第五章测量误差的基本知识
- 格式:doc
- 大小:45.50 KB
- 文档页数:4
第五章测量误差的基本知识单选题1、引起测量误差的因素概括起来有以下三个方面(B)。
A.观测者、观测方法、观测仪器B.观测仪器、观测者、外界因素C.观测方法、外界因素、观测者D.观测仪器、观测方法、外界因素2、测量误差来源于(A)。
A.仪器、观测者、外界条件B.仪器不完善C.系统误差D.偶然误差3、用测回法测水平角,盘左盘右角值相差1°是属于( D )。
A.系统误差B.偶然误差C.绝对误差D.粗差4、测量记录时,如有听错、记错,应采取(C)。
A.将错误数字涂盖B. 将错误数字擦去C. 将错误数字划去D.返工重测重记5、真误差是观测值与(A )之差。
A.真值B.观测值与正数C.中误差D.相对误差6、真误差为观测值与(C)之差。
A.平均B.中误差C.真值D.改正数7、钢尺的尺长误差对距离测量产生的影响属于(B )。
A.偶然误差B.系统误差C.偶然误差也可能是系统误差D.既不是偶然误差也不是系统误差8、下列误差中(A)为偶然误差。
A.照准误差和估读误差B.横轴误差C.水准管轴不平行与视准轴的误差D.指标差9、尺长误差和温度误差属(B)。
A.偶然误差B.系统误差C.中误差D.粗差10、用名义长度为30 m的钢尺量距,而该钢尺实际长度为30.004 m,用此钢尺丈量AB两点距离,由此产生的误差是属于(C)。
A.偶然误差B.相对误差C.系统误差D.绝对误差11、水准尺向前或向后方向倾斜对水准测量读数造成的误差是(B)。
A.偶然误差B.系统误差C.可能是偶然误差也可能是系统误差D.既不是偶然误差也不是系统误差12、普通水准尺的最小分划为1cm,估读水准尺mm位的误差属于(A)。
A.偶然误差B.系统误差C.可能是偶然误差也可能是系统误差D.既不是偶然误差也不是系统误差13、由于钢尺的不水平对距离测量所造成的误差是( B )。
A.偶然误差B.系统误差C.可能是偶然误差也可能是系统误差D.既不是偶然误差也不是系统误差14、经纬仪对中误差属(A)A.偶然误差B.系统误差C.中误差D.容许误差15、衡量一组观测值精度的指标是(A)。
第五章测量误差的基本知识1、衡量测量精度的指标有中误差、相对误差、极限误差。
5.测量,测角中误差均为10〃,所以A角的精度高于B角。
(X)8.在测量工作中无论如何认真仔细,误差总是难以避免的。
(X)10 .测量中,增加观测次数的目的是为了消除系统误差。
(X)1、什么是偶然误差?它有哪些特性?定义:相同的观测条件,若误差在数值和符号上均不相同或从表面看无规律性。
如估读、气泡居中判断等。
偶然误差的特性:(D有界性(2)渐降性(3)对称性(4)抵偿性7.已知DJ6经纬仪一测回的测角中误差为nu = ±20",用这类仪器需要测几个测回取平均值,才能达到测角中误差为±10” ?()A. 1B.2C.3D.43.偶然误差服从于一定的规律。
4.对于偶然误差,绝对值较小的误差比绝对值较大的误差出现的机会。
14.测量误差的来源有、、外界条件。
3.设对某距离丈量了6 次,其结果为246.535m、246.548m、246.520m、246.529m、246.550m、246.537m,试求其算术平均值、算术平均值中误差及其相对中误差。
6.偶然误差的算术平均值随观测次数的无限增加而趋向于o14.设对某角度观测4个测回,每一测回的测角中误差为±5",则算术平均值的中误差为±〃。
24.衡量测量精度的指标有、、极限误差。
3.观测值与之差为闭合差。
()A.理论值B.平均值C.中误差D.改正数5.由于钢尺的不水平对距离测量所造成的误差是()A.偶然误差B.系统误差C.可能是偶然误差也可能是系统误差D.既不是偶然误差也不是系统误差8.阐述函数中误差与观测值中误差之间关系的定律称为o9.什么是系统误差?什么是偶然误差?误差产生的原因有哪些?10测量误差按性质可分为和两大类。
1. 2.相对误差2.由估读所造成的误差是()oA.偶然误差B.系统误差C.既是偶然误差又是系统误差14.下列不属于衡量精度的标准的是()。
第五章测量误差的基本知识第五章测量误差的基本知识本章摘要:本章主要介绍测量误差的种类;偶然误差的统计特征和处理⽅法;精度的含义;评定测量精度的指标;不同精度指标表达的意义及其适⽤范围。
§5-1 测量误差及分类摘要内容:学习误差理论知识的⽬的,使我们能了解误差产⽣的规律,正确地处理观测成果,即根据⼀组观测数据,求出未知量的最可靠值,并衡量其精度;同时,根据误差理论制定精度要求,指导测量⼯作选⽤适当观测⽅法,以符合规定精度。
讲课重点:测量误差的概念、测量与观测值分类、测量误差及其来源、测量误差的种类、偶然误差的特性及其概率密度函数。
讲课难点:偶然误差的特性及其概率密度函数。
讲授重点内容提要:⼀、测量误差的概念⼈们对客观事物或现象的认识总会存在不同程度的误差,这种误差在对变量进⾏观测和量测的过程中反映出来,称为测量误差。
⼆、测量与观测值通过⼀定的仪器、⼯具和⽅法对某量进⾏量测,称为观测,获得的数据称为观测值。
三、观测与观测值的分类1.同精度观测和不同精度观测观测条件:构成测量⼯作的要素包括观测者、测量仪器和外界条件,通常将这些测量⼯作的要素统称为观测条件。
同精度观测:在相同的观测条件下,即⽤同⼀精度等级的仪器、设备,⽤相同的⽅法和在相同的外界条件下,由具有⼤致相同技术⽔平的⼈所进⾏的观测称为同精度观测,其观测值称为同精度观测值或等精度观测值。
反之,则称为不同精度观测,其观测值称为不同(不等)精度观测值。
2.直接观测和间接观测直接观测:为确定某未知量⽽直接进⾏的观测,即被观测量就是所求未知量本⾝,称为直接观测,观测值称为直接观测值。
间接观测:通过被观测量与未知量的函数关系来确定未知量的观测称为间接观测,观测值称为间接观测值。
(说明:例如,为确定两点间的距离,⽤钢尺直接丈量属于直接观测;⽽视距测量则属于间接观测。
)3.独⽴观测和⾮独⽴观测独⽴观测:各观测量之间⽆任何依存关系,是相互独⽴的观测,称为独⽴观测,观测值称为独⽴观测值。
第5章测量误差基本知识测量工作使用仪器进行测量,在测量过程中不可避免的出现误差,为了提高测量精度及精度评定,需要了解测量误差的来源,促进测量工作方法的改进,和测量精度的提高。
误差—在一定观测条件下,观测值与真值之差。
精度—观测误差的离散程度。
5-1 误差的基本概念讨论测量误差的目的:用误差理论分析,处理测量误差,评定测量成果的精度,指导测量工作的进行。
▼▼▼▼产生测量误差的原因,▼▼测量误差的分类和处理原则,▼▼偶然误差的特性一、测量误差的来源仪器原因:仪器精度的局限,轴系残余误差等。
人的原因:判别力和分辨率的限制,经验等。
外界影响:气象因素(温度变化,风、大气折光)等。
有关名词:观测条件,等精度观测:上述三大因素总称观测条件,在上述条件基本一致的情况下进行各次观测,称等精度观测。
结论:观测误差不可避免(粗差除外)二、测量误差的分类两类误差:系统误差偶然误差粗差(错误排除)1、系统误差-- 误差出现大小、符合相同,或按规律变化,具有积累性。
处理方法①检校仪器,把仪器的系统误差降到最小程度;②求改正数,对测量结果加改正数消除;③对称观测,使系统误差对观测成果的影响互为相反数,以便外业操作时抵消。
例:误差处理方法钢尺尺长误差△D K 计算改正钢尺温度误差△Dt 计算改正水准仪视准轴误差I 操作时抵消(前后视等距)经纬仪视准轴误差C 操作时抵消(盘左盘右取平均)●结论:系统误差可以消除。
2、偶然误差-- 误差出现的大小,符合各部相同,表面看无规律性。
例:估读误差—气泡居中判断,瞄准,对中等误差,导致观测值产生误差。
◎偶然误差:是由人力不能控制的因素所引起的误差。
◎特点:具有抵偿性。
◎处理原则:采用多余观测,减弱其影响,提高观测结果的精度。
3、粗差—指在一定的观测条件下超过规定限差值。
对于粗差,应当分析原因,通过补测等方法加以消除。
三、偶然误差的特性1、偶然误差的定义:设某量的真值X对该量进行n次观测得n次的观测值l1,l2,l3……l n则产生了n个真误差真误差:△I = X-l i2、偶然误差的特性☎当观测次数很多时,偶然误差的出现,呈现统计学上的规律性,偶然误差具有正态分布的特性。
第五章测量误差基本知识5-1 测量误差概述一、测量误差产生的原因对某一个量进行多次重复观测,例如重复观测某一水平角或往返丈量某段距离等,其多次测量的结果总存在着差异,这说明观测值中含有测量误差。
产生测量误差的原因很多,概括起来有下列三个方面:1.仪器的原因测量工作是采用经纬仪、水准仪等测量仪器完成的,测量仪器的构造不可能十分完善,从而使测量结果受到一定影响。
例如,经纬仪的视准轴与横轴不垂直、度盘刻划不均匀,都会使所测角度产生误差;水准仪的视准轴不平行于水准管轴、望远镜十字丝不水平,都会使高差产生误差。
2.观测者的原因由于观测者感觉器官的鉴别能力存在局限性,所以对仪器的各项操作,如经纬仪对中、整平、瞄准、读数等方面都会产生误差。
此外,观测者的技术熟练程度和工作态度也会对观测成果带来不同程度的影响。
3.外界环境的影响测量所处的外界环境(包括温度、风力、日光、大气折光等)时刻在变化,使测量结果产生误差。
例如,温度变化会使钢尺产生伸缩,风吹和日光照射会使仪器的安置不稳定,大气折光会使瞄准产生偏差等。
人、仪器和外界环境是测量工作的观测条件,由于受到这些条件的影响,测量中的误差是不可避免的。
观测条件相同的各次观测称为等精度观测;观测条件不相同的各次观测称为不等精度观测。
二、测量误差的分类测量误差按其对观测结果影响性质的不同分为系统误差和偶然误差两类。
1.系统误差在相同的观测条件下对某一量进行一系列观测,若误差的出现在符号和数值上均相同,或按一定的规律变化,这种误差称为系统误差。
例如,用名义长度为30.000m,而实际鉴定后长度为30.006m的钢卷尺量距,每量一尺段就有0.006m的误差,其量距误差的影响符号不变,且与所量距离的长度成正比。
所以,系统误差具有积累性,对测量结果的影响较大;另一方面,系统误差对观测值的影响具有一定的规律性,且这种规律性总能想办法找到,因此系统误差对观测值的影响可用计算公式加以改正,或采用一定的测量措施加以消除或削弱。
第五章测量误差的基本知识
一、简答题
(1)简述什么是过失误差?什么是系统误差?什么是偶然误差?
(2)什么是真误差?什么是似真误差?什么是最或是值?
(3)什么是等精度观测?什么是非等精度观测?什么是权?
(4)偶然误差有哪些特性?
(5)为什么算术平均值是真值的最优估计值?
(6)写出衡量误差精度的指标。
(7)写出误差传播定律的公式,并说明该公式的用途。
(8)试推导求n次等精度直接观测值的算术平均值的中误差计算公式。
(9) 试写出白塞尔公式,并说明公式中各符号的含义。
二、单选题
5-1、钢尺的尺长误差对距离测量的影响属于( )。
A 偶然误差
B 系统误差
C 偶然误差也可能是系统误差
D 既不是偶然误差也不是系统误差
5-2、丈量一正方形的4条边长,其观测中误差均为±2cm ,则该正方形周长的中误差为±( )cm 。
A 0.5
B 2
C 4
D 8
5-3、用DJ 6级光学经纬仪测量一测回方向值的中误差为±6″,则一测回角值的中误差为
( )。
A ±12″
B ±8.5″
C ±10″
D ±6″
5-4、普通水准尺的最小分划为1cm ,估读水准尺mm 位的误差属于( )。
A 偶然误差
B 系统误差
C 可能是偶然误差也可能是系统误差
D 既不是偶然误差也不是系统误差
5-5、设对某角观测一测回的中误差为±3″,要使该角的观测精度达到±1.4″,需观测( ) 个测回。
A 2
B 3
C 4
D 5
5-6、某三角形两个内角的测角中误差分别为±6″与±2″,且误差独立,则余下一个角的中误差为( )。
A ±6.3″
B ±8″
C ±4″
D ±12″
5-7、测量了两段距离及其中误差分别为:1d =136.46m±0.015m ,2d =960.76m±0.025m ,比较它们测距精度的结果为( )。
A 1d 精度高
B 精度相同
C 2d 精度高
D 无法比较
5-8、水准尺向前或向后方向倾斜对水准测量读数造成的误差是( )。
A 偶然误差
B 系统误差
C 可能是偶然误差也可能是系统误差
D 既不是偶然误差也不是系统误差
5-9、对某边观测4测回,观测中误差为±2cm ,则算术平均值的中误差为( )。
A ±0.5cm
B ±1cm
C ±4cm
D ±2cm
5-10、某段距离丈量的平均值为100m ,其往返较差为+4mm ,其相对误差为( )。
A 1/25000 B 1/25 C 1/2500 D 1/250
三、计算题
(1)用钢尺丈量某一距离,丈量结果为312.581m 、312.546m 。
312.551m ,312.532m 、312.537m 、312.499m ,试求该组观测值中误差与算术平均值中误差,及最后的结果。
(2)用某经纬仪测量水平角,一测回的中误差m=±15″,欲使测角精度达到土5″问需要观测几个测回?
(3)同精度观测一个三角形的两内角α、β,其中误差:mα=mβ=±6″,求三角形的第三角γ的中误差mγ?
(4)在水准测量中,设一个测站的中误差为5mm,若lkm有15个测坫,求lkm的中误差和Kkm的中误差?
(5)设量得A、B两点的水平距离D=206.26m,其中误差m D=±0.04m,同时在A点上测得竖直角α=30°00′,其中误差mα=±10″。
试求A,B两点的高差(h=Dtgα)及其中误差m h?
(6)如图所示的三角形的三个角值为a
=b =c=60°,测角中误差为±10″;AB
的边长D AB =150.000m,其中误差为±
0.050m,试求AC和BC的边长及其中误
差。
(7)用同一架经纬仪,以不同的测回数观测某一角度,其观测值为:β1=24°13′36″(4个测回),β2=24°13′30″(6个测回),β3=24°13′24″(8个测回),试求单位权观测值的中误差,加权平均值及其中误差。
(8)同—个角度有甲、乙两组观测值如下;
甲:83°23′50″,83°24′03″,83°23′55″
乙:83°24′11″,83°23′30″,83°23′28″试求甲、乙两组观测值的中误差与算术平均值的中误差,以及观测结果,并比较哪组精确?
四、名词解释
1、真误差——
2、闭合差——一
3、限差——
4、相对误差——
5、绝对误差——
6、极限误差——
7、平均误差——
8、系统误差——
9、偶然误差——
10、误差传播定律——
11、权——
12、单位权中误差——。