有限元与有限差分法基础
- 格式:ppt
- 大小:4.89 MB
- 文档页数:31
有限元法与有限差分法的主要区别有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
从差分的空间形式来考虑,可分为中心格式和逆风格式。
考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
1.1 概念有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
1.2 差分格式(1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
(2)从差分的空间形式来考虑,可分为中心格式和逆风格式。
(3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
1.3 构造差分的方法构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
2. FEM2.1 概述有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
2.2 原理有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学、土力学的数值模拟。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
有限差分法和有限元法的区别
有限差分法是一类数值分析方法,它是基于差分方程来解决一定类别
的偏微分方程或积分方程,以求得近似解。
它将偏微分方程抽象成一系列
分布在有限区域内的相连点上的离散数学模型,从而使得本来不可解的微
分方程可以近似地变成可解的差分公式,而实际上只是用有限个离散量来
代替连续量,实现状态的模拟和描述。
有限元法也称为有限元分析,是解决偏微分方程的数值计算方法之一。
有限元法将一个定义在有界区域上的连续域分解为有限个单元,并建立一
种合理的元素模型,用此模型描述物体的本构特性和它们在边界处的分布,并以此为基础通过拉格朗日乘子法解决局部有限元素方程,组合解得整体
有限元素解,从而解决问题。
两者的主要区别在于:1、求解的机制不同,有限差分法是将偏微分
方程转化为离散数学模型,而有限元法是将定义在有界区域上的连续域分
解为有限个单元,然后通过拉格朗日乘子法解决局部有限元素方程;2、
精度不同,有限差分法的精度取决于离散化的程度,而有限元法依赖于所
建立模型的准确性,有限元法的精度普遍比有限差分法要高;3、应用范
围不同,有限差分法能处理一些更加复杂的问题,而有限元法只能处理。
有限元法原理将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表达。
从而使一个连续的无限自由度问题变成离散的有限自由度问题。
运用步骤步骤1:剖分:将待解区域进行分割,离散成有限个元素的集合.元素(单元)的形状原则上是任意的.二维问题一般采用三角形单元或矩形单元,三维空间可采用四面体或多面体等.每个单元的顶点称为节点(或结点).步骤2:单元分析:进行分片插值,即将分割单元中任意点的未知函数用该分割单元中形状函数及离散网格点上的函数值展开,即建立一个线性插值函数步骤3:求解近似变分方程用有限个单元将连续体离散化,通过对有限个单元作分片插值求解各种力学、物理问题的一种数值方法。
有限元法把连续体离散成有限个单元:杆系结构的单元是每一个杆件;连续体的单元是各种形状(如三角形、四边形、六面体等)的单元体。
每个单元的场函数是只包含有限个待定节点参量的简单场函数,这些单元场函数的集合就能近似代表整个连续体的场函数。
根据能量方程或加权残量方程可建立有限个待定参量的代数方程组,求解此离散方程组就得到有限元法的数值解。
有限元法已被用于求解线性和非线性问题,并建立了各种有限元模型,如协调、不协调、混合、杂交、拟协调元等。
有限元法十分有效、通用性强、应用广泛,已有许多大型或专用程序系统供工程设计使用。
结合计算机辅助设计技术,有限元法也被用于计算机辅助制造中。
有限差分法the Finite Difference Method微分方程和积分微分方程数值解的方法。
基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。
数值模拟偏微分方程的三种方法介绍(有限差分方法、有限元方法、有限体积方法)I.三者简介有限差分方法(Finite Difference Methods)是数值模拟偏微分方程最早采用的方法,至今仍被广泛使用。
该方法包括区域剖分和差商代替导数两个步骤。
首先将求解区域划分为差分网格,用有限个网格节点代替连续的求解区域。
其次,利用Taylor级数展开等方法将偏微分方程中的导数项在网格节点上用函数值的差商代替进行离散,从而建立以网格节点上的值为未知量的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且十分成熟的数值方法。
差商代替导数后的格式称为有限差分格式,从格式的精度来考虑,有一阶格式、二阶格式和高阶格式。
从差分的空间离散形式来考虑,有中心格式和迎风格式。
对于瞬态方程,考虑时间方向的离散,有显格式、隐格式、交替显隐格式等。
目前常见的差分格式,主要是以上几种格式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于结构网格,网格的大小一般根据问题模型和Courant 稳定条件来决定。
有限元方法(Finite Element Methods)的基础是虚位移原理和分片多项式插值。
该方法的构造过程包括以下三个步骤。
首先,利用虚位移原理得到偏微分方程的弱形式,将计算区域划分为有限个互不重叠的单元(三角形、四边形、四面体、六面体等),在每个单元上选择合适的节点作为求解函数的插值点,将偏微分方程中的变量改写成由各变量或其导数的节点值与所选用的分片插值基函数组成的线性表达式,得到微分方程的离散形式。
利用插值函数的局部支集性质及数值积分可以得到未知量的代数方程组。
有限元方法有较完善的理论基础,具有求解区域灵活(复杂区域)、单元类型灵活(适于结构网格和非结构网格)、程序代码通用(数值模拟软件多数基于有限元方法)等特点。
有限元方法最早应用于结构力学,随着计算机的发展已经渗透到计算物理、流体力学与电磁学等各个数值模拟领域。
有限差分法和有限元法
有限差分法(Finite Difference Method)和有限元法(Finite Element Method)是两种常用的数值计算方法,用于求解偏微分方程的数值解。
有限差分法是通过将求解区域离散化为网格,然后在各个网格节点处用差分逼近偏微分方程中的导数项,将偏微分方程转化为代数方程组。
通过求解这个方程组,可以得到离散节点上的数值解。
有限差分法适用于一维、二维或三维的问题,可用来处理线性或非线性、稳定或非稳定的偏微分方程。
有限差分法的优点是简单易实现,容易理解和计算,但是对于复杂的几何形状和边界条件,离散网格的选择可能会对精度和计算结果产生较大的影响。
有限元法则是通过将求解区域划分为互不重叠的有限元,每个有限元内部采用局部函数近似原方程,然后将所有有限元的近似解拼接在一起,形成整个求解区域上的近似解。
有限元法通常在每个有限元上构造基函数,通过求解代数方程组确定基函数的系数,从而得到整个求解区域上的数值解。
有限元法适用于一维、二维或三维的问题,能够处理各种几何形状和边界条件,适用范围更广。
有限元法的优点是对复杂几何形状的适应性好,精度高,但是相对于有限差分法而言,复杂度较高,需要更多的计算量和计算时间。
总体来说,有限差分法更适用于简单的几何形状和边界条件,而有限元法更适用于复杂的几何形状和边界条件。
两种方法在
实际的工程和科学计算中都有广泛的应用,选择哪种方法取决于具体问题的性质和求解的要求。
有限元法,有限差分法,有限体积法
有限元法、有限差分法和有限体积法都是数值计算方法,用于求解偏微分方程的数值解。
有限元法是一种将连续问题离散化为有限个简单子问题的方法,将连续的物理问题转化为离散的数学问题,通过求解离散问题得到连续问题的近似解。
它将求解区域分割成有限个小区域,每个小区域内的解用一组基函数表示,通过求解基函数系数得到整个求解区域的解。
有限差分法是一种将偏微分方程中的导数用差分近似表示的方法,将求解区域离散化为有限个网格点,通过差分方程求解得到每个网格点的解,从而得到整个求解区域的解。
有限体积法是一种将偏微分方程中的积分用体积平均值表示的方法,将求解区域离散化为有限个体积元,通过求解体积元上的平衡方程得到每个体积元的解,从而得到整个求解区域的解。
这三种方法各有优缺点,适用于不同类型的问题。
在实际应用中,需要根据具体问题的特点选择合适的数值计算方法。
有限差分有限元有限体积有限差分、有限元和有限体积是数值计算方法中常用的三种离散化方法。
它们的核心思想是将微分方程式转化为一系列有限的点上的代数方程式,将连续问题转化为离散问题。
一、有限差分法有限差分法是将微分方程的导数用差商来逼近的方法,用差商来代替微分运算。
用区间的两个端点上的函数值之差来代替区间内函数导数的平均值。
在连续的区间上进行近似,大大减小了计算量。
有限差分法是一种较为简单的数值解法,适用于规则网格的微分方程求解,被广泛应用在流体力学、结构力学、电场问题等领域中。
二、有限元法有限元法是将求解域分成若干个划分元,然后在每个单元内用多项式函数逼近问题的解,最终利用点、线、面元件的连接关系来求解整体问题的一种方法。
该方法可以处理复杂的几何形状和物理变化,适用于非常规的边界条件和材料特性,解决超过几百万自由度的三维大规模问题。
三、有限体积法有限体积法是将求解域分成若干个控制体,对质量、能量、动量等守恒量在各个控制体上进行积分,从而推导出控制体内分布的方程。
该方法以区域的体积分为基础,在各个控制体内求解守恒方程。
该方法适用于复杂的多组分、多相流动的领域以及非稳态或非线性问题。
无论是有限差分、有限元还是有限体积法,其核心思想都是通过把连续的微分方程式离散求解,从而转化为一系列有限的点上的代数方程式,解决了连续问题转化为离散问题的过程,从而通过离散求解代数方程式来得到问题的解。
这三种数值计算方法的应用使科学计算得以更加高效、精确地进行,对现代计算、科学技术的推进起到了巨大的贡献。
有限差分,有限元,有限体积等等离散方法的区别介绍一、区域离散化所谓区域离散化,实质上就是用一组有限个离散的点来代替原来连续的空间。
实施过程是;把所计算的区域划分成许多互不重迭的子区域,确定每个子区域的节点位置及该节点所代表的控制容积。
节点:需要求解的未知物理量的几何位置;控制容积:应用控制方程或守恒定律的最小几何单位。
一般把节点看成是控制容积的代表。
控制容积和子区域并不总是重合的。
在区域离散化过程开始时,由一系列与坐标轴相应的直线或曲线簇所划分出来的小区域称为子区域。
网格是离散的基础,网格节点是离散化物理量的存储位置。
大家都知道,常用的离散化方法有:有限差分法,有限元法,有限体积法。
1. 有限差分法是数值解法中最经典的方法。
它是将求解区域划分为差分网格,用有限个网格节点代替连续的求解域,然后将偏微分方程(控制方程)的导数用差商代替,推导出含有离散点上有限个未知数的差分方程组。
这种方法发展比较早,比较成熟,较多用于求解双曲线和抛物线型问题。
用它求解边界条件复杂、尤其是椭圆型问题不如有限元法或有限体积法方便。
2. 有限元法是将一个连续的求解域任意分成适当形状的许多微小单元,并于各小单元分片构造插值函数,然后根据极值原理(变分或加权余量法),将问题的控制方程转化为所有单元上的有限元方程,把总体的极值作为各单元极值之和,即将局部单元总体合成,形成嵌入了指定边界条件的代数方程组,求解该方程组就得到各节点上待求的函数值。
对椭圆型问题有更好的适应性。
有限元法求解的速度较有限差分法和有限体积法慢,在商用CFD软件中应用并不广泛。
目前的商用CFD软件中,FIDAP采用的是有限元法。
3. 有限体积法又称为控制体积法,是将计算区域划分为网格,并使每个网格点周围有一个互不重复的控制体积,将待解的微分方程对每个控制体积积分,从而得到一组离散方程。
其中的未知数十网格节点上的因变量。
子域法加离散,就是有限体积法的基本方法。
就离散方法而言,有限体积法可视作有限元法和有限差分法的中间产物。
计算电磁场理论中的有限差分法与有限元法电磁场理论是电磁学的重要组成部分,研究电磁场的分布和变化规律对于解决实际问题具有重要意义。
在计算电磁场中,有限差分法和有限元法是两种常用的数值计算方法。
本文将从理论原理、应用范围和优缺点等方面对这两种方法进行探讨。
有限差分法是一种将连续问题离散化的方法,通过将连续的电磁场分割成网格,然后在每个网格上进行离散计算。
这种方法的基本思想是将微分方程转化为差分方程,然后利用差分方程进行求解。
有限差分法的优点是简单易懂,计算过程直观,适用于各种电磁场问题的求解。
然而,由于差分法中的网格离散化会引入一定的误差,所以在计算精度上存在一定的限制。
与有限差分法相比,有限元法是一种更加精确的数值计算方法。
有限元法将电磁场问题的求解区域划分为有限个小单元,然后在每个小单元上建立适当的插值函数,通过求解代数方程组得到电磁场的近似解。
有限元法的优点是可以处理复杂的几何形状和材料特性,适用于各种边界条件和非线性问题。
然而,有限元法的计算过程相对较为复杂,需要对问题进行合理的离散化和网格划分,同时对于大规模问题,计算量也较大。
在实际应用中,根据具体问题的特点和求解要求,选择合适的数值计算方法是十分重要的。
对于简单的电磁场问题,如一维导线的电流分布,可以选择有限差分法进行求解。
而对于复杂的电磁场问题,如三维空间中的电磁波传播,有限元法更适合。
此外,有限差分法和有限元法还可以结合使用,通过将两种方法的优点相结合,提高计算精度和效率。
除了理论原理和应用范围,有限差分法和有限元法的优缺点也值得关注。
有限差分法的优点是简单易懂,计算过程直观,而且对于一些简单问题可以得到较为准确的结果。
然而,由于差分法中的网格离散化会引入一定的误差,对于复杂问题的求解精度有限。
相比之下,有限元法可以处理复杂的几何形状和材料特性,适用于各种边界条件和非线性问题,计算精度较高。
然而,有限元法的计算过程相对复杂,需要对问题进行合理的离散化和网格划分,同时对于大规模问题计算量较大。
时域有限差分有限元
时域有限差分(FDTD)和有限元法(FEM)是两种常用的数值模
拟方法,用于求解时域中的波动现象和电磁场问题。
它们在工程学、物理学和地球科学等领域都有广泛的应用。
首先,让我们从时域有限差分(FDTD)方法开始。
FDTD方法是
一种数值求解Maxwell方程组的离散化方法,它将时域Maxwell方
程组转化为差分形式,通过在空间和时间上进行离散化,将连续的
时域问题转化为离散的网格问题。
FDTD方法的优点包括易于理解和
实现、适用于各种介质和边界条件,能够模拟宽频段的波动现象等。
在电磁场、光学、天线设计等领域得到了广泛的应用。
其次,让我们来看看有限元法(FEM)。
有限元法是一种广泛应
用的数值分析方法,用于求解偏微分方程和变分问题。
在时域中,
有限元法可以用于求解Maxwell方程组、热传导方程等问题。
有限
元法将求解区域分割成有限数量的单元,通过建立单元之间的关系,建立整个系统的离散方程,然后通过数值方法求解得到近似解。
有
限元法的优点包括适用于复杂几何形状、能够处理各向异性材料、
可以考虑不同类型的边界条件等。
综上所述,时域有限差分和有限元法都是重要的数值模拟方法,在不同的领域有着广泛的应用。
它们各自有着特点和适用范围,选
择合适的方法取决于具体的求解问题和模拟需求。
在工程实践中,
通常需要根据具体情况来选择合适的数值模拟方法,以获得准确的
仿真结果。
数值计算中的有限元和有限差分方法数值计算是一种利用数字来求解数学问题的技术。
在各个领域中,数值计算都被广泛应用,尤其是在工程计算中具有重要的地位。
有限元和有限差分方法是数值计算的两个重要工具,本文将介绍它们的原理、优缺点以及应用。
一、有限元方法有限元方法(Finite Element Method,简称FEM)是一种适用于工程力学、流体力学、热传导等问题的数值计算方法。
首先将问题区域离散化成若干个小区域,每个小区域称为有限元;然后通过对每个有限元的变形、应力和应变的计算,得到整个问题的解。
有限元方法的基本原理是建立一个局部变形和应力的数学模型,借助于位移和应力的离散函数来代表局部信息,并将不连续的位移和应力函数在结点处相互连接,形成一个连续作用的整体模型,从而求解整个问题的解。
通过该方法可以精确地求解各种材料构件的形变、应变以及应力分布等问题,并且具有灵活性和广泛性。
有限元方法的优点是求解精度较高,分析结果可靠。
可以分析复杂的问题以及非线性问题,并可进行多物理场耦合分析。
此外,还可以基于现有的有限元软件进行建模分析,避免重复造轮子。
然而,它也存在限制,例如建模时需要对问题进行适当的假设,并且需要对材料力学性质等信息有一定的了解。
此外,考虑更复杂的物理现象时,需要使用更高阶的元来表示求解方程,这会导致计算量增加,计算时间增长。
二、有限差分法有限差分方法(Finite Difference Method,简称FDM)是一种常用的求解微分方程的数值计算方法。
该方法将微分方程中的导数用有限差分的形式表示出来,从而将连续问题离散化成为一个离散点问题,并通过计算在各个离散点上函数值的差分,从而得到微分方程的数值解。
有限差分方法的基本思想是将连续函数转化为离散函数,然后在离散点上近似求解微分方程。
该方法简单易懂,计算量小,代码实现相对容易。
因此,将微分方程离散化是数值计算中经常采用的方法。
与有限元方法相比,有限差分方法在处理一些简单问题的时候表现更好,计算速度快,精度也有保障。
有限元法,有限差分法和有限体积法的区别有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
从差分的空间形式来考虑,可分为中心格式和逆风格式。
考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。