第五章GPS测量误差来源
- 格式:ppt
- 大小:2.36 MB
- 文档页数:15
GPS测量的误差来源分析与应对措施摘要:gps测量的误差直接影响着gps定位精度,本文按其产生的来源、性质及对gps系统的影响等进行了介绍和初步分析,提出了相应的措施以便消除或削弱它们对测量成果的影响。
关键词:gps误差;来源定位;精度;应对措施中图分类号:th161 文献标识码:a 文章编号:一、概述gps(globalpositioningsystem)是美国国防部为满足军事部门对海上、陆地和空中设施进行高精度导航和定位的要求而建立的全球卫星定位系统。
该系统具有全球性、全天候、连续性等三维导航和定位能力,并具有良好的抗干扰性和保密性。
1.gps系统的组成gps全球卫星定位系统由空间卫星群、地面监控系统和用户使用的gps卫星接收设备三大部分组成。
2.gps的主要特点(1)全球覆盖连续导航定位:由于gps有24颗卫星,且分布合理,轨道高达20200km,所以在地球上和近地空间任何一点,均可连续同步地观测4颗以上卫星,实现全球、全天候连续导航定位。
(2)高精度三维定位:gps能连续地为各类用户提供三维位置、三维速度和精确时间信息。
gps提供的测量信息多,既可通过伪码测定伪距,又可测定载波多普勒频移、载波相位。
(3)抗干扰性能好、保密性强;gps采用数字通讯的特殊编码技术,即伪噪声码技术,因而具有良好的抗干扰性和保密性。
二、gps测量的误差来源分析gps测量的主要误差来源可分为:①与gps卫星有关的误差。
②与信号传播有关的误差。
③与接收设备有关的误差。
1.与卫星有关的误差(1)卫星星历误差由于卫星星历所给出的卫星在空间的位置与卫星的实际位置之差称卫星星历误差。
它属于一种起算数据的误差,其大小取决于卫星跟踪站的数量及空间分布、观测值的数量及精度、轨道计算时所用的轨道模型及定轨软件的完善程度等,其对单点定位有严重的影响,在精密相对定位中也是一个重要的误差来源。
削弱此误差的主要措施有:①建立自己的卫星跟踪网独立定轨。
GPS卫星定位误差习题〈习题1〉试述GPS测量定位中误差的种类,并说明产生的原因。
〈习题2〉试述GPS定位误差来源。
并详细说明各类误差来源影响特征与对策。
〈习题3〉什么是星历误差?它是怎样产生的?如何削弱或消除其对GPS定位所带来影响?〈习题4〉电离层误差、对流层误差是怎样产生的?你认为采用何种方法对削弱GPS测量定位所带来的影响最为有效。
为什么?〈习题5〉在GPS测量定位中,多路径效应是怎样产生的?如何削弱多路径效应对GPS测量定位所带来的影响?〈习题6〉与接收机有关的误差包括哪几种?怎样削弱其影响?第五章GPS卫星定位误差答案习题一参考答案:GPS定位误差分类1.按误差来源分类(1)与卫星有关误差星历误差卫星钟差相对论效应影响(2)与卫星信号有关误差电离层延迟影响对流层延迟影响多路径效应影响(3)与接收机有关误差接收机钟差天线相位中心变化影响位置误差2.按误差性质分类系统误差:钟差、星历误差、电离层延迟影响、对流层延迟影响偶然误差:多路径效应影响、位置误差、天线相位中心变化影响习题二参考答案:GPS定位误差来源有三个构成量:(1)卫星误差:GPS信号的自身误差及人为的SA误差;(2)GPS信号从卫星传播到用户接收天线的传播误差;(3)接收误差:GPS信号接收机所产生的GPS信号测量误差。
按误差产生内容分:A 卫星误差:(1)星历误差:用星历误差计算出的GPS卫星在轨位置与其真实位置之差的精度损失;(2)星钟误差:星钟A系数代表性误差的精度损失。
B 传播误差:电离层时延改正误差;对流层时延改正误差;多路径误差;相对论效应误差,即频率常数补偿导致的补偿残差。
C 接收误差:接收机钟误差;接收机位置误差;天线相位中心误差。
各种误差与对策:〈1〉星历误差:由星历给出的卫星空间位置与卫星实际位置之差星历误差分预报星历误差和实测星历误差①预报星历误差的来源:依据GPS观测数据"外推"出来的卫星轨道参数和SA技术预报行李误差的特征:24h变化异彩的系统误差影响:5--10m;100-300m②实测星历误差的来源:跟踪监测网的数量,跟踪监测网的分布,跟踪观测量及精度和处理软件性能实测星历误差的特征:偶然误差实测星历误差的影响:10-7---10-9解决决星历误差的对策:建立完善的GPS卫星跟踪监测网精度定轨相对定位〈2〉星钟误差:与GPS对间基准偏差星钟误差来源:△t=a0+a1(t-t0)+a2(t-t0)2△t 为钟差改正数;a0为钟偏即钟差;a1为钟速即频偏;a2为钟速变频即频漂特征:系统误差影响:△t<1ms解决星钟误差的对策:钟差改正〈3〉电离层时延改正误差(电离层折射误差)来源:天体强辐射,气体分子电离产生大量自由电子和正电荷(离子),导致介质弥散效应。
测绘技术中常见的GPS测量误差及其处理方法GPS测量误差是测绘技术中常见的一个问题,它会对测量结果的准确性和可靠性产生一定的影响。
本文将从几个方面讨论GPS测量误差及其处理方法,以帮助读者更好地理解和运用GPS测量技术。
一、GPS测量误差的来源GPS测量误差主要来自以下几个方面:1. 星历误差:GPS卫星的轨道预报存在一定的误差,这会导致卫星位置的偏差。
从而引起接收器测量结果的不准确。
2. 电离层延迟:GPS信号在通过电离层时会发生传播速度变化,从而产生延迟。
这种延迟会导致测量结果的偏移。
3. 对流层延迟:GPS信号在通过对流层时也会发生传播速度变化,引起延迟。
这个延迟主要受天气条件的影响,如温度、湿度等,会导致测量误差的增大。
4. 多径效应:GPS信号在传输过程中可能会被建筑物、树林等障碍物反射,形成多个信号路径。
这些反射信号会与直达信号叠加,导致测量结果的偏差。
二、GPS测量误差的处理方法针对GPS测量误差,我们可以采取以下几种方法进行处理:1. 差分GPS测量:差分GPS测量是一种通过同时测量参考站和待测站的方式,消除大部分GPS测量误差的方法。
通过获取参考站与待测站之间的差异,可以得到相对准确的测量结果。
2. 排除异常值:在大量的GPS测量数据中,可能存在一些异常值,这些异常值可能是由于设备故障或环境因素引起的。
通过统计学方法,可以识别和排除这些异常值,提高测量数据的可靠性。
3. 数据平滑处理:由于GPS测量误差的存在,测量数据可能存在一定的波动和不稳定性。
通过对数据进行平滑处理,可以减小误差对结果的影响,得到更加平稳的测量结果。
4. 多基线处理:对于需要测量较大区域的工程,使用多个基准站进行GPS测量可以提高精度和可靠性。
通过基线向量之间的相互比较和校验,可以减小误差的累积效应。
5. 校正模型:根据GPS测量误差的特点,可以建立相应的校正模型。
通过对误差进行建模和拟合,可以对测量结果进行修正,提高准确性。
GPS在高程测量中的误差来源及应对措施【摘要】本文通过GPS在高程中的误差分析,对提高GPS测量高程精度的方法及措施进行了详细描述。
【关键词】GPS;大地高;正常高;高程拟合;高程异常一、引言众所周知,GPS作为现代化的三维测量工具,已被越来越广泛地运用到平面测量工作中去,如平面控制测量、地形测量、施工测量等。
但是GPS在实际的工作实践中,却较少运用于高程测量。
这是由于我国幅员辽阔,GPS测高受区域性大地水准面的限制以及仪器和外界条件等诸方面因素的影响,所测高程精度较低,无法满足各项工程建设的需要。
那么GPS测量高程的误差主要有哪些呢?我们又如何采取有效措施来提高高程测量精度呢?二、GPS高程测量原理利用GPS求得的是地面点在WGS-84坐标系中的大地高H84,而我国高程采用正常高。
要想使GPS高程在工程实际中得到应用,必须实现GPS大地高向我国正在使用的正常高的转化。
如图1所示。
有公式:Hr=H84-ζ由上式可知GPS高程测量的结果Hr误差主要由大地高H84的误差和高程异常ζ的误差的组成。
三、影响大地高H84的误差来源1.相位整周模糊度解算对GPS高程的影响。
相位整周模糊度解算是否可靠,直接影响三维坐标的精度。
在控制测量中,无论采用快速静态或实时动态测量技术,都必须精确解算得到相位整周数,然而相位整周数模糊度的解算常常会出现解算错误的可能性,从而会影响高程测量的精度。
2.多路径效应的制约因素:所谓多路径效应是指测站附近反射物反射来自卫星的信号与卫星直接发射的信号同时被接收机接受,这两种信号产生相互影响使其观测值偏离其真值,产生多路径误差。
多路径效应的影响分为直接的和间接的,并能对三维坐标产生分米级影响。
3.电离层延迟对高程测量量的影响:电离层对GPS测量的影响主要有:电离层群延(绝对测距误差);电离层载波相位超前(相对测距误差);电离层多普勒频移(距速误差);振幅闪烁信号衰减;磁暴、太阳耀斑等,这些电离层的变化都会延迟GPS信号的传播路线。
GPS测量坐标误差有多大GPS(全球定位系统)是一种利用卫星定位技术来获取地理位置信息的系统。
它广泛应用于导航、地理测量、军事和民用等领域。
然而,由于多种原因,GPS测量坐标会存在一定的误差。
误差来源GPS测量坐标的误差主要来自以下几个方面:1.卫星误差:卫星的精密轨道、钟差和天线相位中心等因素都会对测量结果产生影响。
虽然GPS系统会采取一系列措施来校正这些误差,但仍然无法完全消除。
2.大气延迟:由于GPS信号在穿过大气层时会受到大气介质的影响,导致信号传播速度发生变化。
这种大气延迟会导致测量结果与真实位置之间产生误差。
3.多路径效应:当GPS信号在到达接收机之前与建筑物、树木等障碍物发生反射后再次达到接收机时,会产生多路径效应。
这种效应会导致信号的传播路径变长,进而引起测量误差。
4.接收机误差:包括接收机的硬件设备、信号处理以及观测条件等因素,都会对测量结果产生影响。
接收机的性能越好,产生的误差就越小。
误差类型在GPS测量过程中,常见的误差类型包括:1.精度误差:指GPS测量结果与真实位置之间的差异。
通常以水平误差和垂直误差来衡量。
水平误差是指实际测量结果与真实位置在水平方向上的差距,垂直误差则是指在垂直方向上的差距。
2.相对误差:指同一测量点在不同时间或不同接收机进行测量时产生的误差。
相对误差可以通过对同一位置进行多次测量,并对结果进行比对来评估。
3.绝对误差:指GPS测量结果与真实位置之间的绝对差距。
由于无法得知真实位置,所以无法直接获得绝对误差。
通常通过测量点的相对误差和已知参考点的坐标来间接获得。
误差量化为了评估GPS测量坐标误差的大小,通常采用以下方法进行量化:1.信号强度指示(Signal Strength Indicator,SSI):SSI是衡量GPS信号强度的指标,通常以百分比或分贝表示。
信号强度越高,误差越小。
2.几何精度因子(Geometric Dilution of Precision,GDOP):GDOP是一种衡量卫星几何配置对GPS测量结果精度影响的量化指标。
GPS测量技术的误差源与解决方法GPS(Global Positioning System)是一种广泛使用的定位技术,它通过接收来自卫星的信号来确定接收器的位置,精度一般在数米到几十米之间。
然而,在实际应用中,GPS测量技术可能会受到各种误差源的影响,进而导致测量结果的不准确。
本文将探讨GPS测量技术的误差源及其解决方法。
1. 天线高度误差天线高度误差是指GPS接收器与测量点之间的天线高度差引起的误差。
由于不同测量点处的天线高度不同,接收到的信号路径长度也会不同,因此会对测量结果产生误差。
为了解决这一问题,可以采用高精度的GPS天线来减小高度误差。
同时,在测量中应尽量保持一致的天线高度。
2. 对流层延迟误差对流层延迟误差是指GPS信号在穿过大气层时受到的影响而引起的误差。
大气层中的水汽和其他气体会导致信号传输速度的变化,从而影响到测量结果的准确性。
为了解决这一问题,可以使用双频GPS接收器来消除对流层延迟误差。
双频GPS接收器可以通过同时接收L1和L2频段的信号来消除大气延迟误差。
3. 多路径效应误差多路径效应误差是指GPS信号在传播过程中被建筑物、地形等障碍物反射或绕射而产生的误差。
反射的信号会使接收器接收到多个信号源,从而影响到测量结果的准确性。
为了解决这一问题,可以采用反射板或天线罩等物理隔离措施来减少反射信号的影响。
此外,选择合适的测量时机和测量点位置也能够减少多路径效应误差。
4. 卫星几何误差卫星几何误差是指由于卫星位置相对于接收器的位置不理想而引起的误差。
当卫星位置与接收器位置接近于共面时,几何误差将会增加,导致测量结果的不准确。
为了解决这一问题,可以采用多频度观测和动态定位技术。
多频度观测可以提供更多的卫星数据,从而提高定位精度;而动态定位技术可以根据卫星位置的变化来进行误差补偿。
5. 卫星钟差误差卫星钟差误差是指由于卫星钟的不准确而引起的误差。
卫星钟的不准确将会导致测距误差的累积,进而影响到测量结果的精度。
实测星历根据实测资料进行拟合处理而直接得出的星历。
7第二节与卫星有关的误差2.星历误差对定位的影响单点定位星历误差的径向分量作为等价测距误差进入平差计算,配赋到星站坐标和接收机钟差改正数中去,具体配赋方式则与卫星的几何图形有关。
8第二节与卫星有关的误差2.星历误差对定位的影响相对定位利用两站的同步观测资料进行相对定位时,由于星历误差对两站的影响具有很强的相关性,所以在求坐标差时,共同的影响可自行消去,从而获得高精度的相对坐标。
第二节与卫星有关的误差2.星历误差对定位的影响根据一次观测的结果,可以导出星历误差对定位影响的估算式为:--- 基线长;db——卫星星历误差所引起的基线误差;p 一一卫星至测站的距离;ds——星历误差;ds——卫星星历的相对误差。
第二节与卫星有关的误差3.减弱星历误差影响的途径1)建立自己的GPS卫星跟踪网独立定轨2)相对定位3)轨道松弛法9第二节与卫星有关的误差二、卫星钟的钟误差卫星钟采用的是GPS时,但尽管GPS卫星均设有高精度的原子钟御钟和锥钟),它们与理想的GPS时之间仍存在着难以避免的频率偏差或频率漂移,也包含钟的随机误差。
这些偏差总量在Ims 以内,由此引起的等效距离可达300km o11第二节与卫星有关的误差二、卫星钟的钟误差卫星钟差的改正卫星钟差可通过下式得到改正:is aO al(t iff)日2(t W1)相对定位:利用两台或多台接收机对同一组卫星的同步观测值求差时可以有效地减弱电离层折射的影响,即使不对电离层折射进行改正,对基线成果的影响一般也不-6会超过IXIO O16第三节卫星信号传播误差2减弱电离层影响的有效措施2)双接收:如分别用两个已知频率fl和f2发射卫星信号,则两个不同频率的信号就会沿同一路径到达接收机。
公式中积分值虽然无法计算,但对两个频率的信号却是相同的。
第三节卫星信号传播误差二、对流层折射、对流层及其影响2、减弱对流层影响的措施3、用霍普非尔德公式进行对流层折射改正17第三节卫星信号传播误差1、对流层及其影响对流层是高度为50km以下的大气层,由于离地面更近,其大气密度比电离层更大,大气状态变化更复杂。
GPS测量的误差来源及其影响
2. 卫星轨道误差(Satellite Orbit Error):GPS接收机通过接收
多颗卫星的信号以计算自身的位置。
然而,卫星的轨道并非绝对准确,存
在一定的误差。
这些误差包括卫星轨道偏移、轨道不规则性等。
影响是,
卫星轨道误差会导致位置计算的不准确,从而影响GPS测量结果的精度。
3. 钟差误差(Clock Error):为了对GPS信号进行定位计算,接收
机需要与卫星的时间进行同步。
然而,GPS卫星上的钟不可能完全精确,
存在一定的时间漂移和偏差。
这将导致接收机对时间进行不准确的计算,
从而造成测量误差。
影响是,测量结果的时间信息会受到钟差误差的影响,进而影响测量精度。
4. 大气延迟(Atmospheric Delay):GPS信号从卫星到达接收机的
过程中,会经过大气层,而大气层中的水汽和电离层的影响会引起信号的
传播速度变化,从而产生测量误差。
影响是,大气延迟会导致距离测量值
的不准确,进而影响位置计算的精度。
5. 多路径效应(Multipath Effect):当GPS信号与建筑物、地形
等物体反射或折射后到达接收机时,会产生多个信号路径,这会干扰接收
机对信号的处理。
影响是,多路径效应会导致信号的延迟和失真,从而影
响距离测量的准确性。
GPS测量仪的误差来源与误差控制方法GPS(全球定位系统)测量仪在现代测量领域得到了广泛应用。
它可以通过卫星信号精确定位和测量地球上的点的坐标,但是在实际使用中,GPS测量仪的测量结果往往会存在一定的误差。
这些误差可能来自多个方面,包括天线、大气、仪器本身等。
本文将探讨GPS测量仪的误差来源以及常用的误差控制方法。
首先,天线是GPS测量仪误差的一个重要来源。
天线的信号接收性能直接影响着测量仪的定位和测量精度。
天线的位置安装不准确、天线高度不均匀等因素都可能导致测量误差的产生。
因此,在进行GPS测量时,我们应该注意天线的安装位置和高度均匀性,保证接收到的信号质量良好,从而减小天线引起的误差。
其次,大气也是GPS测量仪误差的一个重要来源。
大气中的湿度、温度、压强等因素都会对GPS信号的传播速度产生影响,从而导致测量误差的产生。
尤其是在测量距离时,大气对信号的传播速度影响较大。
为了减小大气误差,常用的方法是通过测量两条不同频率的信号,从而计算出大气延迟,进而对测量结果进行修正。
此外,GPS测量仪本身存在的仪器误差也会对测量结果产生影响。
仪器误差包括系统定位误差、时钟误差等。
系统定位误差是由于接收机的硬件和软件系统造成的,通常是由于系统设计和实现上的不完善所致。
时钟误差是由于GPS测量仪内部时钟的不精确而引起的。
为了控制仪器误差,可以采用多种策略,例如使用高精度的GPS测量仪、定期进行仪器校准等。
除了上述误差来源外,还有一些其他的误差可能会对GPS测量仪的结果产生影响。
例如,接收机所处的环境条件,如振动、电磁干扰等都可能对测量结果产生干扰。
此外,人为误差也是不能忽视的因素,比如操作人员的技术水平、测量过程中的操作失误等都可能导致测量误差的产生。
为了控制GPS测量仪的误差,可以采取一系列的方法。
首先,对于天线安装位置和高度均匀性的要求应该严格控制,以减小天线引起的误差。
其次,通过多台GPS测量仪同时进行测量,可以通过求解多个测量结果的平均值来减小系统定位误差和时钟误差。