概率论与数理统计 第六章--数理统计的基本概念
- 格式:ppt
- 大小:394.50 KB
- 文档页数:36
概率论与数理统计基本概念
概率论与数理统计是研究事件发生的可能性,以及由此衍生的结果
的一门学科。
它可以帮助人们提高分析和预测能力。
可以帮助我们了
解自然界及其客观原理,以及把握当代社会经济实体及其活动。
一、概率概念:
1. 随机事件:指事件发生以来,在所有结果中,用概率值去衡量其发
生的可能性,及其各个单一结果的概率分布情况;
2. 概率:是用来衡量某一随机事件发生的可能性的数值,可以给出这
个事件发生的可能性大小;
3. 概率分布:是某一随机变量及其可能取值之间发生关系的一种描述;
二、数理统计概念:
1、统计:是指对数据进行定量描述,尝试从数据中获得解释性的统计
特征;
2、变量:是指以数值形式表示的某类事物,是研究目标内容分析的一
种实际基础;
3、统计分布:是给定一组数据,通过统计手段,计算出变量的概率分
布情况,及其可能的变化规律;
4、极限定理:是一种概率论的定理,旨在探讨一个系统在重复抽样下,抽样结果的收敛情况;
5、数据描述:是指对数据的描述,可以让人简单明了地理解数据,及
其特征和趋势;
6、统计推断:是指根据统计样本信息,以概率结果作为有效依据,做
出关于总体参数情况的推断;
7、回归分析:是指建立一条回归函数模型,以描述解释变量对被解释
变量的影响;
8、判别分析:是指构建一个准确的模型,能够根据输入的观测值来准
确地判断属于哪一类人或物;
9、聚类分析:是指将一组数据进行分类,从而揭示内部数据间的关系,辅助决策;
10、卡方检验:是指判断某一种统计判断是否证实对某一总体分布结
果的检验,从而决定是否接受或拒绝假设。
第六章数理统计的基本概念一、内容提要数理统计学是数学的一个分支,它的任务是研究怎样用有效的方法去收集和使用带有随机性的数据,建立数学方法,去揭示所研究问题的统计规律性。
它的主要内容是由样本来推断总体。
(一)基本概率1. 总体、个体与样本:研究对象的全体称为总体,用X、Y等表示。
组成总体的每个元素称为个体或单元。
从总体中按一定的规律抽出一些个体就称为抽样,所抽及的个体称为样本,用X1,X2,…,X n表示。
一般样本容量小于50的样本称为小样本,样本容量大于等于50的样本称为大样本,但在样本不易实现时,样本容量大于30的样本可看作大样本。
包含有限个个体的总体称为有限总体,包含无限个个体的总体称为无限总体。
2. 简单随机抽样与简单随机样本:如果总体中各个个体被抽到的机会是均等的,并且在抽取一个个体后总体的成分不变,那么,抽得的一些个体就能很好地反映总体的情况,基于这种想法抽取个体的方法称为简单随机抽样。
抽得的这些个体构成一个样本,用(X1,X2,…,X n)表示,n为样本容量,X1,X2,…,X n应是n个相互独立的且与总体X同分布的随机变量,并将这种样本称为简单随机样本,简称样本。
本书所讨论的样本,如无特别声明,均指简单随机样本。
样本(X1,X2,…,X n)是n个相互独立的且与总体同分布的随机变量,而一次抽取之后,12(X 1,X 2,…,X n )又是n 个具体的数据x 1,x 2…,x n ,即样本的一组观测值,在不致引起混淆的情况下,样本和样本值都用(X 1,X 2,…,X n )表示,这就是样本的二重性。
3. 样本分布函数(或经验分布函数):设样本(X 1,X 2,…,X n )的观测值按由小到大次序排列后为:**2*1n x x x ≤≤≤Λ定义()()*1**1*0,,,,1,2,,11,.n k k n x x kF x x x x k n n x x +⎧⎪⎪=≤<=-⎨⎪⎪≥⎩p L ,为样本分布函数对于样本的不同观测值(x 1,x 2…,x n ),我们将得到不同的F n (x ),所以F n (x )是一个随机变量。
第6章数理统计的基本概念一. 统计的基本概念二. 统计量的分布三. 抽样分布,由大数定律:(3)则在 8.1,需确定估计区间()。
(2)构造2σ甲μ甲μ乙μμ−→−PX1.8=x统计工作最基本内容:1.估计电视机寿命的平均值µ,估计电视机寿命的方差2.比较两厂电视机寿命值有无差别,方差有无差别。
总体样本统计量参数点估计假设检验区间估计目的:(方差同理)方法:()··21是否一致与μμ()··2221是否一致与σσ()··0是否一致与μμ()··22是否一致与σσ().,...,21n x x x 统计工作的基本步骤1.收集资料:2.统计分析:对数据整理和分析3.统计推断:i )点估计:确定未知参数θ的估计量ii )区间估计:确定(左,右)区间(1)参数估计:(2)假设检验:i )推断两个总体均数是否一致ii )推断两个总体方差是否一致iii )推断一个总体均数有无变化iv )推断一个总体方差有无变化⎪⎪⎩⎪⎪⎨⎧-2221212σσμμσμθ一. 统计的基本概念()为样本一组观察值。
,21n x x x ⎩⎨⎧总体有限总体(观察值有限个)无限总体(观察值无穷多个)随机变量 X 总体⇔(n 为样本容量)研究对象观察值的全体(样本是从总体中抽取的部分个体)n X X X 21,个体:每个观察值。
独立同分布,则称()n X X X 21,为简单随机样本,简称为样本。
(),,21n X X XnX X X 21,(),...2,1,===i p x X P i i ()n n x X x X x X P ===,...,2211()∏===ni i x X P 1样本联合分布列:(1)代表性:保证总体中每个个体有同等机会被抽到。
(2)独立性:每次抽取独立进行,各个体值互不影响。
(1)离散型:总体X 的分布列()发生的概率x x x 样本点n 21,与总体同分布()n x x x F ,...,21()n x x x f ,...,21(2)连续型:总体X 的分布密度f (x )样本联合密度:(3)总体X 的分布函数F (x )样本联合分布函数为:()()()n x f x f x f 21=()()()n x F x F x F 21=()发生的可能性x x x 样本点n 21,n X X X ,,21n X X X ,,21()n X X X 21,设为总体X 的样本,()n X X X T T 21,=函数,且不含任何未知参数,称T 为统计量。
Ch 6 数理统计的基本概念§6.1 基本概念 一、总体与样本1、总体——研究对象的全体,记为X 。
2、个体——构成总体的每一个对象,记为i X 。
3、总体容量——总体中包含的个体的个数。
有限总体——容量有限;无限总体——容量无限。
为推断总体X 的分布,从总体中抽取n 个个体,则对应n 个r.v.n X X X .....2,1——来自于总体X 的一个样本。
n X X X ......,21的取值((n x x x ,.....,21)--观测结果)称为样本的观测值,简称为样本值,整个抽取过程称之为抽样。
抽取的目的是根据样本的取值情况推断总体情况,因此应尽可能的使抽取的样本能反映总体的状况,故要求抽取的样本具有以下性质:文档收集自网络,仅用于个人学习⑴ 代表性:样本中每个r.v.i X 与总体X 具有相同的分布。
文档收集自网络,仅用于个人学习⑵ 独立性:n X X X ......,21相互独立。
——简单的随机抽样所得的样本称为简单的随机样本;若总体X 的分布函数为F (x ),则样本n X X X .....2,1的联合分布函数)().....,(121*i ni n x F x x x F =∏=。
文档收集自网络,仅用于个人学习若X 为连续型,且d.f 为f(x),且联合p.d.f 为:)()....,(121*i ni n x f x x x f =∏= 若X 为离散型,且分布律为:....2,1,)(===k p x X P k k 则联合分布律:in i i in n i i p p p x X x X x X P ....).....,(212211⋅⋅====。
...2,1.....3,2,1=in i i i 二、统计量Def:不含有任何未知数的关于样本空本空间的函数称为统计量。
e.g.1 设总体X~),(2σμN ,其中2,σμ未知,(n X X X .....2,1)为取自总体X 的一个样本,则:∑∑==--==n i i n i i X X n S X n X 1221)(11,1均为统计量。
《概率论与数理统计》(19)电子科技大学应用数学学院,徐全智吕恕主编。
2004版第6章数理统计的基本概念概率论与数理统计是两个紧密联系的姊妹学科,概率论是数理统计学的理论基础,而数理统计学则是概率论的重要应用.数理统计学是使用概率论和数学的方法,研究如何用有效的方式收集带有随机误差的数据,并在设定的模型下,对收集的数据进行分析,提取数据中的有用信息,形成统计结论,为决策提供依据. 这就不难理解,数理统计应用的广泛性,几乎渗透到人类活动的一切领域! 如:农业、生物和医学领域的“生物统计”,教育心理学领域的“教育统计”,管理领域的“计量经济”,金融领域的“保险统计”等等,这些统计方法的共同基础都是数理统计.数理统计学的内容十分丰富,概括起来可以分为两大类:其一是研究如何用有效的方式去收集随机数据,即抽样理论和试验设计;其二是研究如何有效地使用随机数据对所关心的问题做出合理的、尽可能精确和可靠的结论,即统计推断.本书主要介绍统计推断的基本内容和基本方法. 在这一章中先给出数理统计中一些必要的基本概念,然后给出正态总体抽样分布的一些重要结论.6.1总体、样本与统计量一、总体在数理统计中,我们将研究对象的全体称为总体或母体,而把组成总体的每个基本元素称为个体.二、样本样本是按一定的规定从总体中抽出的一部分个体" 这里的“按一定的规定”,是指为保证总体中的每一个个体有同等的被抽出的机会而采取的一些措施" 取得样本的过程,称为抽样.三、统计量6.2抽样分布统计量是我们对总体的分布规律或数字特征进行推断的基础. 由于统计量是随机变量,所以在使用统计量进行统计推断时必须要知道它的分布. 统计量的分布称为抽样分布.一、三个重要分布二、抽样分布定理6.3应用一、顺序统计量及其应用二、极值的分布及其应用。