土木工程测量-第五章_测量误差的基本知识
- 格式:ppt
- 大小:394.00 KB
- 文档页数:19
《土木工程测量》第五章形考题及答案注意:选项(abcd)后面数字是一道题对这题的的评分,也就是答案,如果是0,是回答错误的,就不要选择;如果选项后面是100,就是回答正确,就是答案。
绿色为:单选题紫色为:判断题蓝色为:多选题第5章、测量误差的基本知识单项选择在距离丈量中衡量精度的方法是用()。
A. 往返较差;0B. 相对误差;100C. 闭合差0D. 绝对误差0单项选择已知A、B两点的坐标为A(500.00,835.50),B(455.38,950.25),则AB边的坐标方位角。
A. 68°45′06″0B. -68°45′06″0C. 248°45′06″0D. 111°14′54″100单项选择坐标方位角的取值范围为( )。
A. 0°~270°0B. 0°~360°100C. -90°~90°0D. 0°~90°0单项选择坐标方位角是以()为标准方向,顺时针转到测线的夹角。
A. 真子午线方向0B. 磁子午线方向0C. 坐标纵轴方向100D. 指向正北的方向0单项选择经纬仪对中误差属()A. 偶然误差;100B. 系统误差;0C. 中误差0D. 粗差0单项选择尺长误差和温度误差属()A. 偶然误差;0B. 系统误差;100C. 中误差0D. 粗差0单项选择下列误差中()为偶然误差A. 照准误差和估读误差;100B. 横轴误差和指标差;0C. 水准管轴不平行与视准轴的误差0D. 度盘刻划误差0单项选择随着观测次数的无限增多,偶然误差的算术平均值趋近于()。
A. 0;100B. 无穷大;0C. 无穷小0D. 大于零的固定值0单项选择观测误差根据其对测量结果影响的性质不同,可分为()和偶然误差两类A. 相对误差;0B. 中误差;0C. 往返误差0D. 系统误差100单项选择测量工作中通常采用()作为衡量精度的标准A. 粗差0B. 允许误差;0C. 中误差;100D. 平均值0单项选择普通水准尺的最小分划为1cm,估读水准尺毫米位的误差属于( )A. 偶然误差100B. 系统误差0C. 错误0D. 中误差0单项选择()不是偶然误差的特性。
I 第一节測量很差产生飾原因及其分类测量误差主要由测量仪器、测量人员、测量环境造成。
其可以分为系统谋差和偶然课差两大类。
粗差是错误,不是误差。
一、系统误差在相同的观测条件下,误差保持同一数值、同一符号,或者遵循一定的变化规律的误差,称为系统误差。
比如水准尺端部磨损;水准尺倾斜:水准尺弯曲;水准尺的沉降;目标倾斜……特性「累计!!!!!二、偶然误差在相同的观测条件下,对某对象作一系列观测,观测误差的大小和符号表面上没有规律"这种谋差称为偶然误差。
若观测数据只含有偶然误差,在观测次数多的情况下,误差呈现出统计学上的规律。
却例如:某一测区在相同条件下观测了358个三角形的全部内命,计算358个三角形内角观测值之和的真误差,将真误差取误走区间为3",并按绝对值大小进行排列,分别统计在各区间的正负误差出现的頻率k/n,结果列于下表:以表中的数据,绘制误差直方图。
使横轴代表误差值,纵轴代表频率,图中直方图的面积总和为1,此直方图可以形象描述偶然误差的规律性。
当观测条件足够多时,直方图中各矩形顶部就可以形成一条对称、光滑的曲线。
偶然谋差的规律性,1、有界性;偶然误差的绝对值不会超过一定的限值;2、大小性:绝对值小的比绝对值大的出现的可能性大;3、对称性;误差出现正负的可能性相同;4)抵偿性:偶然误差的算术平均值随观测次数增加而趋于鶴第二节等精度条件下观测值的算术平均值设在相同条件下对X观测了n次:A2 = /2 - x ................ ..兀个式子相加= Ul-nX得◎ = [l]-X n n令5 =四丄=巴得a =n n由泯栄的抵偿件:lim』=0 得lim乙=XJH—>«O 托并一>S算术平均值接近于真值,是测量对象的可靠结果,又称为最或是值。
第三节衡量精度的标准一、平均误差& = d十|8|十・••十a" = !Min n二、中谋差心土J笛二迸三至二土胯i 测量一般采用中误差作为衡垠精度的标准。
第5章测量误差的基本知识内容提示:本章主要介绍了测量误差的概念、来源、分类与处理方法,精度的概念及评定标准,误差传播定律,等精度与非等精度直接观测值的最可靠值及其中误差。
其重点内容包括误差传播定律、观测值中误差计算、直接观测值的最可靠值及其中误差。
其难点为误差传播定律及其应用。
5.1 测量误差与精度5.1.1 测量误差的概念要准确认识事物,必须对事物进行定量分析;要进行定量分析必须要先对认识对象进行观测并取得数据。
在取得观测数据的过程中,由于受到多种因素的影响,在对同一对象进行多次观测时,每次的观测结果总是不完全一致或与预期目标(真值)不一致。
之所以产生这种现象,是因为在观测结果中始终存在测量误差的缘故。
这种观测量之间的差值或观测值与真值之间的差值,称为测量误差(亦称观测误差)。
用l代表观测值,X代表真值,则有Δ=l-X (5-1)式中Δ就是测量误差,通常称为真误差,简称误差。
一般说来,观测值中都含有误差。
例如,同一人用同一台经纬仪对某一固定角度重复观测多次,各测回的观测值往往互不相等;同一组人,用同样的测距工具,对同一段距离重复测量多次,各次的测距值也往往互不相等。
又如,平面三角形内角和为180 ,即为观测对象的真值,但三个内角的观测值之和往往不等于180 ;闭合水准测量线路各测段高差之和的真值应为0,但经过大量水准测量的实践证明,各测段高差的观测值之和一般也不等于0。
这些现象在测量实践中普遍存在,究其原因,是由于观测值中不可避免地含有观测误差的缘故。
5.1.2 测量误差的来源为什么测量误差不可避免?是因为测量活动离不开人、测量仪器和测量时所处的外界环境。
不同的人,操作习惯不同,会对测量结果产生影响。
另外,每个人的感觉器官不可能十分完善和准确,都会产生一些分辨误差,如人眼对长度的最小分辨率是0.1mm,对角度的最小分辨率是60"。
测量仪器的构造也不可能十分完善,观测时测量仪器各轴系之间还存在不严格平行或垂直的问题,从而导致测量仪器误差。