有理数的乘除法混合运算
- 格式:ppt
- 大小:413.00 KB
- 文档页数:18
七年级上册数学有理数加减乘除混合运算一、有理数混合运算的基本概念有理数混合运算是基于有理数的加、减、乘、除四则运算,以及乘方和开方的运算。
有理数包括正数、负数和0。
在混合运算中,我们需要注意运算的顺序和法则。
二、数的加减法数的加减法遵循以下法则:1. 加法交换律:a+b=b+a2. 加法结合律:(a+b)+c=a+(b+c)3. 相反数:a=-(-a)4. 0的任何非零有理数(0除外)相加,结果为0。
三、数的乘除法乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
除法法则:两数相除,同号得正,异号得负,并把绝对值相除,0不能作除数。
四、混合运算的顺序混合运算的顺序是先乘方,再乘除,最后加减;如果有括号,先算括号里面的。
五、代数式的值代数式的值是指将字母的取值代入代数式后得到的数值。
求代数式的值有两种方法:一种是直接代入求值;另一种是整体代入求值。
六、方程的基本概念方程是一种含有未知数的等式。
一元一次方程是指只含有一个未知数,并且未知数的次数是1的方程。
解一元一次方程就是求出使方程成立的未知数的值。
七、一元一次方程的解法解一元一次方程的基本步骤包括去分母、去括号、移项、合并同类项、系数化为1等步骤。
通过这些步骤,我们可以将复杂的一元一次方程简化,并求出未知数的值。
八、实际问题的数学模型实际问题中,我们可以通过建立数学模型来解决问题。
数学模型是指用数学语言描述实际问题,并把问题的数量关系和数学规律联系起来的一种工具。
通过建立数学模型,我们可以更好地理解和解决实际问题。
九、综合应用举例有理数加减乘除混合运算在实际生活中有着广泛的应用。
例如,购物时计算花费、计算物品的总重量或总价、计算速度和路程等等都需要用到有理数混合运算的知识。
通过这些实际应用的例子,我们可以更好地理解和掌握有理数混合运算的知识。
有理数的乘除混合运算计算题题目 1:(6)×(5)÷(3)解析:先计算乘法,(6)×(5)=30,再计算除法,30÷(3)= 10题目 2:8÷(2)×4解析:从左到右依次计算,8÷(2)= 4,4×4 = 16题目 3:(4)×6÷(2)解析:先计算乘法,(4)×6 = 24,再计算除法,24÷(2) = 12题目 4:12÷(3)×(5)解析:先计算除法,12÷(3) = 4,4×(5) = 20题目 5:(5)×(8)÷(4)解析:先计算乘法,(5)×(8) = 40,再计算除法,40÷(4) = 10题目 6:20÷(4)×5解析:先计算除法,20÷(4) = 5,5×5 = 25题目 7:(3)×8÷6解析:先计算乘法,(3)×8 = 24,再计算除法,24÷6 = 4题目 8:18÷(6)×(3)解析:先计算除法,18÷(6) = 3,3×(3) = 9题目 9:(7)×(6)÷(3)解析:先计算乘法,(7)×(6) = 42,再计算除法,42÷(3) = 14题目 10:24÷(8)×(2)解析:先计算除法,24÷(8) = 3,3×(2) = 6题目 11:(2)×9÷(3)解析:先计算乘法,(2)×9 = 18,再计算除法,18÷(3) = 6解析:先计算除法,16÷(2) = 8,8×(4) = 32题目 13:(5)×4÷(10)解析:先计算乘法,(5)×4 = 20,再计算除法,20÷(10) = 2题目 14:10÷(5)×(6)解析:先计算除法,10÷(5) = 2,2×(6) = 12题目 15:(3)×(7)÷(21)解析:先计算乘法,(3)×(7) = 21,再计算除法,21÷(21) = 1题目 16:15÷(3)×5解析:先计算除法,15÷(3) = 5,5×5 = 25题目 17:(4)×(5)÷(20)解析:先计算乘法,(4)×(5) = 20,再计算除法,20÷(20) = 1题目 18:25÷(5)×(3)解析:先计算除法,25÷(5) = 5,5×(3) = 15题目 19:(6)×8÷(12)解析:先计算乘法,(6)×8 = 48,再计算除法,48÷(12) = 4题目 20:30÷(6)×(2)解析:先计算除法,30÷(6) = 5,5×(2) = 10题目 21:(7)×(9)÷(63)解析:先计算乘法,(7)×(9) = 63,再计算除法,63÷(63) = 1题目 22:36÷(9)×4解析:先计算除法,36÷(9) = 4,4×4 = 16题目 23:(8)×(3)÷(24)解析:先计算乘法,(8)×(3) = 24,再计算除法,24÷(24) = 1解析:先计算除法,42÷(7) = 6,6×(6) = 36题目 25:(9)×(4)÷(36)解析:先计算乘法,(9)×(4) = 36,再计算除法,36÷(36) = 1题目 26:50÷(10)×(5)解析:先计算除法,50÷(10) = 5,5×(5) = 25题目 27:(10)×(5)÷(50)解析:先计算乘法,(10)×(5) = 50,再计算除法,50÷(50) = 1题目 28:60÷(12)×(4)解析:先计算除法,60÷(12) = 5,5×(4) = 20题目 29:(11)×(6)÷(66)解析:先计算乘法,(11)×(6) = 66,再计算除法,66÷(66) = 1题目 30:72÷(9)×(8)解析:先计算除法,72÷(9) = 8,8×(8) = 64。
有理数的乘除法混合运算有理数的乘除法混合运算是数学中的一种常见题型。
对于学习有理数的同学们来说,掌握好这种混合运算的方法和技巧是非常重要的。
在进行有理数的乘除法混合运算时,我们需要遵循一定的顺序和规则。
首先,我们要将题目中的有理数用括号括起来,以免运算时出现错误。
其次,我们要进行乘法和除法运算,按照乘除法的优先级进行计算。
最后,将所有乘法和除法的结果相加或相减,得到最终的答案。
例如,我们来看一个例子:计算表达式2+3×4÷2。
按照乘除法的优先级,先计算乘法和除法。
3×4=12,然后再将12÷2=6。
最后,将2+6=8,所以答案是8。
在进行有理数的乘除法混合运算时,我们还需要注意有理数的正负问题。
正数乘以正数或者负数乘以负数,结果都是正数;正数乘以负数或者负数乘以正数,结果都是负数。
除法运算也是类似的规则,正数除以正数或者负数除以负数,结果都是正数;正数除以负数或者负数除以正数,结果都是负数。
除此之外,我们还需要注意有理数的乘除法运算可以转化为分数的乘除法运算。
通过将有理数转化为分数形式,我们可以更方便地进行计算。
例如,计算1/3×2/5÷4/6,我们可以先进行分数的乘除法运算,然后再将结果转化为有理数的形式。
有理数的乘除法混合运算是数学中的基础知识,我们在学习数学的过程中要多加练习,掌握好这一运算方法。
通过不断的练习和巩固,我们可以提高自己的计算能力和解题能力,为数学学习打下坚实的基础。
总之,有理数的乘除法混合运算是数学中的一种常见题型,通过掌握好运算顺序和规则,以及注意有理数的正负问题,我们可以正确解答这类题目。
同时,将有理数转化为分数的形式,也可以提高我们的计算效率。
希望同学们能够重视这一知识点,努力学好数学。
专题03 有理数的乘除混合运算1.(2022秋·江苏连云港·七年级统考期中)计算(1)8×(−2)×(−5)(2)(−91)÷13(3)(−12−13+34)×(−60) (4)12×(−3)÷(−4)【思路点拨】(1)根据有理数的乘法运算法则和运算顺序计算即可;(2)根据有理数除法运算法则计算即可;(3)利用乘法分配律进行有理数乘法运算即可;(4)根据有理数乘除法运算法则和运算顺序计算即可.【解题过程】解:(1)8×(−2)×(−5)=8×2×5=80;(2)(−91)÷13=-(91÷13)=-7;(3)(−12−13+34)×(−60)= −12×(−60)−13×(−60)+34×(−60) =30+20−45=5;(4)12×(−3)÷(−4)=(−36)×(−14)=9.2.(2022秋·七年级统考课时练习)计算:(1)−2.25÷118×(−8);(2)(−21316)÷(34×98);(3)(−5)÷(−7)÷(−15);(4)(−0.4)÷0.02×(−5);(5)72÷(−8)÷(−12);(6)(−32)÷54÷(−35)×(−14). 【思路点拨】(1)直接利用有理数的乘除运算法则计算得出答案;(2)先计算括号内的乘法,再把除法转化成乘法进行计算即可;(3)把除法转化成乘法进行计算即可;(4)先算除法,再算乘法即可得解;(5)直接利用有理数的乘除运算法则计算得出答案;(6)把除法转化成乘法进行计算即可.【解题过程】(1)−2.25÷118×(−8) =−94×89×(−8)=-2×(-8)=16;(2)(−21316)÷(34×98)=−4516÷2732=−4516×3227 =−103;(3)(−5)÷(−7)÷(−15)=−5×17×115=−121;(4)(−0.4)÷0.02×(−5)=-20×(-5)=100;(5)72÷(−8)÷(−12)=(−9)÷(−12)=34; (6)(−32)÷54÷(−35)×(−14)=−32×45×53×14 =−12.3.(2023·全国·七年级假期作业)计算:(1)−3÷(−34)÷(−34); (2)(−12)÷(−4)÷(−115);(3)(−23)×(−78)÷0.25;(4)(−212)÷(−5)×(−313). 【思路点拨】(1)直接利用有理数的除法运算法则除法变乘法,再利用有理数的乘法运算法则计算得出答案;(2)直接利用有理数的除法运算法则除法变乘法,再利用有理数的乘法运算法则计算得出答案;(3)直接利用有理数的除法运算法则除法变乘法,再利用有理数的乘法运算法则计算得出答案;(4)直接利用有理数的除法运算法则除法变乘法,再利用有理数的乘法运算法则计算得出答案.【解题过程】(1)原式=−3×(−43)×(−43)=−163;(2)原式=(−12)×(−14)×(−56)=−52;(3)原式=(−23)×(−78)×4=73; (4)原式=(−52)×(−15)×(−103)=−53. 4.(2022秋·吉林长春·七年级校考阶段练习)计算.(1)−5÷(−127)×45×(−214)÷7;(2)(512+34−58)÷(−524).【思路点拨】(1)根据有理数的乘除混合运算进行计算即可求解;(2)先将除法转化为乘法,然后根据乘法分配律进行计算即可求解.【解题过程】(1)解:−5÷(−127)×45×(−214)÷7=−5÷(−97)×45×(−94)×17=−5×(−79)×45×(−94)×17=−1(2)解:(512+34−58)÷(−524) =512×(−245)+34×(−245)−58×(−245) =−2−185+3 =−135. 5.(2022秋·全国·七年级专题练习)计算:(1)8×|−6−1|+26 12 ×653.(2)3.2÷ 45×(− 815 )÷(−16). (3)(1 13 + 18 −2.75)×(−24)(4)(−36)×(54−56−712).【思路点拨】(1)去掉绝对值号,再把带分数化为假分数,然后根据有理数的乘法和加法运算法则进行计算即可得解.(2)首先把除法统一化为乘法,再确定结果的符号,再把绝对值相乘即可.(3)首先把括号内的数化成分数,然后利用分配律,最后进行加减计算即可.(4)利用分配律即可转化成有理数的乘法,然后进行有理数的加减运算即可.【解题过程】(1)解: 8×|−6−1|+26 12 ×653=8×|−7|+ 532 ×653=56+3=59.(2)解:原式=165×54×(−815)×(−116) =165×54×815×116 =215;(3)解:原式=(43+18−114)×(−24)=−43×24−18×24+114×24 =−32−3+66=31(4)解:原式=(−36)×54−(−36)×56−(−36)×712=−45+30+21=6.6.(2023·全国·七年级假期作业)计算:(1)(−8)×(−6)×(−1.25)×13; (2)(−81)÷(−214)×49÷(−8).【思路点拨】(1)根据有理数乘法运算法则进行计算即可;(2)根据有理数乘除混合运算法则进行计算即可.【解题过程】(1)解:(−8)×(−6)×(−1.25)×13=−8×1.25×6×13=−10×2=−20;(2)解:(−81)÷(−214)×49÷(−8)=(−81)×(−49)×49×(−18)=−2.7.(2022秋·全国·七年级期末)计算:(1)(−23)×25−6×25+18×25+25;(2)(−12)×(−8)+(−6)÷(−13).【思路点拨】(1)根据逆用乘法分配律进行计算即可求解;(2)根据有理数的四则混合运算进行计算即可求解.【解题过程】(1)解:原式=25×(−23−6+18+1)=25×(−10)=−250;(2)解:原式=12×8+6÷13=4+18=22.8.(2022秋·重庆万州·七年级校联考阶段练习)计算:(1)(−56)×(−1516)÷(−134)×47(2)3.25+(−2.6)+(+534)+(−825)【思路点拨】(1)根据有理数的乘除混合运算法则计算即可;(2)根据有理数的加减混合运算法则计算即可.【解题过程】(1)(−56)×(−1516)÷(−134)×47=(−56)×(−2116)÷(−74)×47 =56×2116×(−47)×47 =7×212×(−47)×47=−24;(2)3.25+(−2.6)+(+534)+(−825) =3.25−2.6+5.75−8.4=(3.25+5.75)−(2.6+8.4)=9−11=−2.9.(2022秋·全国·七年级专题练习)计算:(1)(﹣85)×(﹣25)×(﹣4);(2)﹣215×2311÷(−212);(3)(−124)÷(134−78+712);(4)(79−56+34−718)×36.【思路点拨】(1)先计算(﹣25)×(﹣4),再乘(﹣85)即可得出结果;(2)先将带分数化为假分数,再将除法运算转化为乘法运算;(3)先将括号内通分,再将除法运算转化为乘法运算;(4)利用乘法分配律计算.【解题过程】(1)解:(﹣85)×(﹣25)×(﹣4),=(﹣85)×[(﹣25)×(﹣4)],=﹣85×100,=﹣8500;(2)﹣215×2311÷(﹣212),=﹣115×2511×(﹣25),=2;(3)(﹣124)÷(134﹣78+712),=(﹣124)÷(4224−2124+1424), =(﹣124)÷3524, =(﹣124)×2435,=﹣135;(4)(79−56+34−718)×36,=79×36﹣56×36+34×36﹣718×36,=28﹣30+27﹣14,=55﹣44,=11.10.(2022秋·全国·七年级专题练习)计算(1)−127÷(−156)×138×(−7); (2)(−113+19+512)×36.【思路点拨】(1)先将带分数化为假分数,再利用有理数的乘除法法则计算即可;(2)利用乘法分配律计算即可.【解题过程】解:(1)−127÷(−156)×138×(−7)=−97÷(−116)×118×(−7) =−97×(−611)×118×(−7) =−274;(2)(−113+19+512)×36=−43×36+19×36+512×36 =−48+4+15=−29.11.(2022秋·全国·七年级专题练习)计算:(1)49×1516÷56(2)(12−13+14)×48(3)625÷9+625×89(4)15÷[(23+15)×0.6]【思路点拨】(1)直接根据有理数乘除法法则计算即可得到答案;(2)去括号直接计算即可得到答案;(3)先乘除后加减计算即可得到答案;(4)先去括号在根据法则运算即可得到答案.【解题过程】(1)解:原式=49×1516×65=12;(2)解:原式=12×48−13×48+14×48=24−16+12=20;(3)解:原式=625×19+625×89=625×(19+89)=625(4)解:原式=15÷(23×0.6+15×0.6)=15÷(25+325)=15÷1325=15×2513=513.12.(2022秋·山东青岛·七年级青岛超银中学校考期末)计算下列各题:(1)(−24)×(−34+23+112);(2)(−81)÷214×49÷(−16).【思路点拨】(1)根据分配率进行计算即可求解;(2)先把除法转化为乘法,再进行有理数的乘法运算即可求解.【解题过程】(1)解:(−24)×(−34+23+112)=(−24)×(−34)+(−24)×23+(−24)×112=18−16−2=0;(2)解:(−81)÷214×49÷(−16)=(−81)×49×49×(−116)=1.13.(2022秋·浙江·七年级专题练习)计算(1)34×(−112)÷(−214)(2)(﹣81)÷2.25×49÷(﹣32).(3)−34÷38×(−49)÷(−23)(4)﹣15÷(13−112−3)×68(5)−112÷34×(−0.2)×134÷1.4×(−35).【思路点拨】(1)先统一为乘法运算,再按照有理数乘法法则计算即可;(2)根据除法运算法则除以一个数等于乘以这个数的倒数,进而化简求出即可.(3)先统一为乘法运算,再按照有理数乘法法则计算即可;(4)先算小括号,再按照从左往右的顺序计算即可;(5)先统一为乘法运算,再按照有理数乘法法则计算即可.【解题过程】解:(1)34×(−112)÷(−214) =34×32×49=12. (2)(﹣81)÷2.25×49÷(﹣32)=81×49×49×132=12. (3)−34÷38×(−49)÷(−23) =−(34×83×49×32) =−43. (4)−15÷(13−112−3)×68=−15÷(−256)×68 =15×625×68=244.8.(5)−112÷34×(−0.2)×134÷1.4×(−35)=−(32×43×15×74×57×35) =−0.3.14.(2023春·七年级专题练习)计算:(1)−2.5÷58×(−14); (2)−27÷214×49÷(−24);(3)(−35)×(−312)÷(−114)÷3;(4)−4×12÷(−12)×2;(5)−5÷(−127)×45×(−214)÷7;(6)|−118|÷34×43×|−12|.【思路点拨】(1)把小数化为分数,把除法转化为乘法,再根据乘法法则计算;(2)(3)(5)把带分数化为假分数,把除法转化为乘法,再根据乘法法则计算;(4)把除法转化为乘法,再根据乘法法则计算;(6)先算绝对值,再算乘除法.【解题过程】(1)原式=−52×85×(−14)=1; (2)原式=−27×49×49×(−124)=29; (3)原式=(−35)×(−72)×(−45)×13=-1425;(4)原式=−4×12×(−2)×2=8; (5)原式=−5×(−79)×45×(−94)×17=−1;(6)原式=98×43×43×12=1.15.(2022秋·贵州铜仁·七年级校考阶段练习)乘除计算:(1)(−81)÷214×(−49)÷(−16)(2)1.25÷(−0.5)÷(−212)×1(3)(−2)×32÷(−34)×4;(4)(134−78−712)×(−117)【解题过程】(1)解:(−81)÷214×(−49)÷(−16) =−81×49×(−49)×(−116)=−1;(2)1.25÷(−0.5)÷(−212)×1=54×(−2)×(−25)×1=1;(3)(−2)×32÷(−34)×4 =(−3)×(−43)×4 =16.(4)(134−78−712)×(−117)=74×(−87)+78×87+712×87=−2+1+23 =−13. 16.(2022秋·全国·七年级专题练习)计算:(1)(−3)÷(−134)×0.75÷(−37)×(−6);(2)(−15)×(−0.1)÷125×(−10);(3)[(−72)×(−23)]×[(−35)÷(−815)]. 【思路点拨】(1)首先确定结果的符号,再把除法变为乘法,先约分,后相乘进行计算即可;(2)首先确定结果的符号,再把除法变为乘法,约分后相乘进行计算即可;(3)首先计算括号里面的,再计算括号外面的乘法即可.【解题过程】(1)解:(−3)÷(−134)×0.75÷(−37)×(−6) =3×47×34×73×6 =18;(2)解:(−15)×(−0.1)÷125×(−10)=−(15×110×25×10) =−5;(3)解:[(−72)×(−23)]×[(−35)÷(−815)]=(72×23)×(35×158) =48×98=54.17.(2023·全国·九年级专题练习)计算(1)−25÷(−13)÷(−325)×(523)(2)1÷(−18)+73÷|15−23|【思路点拨】(1)先将带分数化为假分数,再根据有理数乘除法的运算法则按照同级运算从左到右的顺序计算即可得到答案;(2)先算绝对值里面的,再根据乘除互化,将除法转化为乘法,再结合有理数加法运算法则求解即可得到答案.【解题过程】(1)解:−25÷(−13)÷(−325)×(523) =−25÷(−13)÷(−175)×173=−25×(−3)×(−517)×173=−2;(2)解:1÷(−18)+73÷|15−23|=1×(−8)+73÷|315−1015| =1×(−8)+73÷|−715| =1×(−8)+73÷715=1×(−8)+73×157=−8+5=−3.18.(2022秋·全国·七年级专题练习)计算:(1)15×(−5) ÷ (−15)×5(2)2÷(−37)×47÷(−517) (3)(+512)÷(−4425)×(−1315)÷(−3118)(4)(−56)÷(−3)×|−145|×(−2)【思路点拨】(1)原式先把除法转换为乘法后,再进行乘法运算即可;(2)原式先把除法转换为乘法后,再进行乘法运算即可;(3)原式先把除法转换为乘法后,再进行乘法运算即可;(4)原式先把除法转换为乘法后,再进行乘法运算即可.【解题过程】(1)解:15×(−5)÷(−15)×5 =15×(−5)×(−5)×5 =(−1)×(−5)×5=25;(2)解:2÷(−37)×47÷(−517) =2×(−73)×47×(−736) =1427;(3)解:(+512)÷(−4425)×(−1315)÷(−3118) =112÷(−10425)×(−1315)÷(−5518) =−112×25104×1315×1855 =38;(4)解:(−56)÷(−3)×|−145|×(−2)=56×13×95×(−2)=−1.19.(2023·全国·七年级假期作业)计算:(1)(−3)÷(−134)×0.75÷(−37)×(−6);(2)(−15)×(−0.1)÷125×(−10); (3)[(−72)×(−23)]×[(−35)÷(−815)]. 【思路点拨】根据有理数的加减乘除混合运算法则及运算顺序计算即可得到答案.【解题过程】(1)解:(−3)÷(−134)×0.75÷(−37)×(−6)=3×47×34×73×6 =18;(2)解:(−15)×(−0.1)÷125×(−10)=−(15×110×25×10) =−5;(3)解:[(−72)×(−23)]×[(−35)÷(−815)] =(72×23)×(35×158) =48×98=54.20.(2022秋·山东济宁·七年级统考期中)请你先认真阅读材料:计算(﹣130)÷(23﹣110+16﹣25) 解法1:(﹣130)÷(23﹣110+16﹣25) =(﹣130)÷[(23+16)﹣(110+25)]=(﹣130)÷(56−12)=(﹣130)÷13=﹣130×3=﹣110 解法2:原式的倒数为:(23﹣110+16﹣25)÷(﹣130) =(23﹣110+16﹣25)×(﹣30)=﹣20+3﹣5+12=(﹣20﹣5)+(3+12)=﹣10再根据你对所提供材料的理解,选择合适的方法计算:(﹣142)÷(16−314+23−27). 【思路点拨】观察解法2,可让除数和被除数交换位置进行计算,最后的结果取计算结果的倒数即可.【解题过程】解:原式的倒数为:(16−314+23−27)÷(−142) =(16−314+23−27)×(−42)=−7+9-28+12=−14∴原式=−114.。