线圈中通以电流I1,能够产生磁通φ1,此时沿磁通闭合回路中的另一个线圈中将产生感应电压U2。
另一个线圈中通以电流I2,能够产生磁通φ2,此时沿磁通闭合回路中的第一个线圈中将产生感应电压U1。
于是,在两个线圈中交变电流作用下,产生了两个电磁感应现象。
如果将这两个线圈相互连接,在通以外部信号电流的情况下,就产生了两个端口间的电压差,从而实现了差动变压器的电压放大作用。
该实验利用差动变压器测量位移的原理,是利用位移传感器测量物体的位移并将其转化为电压形式,然后加以放大,使差动输出电压与物体位移之间成线性关系,从而实现位移的测量。
实验步骤:1.将位移传感器与差动变压器连接好,调节电源电压使得差动输出电压在零位。
2.将位移传感器固定在工作台的滑块上,使其与测量信号轴线垂直,用刻度尺量取滑块的起始位置,并记录下来。
3.调整差动变压器的输出电压,记录下滑块与工作台之间的距离。
4.记录下移动时间,计算测量位移的平均速度,并将结果与实际位移进行比较。
5.反复进行多次实验,对比误差,总结并分析实验结果。
注意事项:1.在实验过程中,要注意灵敏度和调整抗干扰能力,保持测量的精度。
2.测试过程中要注意安全,并防止传感器的二次负载、接线错误等问题。
3.保持仪器设备的干净和整洁,防止灰尘和污秽进入仪器内部。
实验结果:通过实验,我们发现差动变压器可以把位移传感器获得的微小信号放大成为需要的信号。
在实际位移测试中,我们通过测量位移的平均速度并将其结果与实际位移进行比较,以此来评估差动变压器的准确性和精度。
经多次实验和数据分析,我们发现,在不同的工作环境下,差动变压器的性能差异和稳定性也不同。
差动变压式位移传感器工作原理朋友,今天咱们来唠唠差动变压式位移传感器这个超有趣的东西。
你可以把这个传感器想象成一个特别聪明的小侦探,专门侦查位移的情况呢。
它的核心部分有个变压器,这个变压器可不是一般的变压器哦。
它就像是一个魔法盒,里面有初级线圈和次级线圈。
初级线圈就像是一个能量小源泉,给整个系统注入能量。
当电流通过初级线圈的时候,就像打开了魔法盒的开关,开始有奇妙的事情发生啦。
那这个传感器怎么就能知道位移呢?这就和它的差动结构有关系啦。
它有两个次级线圈呢,这两个次级线圈就像是一对双胞胎,但是又有点小差别。
当被测量的物体发生位移的时候,就像是在平静的湖水里扔了一颗小石子,会引起一系列的变化。
比如说,有一个铁芯,这个铁芯的位置会随着物体的位移而改变。
这个铁芯可是很关键的哦,它就像是一个调皮的小精灵,在两个次级线圈之间跑来跑去。
当铁芯移动的时候,对于两个次级线圈来说,就像是它们和这个小精灵的互动不一样了。
一个次级线圈可能会因为铁芯靠近而感应出更多的电压,另一个次级线圈呢,因为铁芯离得远了一点,感应出的电压就会变少。
这就像两个小朋友,一个得到了更多的糖果,一个得到的糖果变少了。
然后呢,我们把这两个次级线圈的电压做个差,这个差值就和位移有着密切的关系啦。
就好像这个差值是一个秘密信号,专门告诉我们物体移动了多少距离呢。
你看,这个传感器多聪明呀。
它就像是一个有着独特感知能力的小生物,能够敏锐地捕捉到位移的变化。
而且它还很实用呢,在很多地方都能派上用场。
比如说在机械制造的工厂里,那些大型的机器设备的部件如果有了微小的位移,这个传感器就能马上察觉到。
就像一个忠诚的小卫士,守护着机器的正常运转。
如果没有它,那些机器可能就会在不知不觉中出现问题,就像一个人生病了但是自己不知道一样呢。
在汽车制造领域,差动变压式位移传感器也发挥着很大的作用。
汽车的一些关键部件,像发动机里的活塞运动啊,这个传感器就能准确地测量活塞的位移情况。
2024年浅谈差动变压器式传感器及其应用差动变压器式传感器,又称差动电感式传感器,是一种广泛应用于非电量电测技术中的重要元件。
其基于电磁感应原理,将非电量的位移、振动等物理量转换成电信号输出,具有测量精度高、响应速度快、稳定性好等优点。
本文将对差动变压器式传感器的基本原理、结构特点、应用领域、信号处理与电路设计、性能指标与评估方法、应用案例分析以及技术发展趋势与挑战进行详细的探讨。
1. 差动变压器式传感器概述差动变压器式传感器主要由原边线圈、副边线圈和铁芯组成。
当铁芯发生位移时,会改变原边线圈与副边线圈之间的互感量,进而产生差动电势。
这种电势的大小与铁芯的位移量成正比,因此可以通过测量电势来推算出铁芯的位移量。
差动变压器式传感器通常用于测量微小的位移和振动,具有灵敏度高、线性度好等特点。
2. 工作原理与结构特点差动变压器式传感器的工作原理基于法拉第电磁感应定律。
当原边线圈通电时,会产生磁场,铁芯在磁场中受到力的作用发生位移,进而改变副边线圈的磁通量,产生感应电势。
由于差动结构的设计,使得传感器对铁芯的位移量具有较高的灵敏度。
此外,差动变压器式传感器还具有结构简单、制造方便、可靠性高等特点。
3. 差动变压器式传感器应用差动变压器式传感器在工业生产、科学实验和日常生活中具有广泛的应用。
例如,在机械工程中,可以用于测量机床的振动、轴承的位移等;在航空航天领域,可用于监测飞行器的姿态变化和结构变形;在医疗设备中,可用于测量人体的生理参数,如心跳、呼吸等。
4. 信号处理与电路设计差动变压器式传感器输出的信号通常为微弱的模拟信号,需要经过信号处理与电路设计才能转换成可供后续处理的数字信号。
常见的信号处理方法包括滤波、放大、模数转换等。
在电路设计中,需要考虑到信号的噪声抑制、线性度提高以及抗干扰能力等因素。
5. 性能指标与评估方法评估差动变压器式传感器的性能通常需要考虑以下几个指标:灵敏度、线性度、稳定性、重复性等。
目录1. 摘要 ......................2. 引言 ..............................3. 螺线管式差动变压器传感器 ...3.1 差动变压器式传感器简介 .. 3.2 工作原理 .......................4. 差动变压器的测量电路及其仿真4.1差动整流电路 ................4.2 相敏检波电路 : (7)4.3 零点残余误差补偿 .............................. 10 5. 差动变压器位移传感器的改进 . .. (112)5.1差动电压接放大器电路及其仿真 (122)5.2 整流信号接滤波电路 ........................... 133 6. 使用器件清单 ............................ 154 7 总结 .................................... 15 8. 参考文献 . (166)错误!未定义书签1........... 2 ............ 2 ..... 2 .............. 5 (5)1.摘要---- 差动变压器位移传感器的基本知识介绍传感器是能感受规定的被测量并按照一定的规律将其转换成可用输出信号的器件或装置。
在有些学科领域,传感器又称为敏感元件、检测器、转换器等。
通常传感器由敏感元件和转换元件组成。
其中,敏感元件是指传感器中能直接感受或响应被测量的部分;转换元件是指传感器中将敏感元件感受或响应的被测量转换成适于传输或测量的电信号的部分。
由于传感器的输出信号一般都很薄弱,因此需要有信号调理与转换电路对其进行放大等。
电感式传感器是利用电磁感应原理,将被测非电量的变化转换成线圈的自感或互感变化的机电转换装置。
它也常用来检测位移、振动、力、应变、流量、比重等物理量。
电感式传感器的种类很多。
lvdt位移传感器是目前位移测量当中广泛应用的传感器之一,在很多应用领域占有重要地位。
lvdt位移传感器工作原理LVDT(差动变压器位移传感器为电磁感应原理,与传统的电力变压器不同,LVDT是一种开磁路弱磁耦合的测量元件。
LVDT的结构由铁心、衔铁、初级线圈、次级线圈组成,初级线圈、次级线圈分布在线圈骨架上,线圈内部有一个可自由移动的杆状衔铁。
用不同线径的漆包线,在骨架上绕制一组初级线圈,两组次级线圈,其工作方式依赖于在线圈骨架内磁芯的移动,当初级线圈供给一定频率的交变电压时,铁芯在线圈内移动就改变了空间的磁场分布,从而改变了初、次级线圈之间的互感量,次级线圈就产生感应电动势,随着铁心的位置不同,互感量也不同,次级产生的感应电动势也不同,这样就将铁芯的位移量变成了电压信号输出。
lvdt位移传感器主要特点:1、使用寿命长:由于铁芯和线圈内壁存在间隙,铁芯在运动的时候与线圈不接触,无摩擦损耗;同时采用优良的生产工艺把骨架和所绕漆包线两者固化为一整体,不会产生断线,开裂等故障,加上其它的优化设计,因此传感器的使用寿命理论上可以是无限的,据国外某机构测试此类传感器的MTBF可达到30万小时,在实际的正常使用中可达到数十年,其最终故障往往是人为造成或变送器电路元器件的寿命决定的。
2、多样的环境适应性:LVDT是少数几种可以应用在多种恶劣环境下的位移传感器,通过特殊方式进行密封处理的传感器可以防潮、防盐雾,可以放置于承压的液体中、气体密闭容器中,甚至于某些腐蚀性环境中,对核辐射电磁辐射干扰不敏感,能抗振动,具有较宽的工作温度范围-25℃~85℃和满足国军标—55℃~125℃工作温度。
机电分体的位移传感器单独使用可以在200℃下工作。
3、响应速度快:基于非接触测量的实现,对于某些快速运动物体的冲击振动测量,此类传感器可以提供很宽的频率响应。
4、高线性度:通过不断研发的线圈绕制方法,LVDT位移传感器的线性度有了显著的提高。
lvdt位移传感器是目前位移测量当中广泛应用的传感器之一,在很多应用领域占有重要地位。
lvdt位移传感器工作原理
LVDT(差动变压器位移传感器为电磁感应原理,与传统的电力变压器不
同,LVDT是一种开磁路弱磁耦合的测量元件。
LVDT的结构由铁心、衔铁、初级线圈、次级线圈组成,初级线圈、次级线圈分布在线圈骨架上,线圈内部有一个可自由移动的杆状衔铁。
用不同线径的漆包线,在骨架上绕制一组初级线圈,两组次级线圈,其工作方式依赖于在线圈骨架内磁芯的移动,当初级线圈供给一定频率的交变电压时,铁芯在线圈内移动就改变了空间的磁场分布,从而改变了初、次级线圈之间的互感量,次级线圈就产生感应电动势,随着铁心的位置不同,互感量也不同,次级产生的感应电动势也不同,这样就将铁芯的位移量变成了电压信号输出。
lvdt位移传感器主要特点:
1、使用寿命长:由于铁芯和线圈内壁存在间隙,铁芯在运动的时候与线圈不接触,无摩擦损耗;同时采用优良的生产工艺把骨架和所绕漆包线两者固化为一整体,不会产生断线,开裂等故障,加上其它的优化设计,因此传感器的使用寿命理论上可以是无限的,据国外某机构测试此类传感器的MTBF可达到30万小时,在实际的正常使用中可达到数十年,其最终故障往往是人为造成或变送器电路元器件的寿命决定的。
2、多样的环境适应性:LVDT是少数几种可以应用在多种恶劣环境下的位移传感器,通过特殊方式进行密封处理的传感器可以防潮、防盐雾,可以放置于承压的液体中、气体密闭容器中,甚至于某些腐蚀性环境中,对核辐射电磁辐射干扰不敏感,能抗振动,具有较宽的工作温度范围-25℃~85℃和满足国军标—55℃~125℃工作温度。
机电分体的位移传感器单独使用可以在200℃下工作。
3、响应速度快:基于非接触测量的实现,对于某些快速运动物体的冲击振动测量,此类传感器可以提供很宽的频率响应。
4、高线性度:通过不断研发的线圈绕制方法,LVDT位移传感器的线性度有了显著的提高。
5、高分辨率:由电磁感应原理所决定的任何微小的铁芯运动均会改变所在磁场内次级线圈的感生电动势,使得LVDT位移传感器理论上具有无限的分辨力。
随着设计、工艺和电子元器件性能的不断提高。
6、低噪声:对于回弹式的位移传感器,在额定位移输出信号为10.0000V或
5.0000V 时,其纹波、干扰噪声的峰—峰值电压仅0.2~1.5mVp-p。
7、低的温度漂移:通用型中小量程产品的温度系数在±0.001%/℃~±0.01%/℃。
FS。
8、始动漂移小:当接通电源(开机时,位移读数很快就能基本稳定下来,无需长时间的预热,时间漂移小。
9、无零点残余电压:由于采用了先进的检测电路,避免了零点残余电压的存在。
10、重复性好:重复精度可达零点几微米甚至更小。
11、很宽的量程覆盖范围:在较宽的量程范围内LVDT位移传感器均能实现较高的线性精度。
12、带载能力强:一台测量仪器能同时带1-30支LVDT工作
13、低故障:这是指在非正常使用下,由于人为的疏忽或误操作而设计的多种措施,以避免传感器受损。
14、功耗低:在双电源供电,输出电压信号时,供电电流﹤10mA
15、输入、输出的多样性:可以输入单或双电源,其电压值自5V~24V或
±5V~±15V;输出信号电压自20mV~10V或±20mV~±10V;输出信号电流;4~20mA或0~10mA,并且具有良好的恒流特性。
输出信号频率:0~10000Hz(TTL电平方波。