2017中考数学真题试题(含答案)
- 格式:doc
- 大小:979.00 KB
- 文档页数:10
2017年浙江省衢州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.﹣2的倒数是()A.﹣ B.C.﹣2 D.22.如图是由四个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.3.下列计算正确的是()A.2a+b=2ab B.(﹣a)2=a2C.a6÷a2=a3D.a3•a2=a64.据调查,某班20为女同学所穿鞋子的尺码如表所示,则鞋子尺码的众数和中位数分别是()3435363738尺码(码)人数251021A.35码,35码B.35码,36码C.36码,35码D.36码,36码5.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30°B.40°C.60°D.70°6.二元一次方程组的解是()A.B.C.D.7.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A.①B.②C.③D.④8.如图,在直角坐标系中,点A在函数y=(x>0)的图象上,AB⊥x轴于点B,AB的垂直平分线与y轴交于点C,与函数y=(x>0)的图象交于点D,连结AC,CB,BD,DA,则四边形ACBD的面积等于()A.2 B.2 C.4 D.49.如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则DF的长等于()A.B.C.D.10.运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD、EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是()A.πB.10πC.24+4πD.24+5π二、填空题(本题共有6小题,每小题4分,共24分)11.二次根式中字母a的取值范围是.12.化简:=.13.在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里摸出1个球,则摸到红球的概率是.14.如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是.15.如图,在直角坐标系中,⊙A的圆心A的坐标为(﹣1,0),半径为1,点P为直线y=﹣x+3上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是.16.如图,正△ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限,△ABO沿x轴正方形作无滑动的翻滚,经一次翻滚后得到△A1B1O,则翻滚3次后点B的对应点的坐标是,翻滚2017次后AB中点M经过的路径长为.三、解答题(本题共有8小题,第17-19小题每小题6分,第20-21小题每小题6分,第22-23小题每小题6分,第24小题12分,共66分,请务必写出解答过程)17.计算: +(π﹣1)0×|﹣2|﹣tan60°.18.解下列一元一次不等式组:.19.如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D,连接OD.作BE⊥CD于点E,交半圆O于点F.已知CE=12,BE=9.(1)求证:△COD∽△CBE.(2)求半圆O的半径r的长.20.根据衢州市统计局发布的统计数据显示,衢州市近5年国民生产总值数据如图1所示,2016年国民生产总值中第一产业,第二产业,第三产业所占比例如图2所示.请根据图中信息,解答下列问题:(1)求2016年第一产业生产总值(精确到1亿元)(2)2016年比2015年的国民生产总值增加了百分之几?(精确到1%)(3)若要使2018年的国民生产总值达到1573亿元,求2016年至2018年我市国民生产总值的平均增长率(精确到1%)21.“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.22.定义:如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P在该抛物线上(P 点与A、B两点不重合),如果△ABP的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c (a≠0)的勾股点.(1)直接写出抛物线y=﹣x2+1的勾股点的坐标.(2)如图2,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A,B两点,点P(1,)是抛物线C的勾股点,求抛物线C的函数表达式.=S△ABP的Q点(异于点P)的(3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ坐标.23.问题背景如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.类比探究如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.(2)△DEF是否为正三角形?请说明理由.(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.24.在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1)如图1,当t=3时,求DF的长.(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.(3)连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.2017年浙江省衢州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.﹣2的倒数是()A.﹣ B.C.﹣2 D.2【考点】17:倒数.【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:A.2.如图是由四个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】主视图是从正面看所得到的图形,从左往右分2列,正方形的个数分别是:2,1;依此即可求解.【解答】解:如图是由四个相同的小立方体搭成的几何体,它的主视图是.故选:D.3.下列计算正确的是()A.2a+b=2ab B.(﹣a)2=a2C.a6÷a2=a3D.a3•a2=a6【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)2a与b不是同类项,故不能合并,故A不正确;(C)原式=a4,故C不正确;(D)原式=a5,故D不正确;故选(B)4.据调查,某班20为女同学所穿鞋子的尺码如表所示,则鞋子尺码的众数和中位数分别是()3435363738尺码(码)人数251021A.35码,35码B.35码,36码C.36码,35码D.36码,36码【考点】W5:众数;W4:中位数.【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:数据36出现了10次,次数最多,所以众数为36,一共有20个数据,位置处于中间的数是:36,36,所以中位数是(36+36)÷2=36.故选D.5.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30°B.40°C.60°D.70°【考点】K8:三角形的外角性质;JA:平行线的性质.【分析】先根据两直线平行,同位角相等求出∠1,再利用三角形的外角等于和它不相邻的两个内角的和即可求出∠E的度数.【解答】解:如图,∵AB∥CD,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1﹣∠E=70°﹣40°=30°.故选:A.6.二元一次方程组的解是()A.B.C.D.【考点】98:解二元一次方程组.【分析】用加减消元法解方程组即可.【解答】解:①﹣②得到y=2,把y=2代入①得到x=4,∴,故选B.7.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A.①B.②C.③D.④【考点】N2:作图—基本作图.【分析】利用作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过直线外一点P作已知直线的垂线的作法进而判断得出答案.【解答】解:①作一个角等于已知角的方法正确;②作一个角的平分线的作法正确;③作一条线段的垂直平分线缺少另一个交点,作法错误;④过直线外一点P作已知直线的垂线的作法正确.故选:C.8.如图,在直角坐标系中,点A在函数y=(x>0)的图象上,AB⊥x轴于点B,AB的垂直平分线与y轴交于点C,与函数y=(x>0)的图象交于点D,连结AC,CB,BD,DA,则四边形ACBD的面积等于()A.2 B.2 C.4 D.4【考点】G5:反比例函数系数k的几何意义;KG:线段垂直平分线的性质.【分析】设A(a,),可求出B(2a,),由于对角线垂直,计算对角线长积的一半即可.【解答】解:设A(a,),可求出B(2a,),∵AC⊥BD,=AC•BD=×2a×=4,∴S四边形ABCD故选C.9.如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则DF的长等于()A.B.C.D.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】根据折叠的性质得到AE=AB,∠E=∠B=90°,易证Rt△AEF≌Rt△CDF,即可得到结论EF=DF;易得FC=FA,设FA=x,则FC=x,FD=6﹣x,在Rt△CDF中利用勾股定理得到关于x的方程x2=42+(6﹣x)2,解方程求出x.【解答】解:∵矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,∴AE=AB,∠E=∠B=90°,又∵四边形ABCD为矩形,∴AB=CD,∴AE=DC,而∠AFE=∠DFC,∵在△AEF与△CDF中,,∴△AEF≌△CDF(AAS),∴EF=DF;∵四边形ABCD为矩形,∴AD=BC=6,CD=AB=4,∵Rt△AEF≌Rt△CDF,∴FC=FA,设FA=x,则FC=x,FD=6﹣x,在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6﹣x)2,解得x=,则FD=6﹣x=.故选:B.10.运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD、EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是()A.πB.10πC.24+4πD.24+5π【考点】MO:扇形面积的计算;M5:圆周角定理.【分析】作直径CG,连接OD、OE、OF、DG,则根据圆周角定理求得DG的长,证明DG=EF,则S扇形ODG=S扇形OEF,然后根据三角形的面积公式证明S△OCD=S△ACD,S△OEF=S△AEF,则S阴影=S扇形OCD+S 扇形OEF=S扇形OCD+S扇形ODG=S半圆,即可求解.【解答】解:作直径CG,连接OD、OE、OF、DG.∵CG是圆的直径,∴∠CDG=90°,则DG===8,又∵EF=8,∴DG=EF,∴=,∴S扇形ODG=S扇形OEF,∵AB∥CD∥EF,∴S△OCD=S△ACD,S△OEF=S△AEF,∴S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=π×52=π.故选A.二、填空题(本题共有6小题,每小题4分,共24分)11.二次根式中字母a的取值范围是a≥2.【考点】72:二次根式有意义的条件.【分析】由二次根式中的被开方数是非负数,可得出a﹣2≥0,解之即可得出结论.【解答】解:根据题意得:a﹣2≥0,解得:a≥2.故答案为:a≥2.12.化简:=1.【考点】6B:分式的加减法.【分析】分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可.【解答】解:原式==1.13.在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里摸出1个球,则摸到红球的概率是.【考点】X4:概率公式.【分析】由一个不透明的箱子里共有1个白球,2个红球,共3个球,它们除颜色外均相同,直接利用概率公式求解即可求得答案.【解答】解:∵一个不透明的箱子里有1个白球,2个红球,共有3个球,∴从箱子中随机摸出一个球是红球的概率是;故答案为:.14.如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是a+6.【考点】4G:平方差公式的几何背景.【分析】根据拼成的长方形的面积等于大正方形的面积减去小正方形的面积列式整理即可得解.【解答】解:拼成的长方形的面积=(a+3)2﹣32,=(a+3+3)(a+3﹣3),=a(a+6),∵拼成的长方形一边长为a,∴另一边长是a+6.故答案为:a+6.15.如图,在直角坐标系中,⊙A的圆心A的坐标为(﹣1,0),半径为1,点P为直线y=﹣x+3上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是2.【考点】MC:切线的性质;F5:一次函数的性质.【分析】连接AP,PQ,当AP最小时,PQ最小,当AP⊥直线y=﹣x+3时,PQ最小,根据两点间的距离公式得到AP=3,根据勾股定理即可得到结论.【解答】解:连接AP,PQ,当AP最小时,PQ最小,∴当AP⊥直线y=﹣x+3时,PQ最小,∵A的坐标为(﹣1,0),y=﹣x+3可化为3x+4y﹣12=0,∴AP==3,∴PQ==2.16.如图,正△ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限,△ABO沿x轴正方形作无滑动的翻滚,经一次翻滚后得到△A1B1O,则翻滚3次后点B的对应点的坐标是(5,),翻滚2017次后AB中点M经过的路径长为(+896)π.【考点】O4:轨迹;D2:规律型:点的坐标.【分析】如图作B3E⊥x轴于E,易知OE=5,B3E=,观察图象可知3三次一个循环,一个循环点M的运动路径为++=()π,由2017÷3=672…1,可知翻滚2017次后AB中点M经过的路径长为672•()π+π=(+896)π.【解答】解:如图作B3E⊥x轴于E,易知OE=5,B3E=,∴B3(5,),观察图象可知3三次一个循环,一个循环点M的运动路径为++=()π,∵2017÷3=672…1,∴翻滚2017次后AB中点M经过的路径长为672•()π+π=(+896)π.故答案为(+896)π.三、解答题(本题共有8小题,第17-19小题每小题6分,第20-21小题每小题6分,第22-23小题每小题6分,第24小题12分,共66分,请务必写出解答过程)17.计算: +(π﹣1)0×|﹣2|﹣tan60°.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【分析】按照实数的运算法则依次计算,注意:tan60°=,(π﹣1)0=1.【解答】解:原式=2+1×2﹣=2+.18.解下列一元一次不等式组:.【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x≤2,得:x≤4,解不等式3x+2>x,得:x>﹣1,则不等式组的解集为﹣1<x≤4.19.如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D,连接OD.作BE⊥CD于点E,交半圆O于点F.已知CE=12,BE=9.(1)求证:△COD∽△CBE.(2)求半圆O的半径r的长.【考点】S9:相似三角形的判定与性质;MC:切线的性质.【分析】(1)由切线的性质和垂直的定义得出∠E=90°=∠CDO,再由∠C=∠C,得出△COD∽△CBE.(2)由勾股定理求出BC==15,由相似三角形的性质得出比例式,即可得出答案.【解答】(1)证明:∵CD切半圆O于点D,∴CD⊥OD,∴∠CDO=90°,∵BE⊥CD,∴∠E=90°=∠CDO,又∵∠C=∠C,∴△COD∽△CBE.(2)解:在Rt△BEC中,CE=12,BE=9,∴BC==15,∵△COD∽△CBE.∴,即,解得:r=.20.根据衢州市统计局发布的统计数据显示,衢州市近5年国民生产总值数据如图1所示,2016年国民生产总值中第一产业,第二产业,第三产业所占比例如图2所示.请根据图中信息,解答下列问题:(1)求2016年第一产业生产总值(精确到1亿元)(2)2016年比2015年的国民生产总值增加了百分之几?(精确到1%)(3)若要使2018年的国民生产总值达到1573亿元,求2016年至2018年我市国民生产总值的平均增长率(精确到1%)【考点】AD:一元二次方程的应用;VB:扇形统计图;VC:条形统计图.【分析】(1)2016年第一产业生产总值=2016年国民生产总值×2016年第一产业国民生产总值所占百分率列式计算即可求解;(2)先求出2016年比2015年的国民生产总值增加了多少,再除以2015年的国民生产总值即可求解;(3)设2016年至2018年我市国民生产总值的平均增长率为x,那么2017年我市国民生产总值为1300(1+x)亿元,2018年我市国民生产总值为1300(1+x)(1+x)亿元,然后根据2018年的国民生产总值要达到1573亿元即可列出方程,解方程就可以求出年平均增长率.【解答】解:(1)1300×7.1%≈92(亿元).答:2016年第一产业生产总值大约是92亿元;(2)÷1204×100%=96÷1204×100%≈8%.答:2016年比2015年的国民生产总值大约增加了8%;(3)设2016年至2018年我市国民生产总值的年平均增长率为x,依题意得1300(1+x)2=1573,∴1+x=±1.21,∴x=10%或x=﹣2.1(不符合题意,故舍去).答:2016年至2018年我市国民生产总值的年平均增长率约为10%.21.“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.【考点】FH:一次函数的应用;FA:待定系数法求一次函数解析式.【分析】(1)根据函数图象中的信息,分别运用待定系数法,求得y1,y2关于x的函数表达式即可;(2)当y1=y2时,15x+80=30x,当y1>y2时,15x+80>30x,当y1<y2时,15x+80>30x,分求得x的取值范围即可得出方案.【解答】解:(1)设y1=k1x+80,把点(1,95)代入,可得95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80>30x,解得x>;∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.22.定义:如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P在该抛物线上(P 点与A、B两点不重合),如果△ABP的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c (a≠0)的勾股点.(1)直接写出抛物线y=﹣x2+1的勾股点的坐标.(2)如图2,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A,B两点,点P(1,)是抛物线C的勾股点,求抛物线C的函数表达式.(3)在(2)的条件下,点Q 在抛物线C 上,求满足条件S △ABQ =S △ABP 的Q 点(异于点P )的坐标.【考点】HA :抛物线与x 轴的交点;H8:待定系数法求二次函数解析式. 【分析】(1)根据抛物线勾股点的定义即可得; (2)作PG ⊥x 轴,由点P 坐标求得AG=1、PG=、PA=2,由tan ∠PAB==知∠PAG=60°,从而求得AB=4,即B (4,0),待定系数法求解可得;(3)由S △ABQ =S △ABP 且两三角形同底,可知点Q 到x 轴的距离为,据此求解可得.【解答】解:(1)抛物线y=﹣x 2+1的勾股点的坐标为(0,1);(2)抛物线y=ax 2+bx 过原点,即点A (0,0), 如图,作PG ⊥x 轴于点G ,∵点P 的坐标为(1,),∴AG=1、PG=,PA===2,∵tan ∠PAB==,∴∠PAG=60°, 在Rt △PAB 中,AB===4,∴点B 坐标为(4,0), 设y=ax (x ﹣4), 将点P (1,)代入得:a=﹣, ∴y=﹣x (x ﹣4)=﹣x 2+x ;(3)①当点Q 在x 轴上方时,由S △ABQ =S △ABP 知点Q 的纵坐标为,则有﹣x 2+x=,解得:x1=3,x2=1(不符合题意,舍去),∴点Q的坐标为(3,);=S△ABP知点Q的纵坐标为﹣,②当点Q在x轴下方时,由S△ABQ则有﹣x2+x=﹣,解得:x1=2+,x2=2﹣,∴点Q的坐标为(2+,﹣)或(2﹣,﹣);综上,满足条件的点Q有3个:(3,)或(2+,﹣)或(2﹣,﹣).23.问题背景如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.类比探究如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.(2)△DEF是否为正三角形?请说明理由.(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.【考点】LO:四边形综合题.【分析】(1)由正三角形的性质得出∠CAB=∠ABC=∠BCA=60°,AB=BC,证出∠ABD=∠BCE,由ASA证明△ABD≌△BCE即可;(2)由全等三角形的性质得出∠ADB=∠BEC=∠CFA,证出∠FDE=∠DEF=∠EFD,即可得出结论;(3)作AG⊥BD于G,由正三角形的性质得出∠ADG=60°,在Rt△ADG中,DG=b,AG= b,在Rt△ABG中,由勾股定理即可得出结论.【解答】解:(1)△ABD≌△BCE≌△CAF;理由如下:∵△ABC是正三角形,∴∠CAB=∠ABC=∠BCA=60°,AB=BC,∵∠ABD=∠ABC﹣∠2,∠BCE=∠ACB﹣∠3,∠2=∠3,∴∠ABD=∠BCE,在△ABD和△BCE中,,∴△ABD≌△BCE(ASA);(2)△DEF是正三角形;理由如下:∵△ABD≌△BCE≌△CAF,∴∠ADB=∠BEC=∠CFA,∴∠FDE=∠DEF=∠EFD,∴△DEF是正三角形;(3)作AG⊥BD于G,如图所示:∵△DEF是正三角形,∴∠ADG=60°,在Rt△ADG中,DG=b,AG=b,在Rt△ABG中,c2=(a+b)2+(b)2,∴c2=a2+ab+b2.24.在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1)如图1,当t=3时,求DF的长.(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.(3)连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.【考点】LO:四边形综合题.【分析】(1)当t=3时,点E为AB的中点,由三角形中位线定理得出DE∥OA,DE=OA=4,再由矩形的性质证出DE⊥AB,得出∠OAB=∠DEA=90°,证出四边形DFAE是矩形,得出DF=AE=3即可;(2)作DM⊥OA于M,DN⊥AB于N,证明四边形DMAN是矩形,得出∠MDN=90°,DM∥AB,DN∥OA,由平行线得出比例式,=,由三角形中位线定理得出DM=AB=3,DN=OA=4,证明△DMF∽△DNE,得出=,再由三角函数定义即可得出答案;(3)作作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD 交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,NE=3﹣t,由△DMF∽△DNE得:MF=(3﹣t),求出AF=4+MF=﹣t+,得出G(,t),求出直线AD的解析式为y=﹣x+6,把G(,t)代入即可求出t的值;②当点E越过中点之后,NE=t﹣3,由△DMF∽△DNE得:MF=(t﹣3),求出AF=4﹣MF=﹣t+,得出G(,t),代入直线AD的解析式y=﹣x+6求出t的值即可.【解答】解:(1)当t=3时,点E为AB的中点,∵A(8,0),C(0,6),∴OA=8,OC=6,∵点D为OB的中点,∴DE∥OA,DE=OA=4,∵四边形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF⊥DE,∴∠EDF=90°,∴四边形DFAE是矩形,∴DF=AE=3;(2)∠DEF的大小不变;理由如下:作DM⊥OA于M,DN⊥AB于N,如图2所示:∵四边形OABC是矩形,∴OA⊥AB,∴四边形DMAN是矩形,∴∠MDN=90°,DM∥AB,DN∥OA,∴,=,∵点D为OB的中点,∴M、N分别是OA、AB的中点,∴DM=AB=3,DN=OA=4,∵∠EDF=90°,∴∠FDM=∠EDN,又∵∠DMF=∠DNE=90°,∴△DMF∽△DNE,∴=,∵∠EDF=90°,∴tan∠DEF==;(3)作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,如图3所示,NE=3﹣t,由△DMF∽△DNE得:MF=(3﹣t),∴AF=4+MF=﹣t+,∵点G为EF的三等分点,∴G(,t),设直线AD的解析式为y=kx+b,把A(8,0),D(4,3)代入得:,解得:,∴直线AD的解析式为y=﹣x+6,把G(,t)代入得:t=;②当点E越过中点之后,如图4所示,NE=t﹣3,由△DMF∽△DNE得:MF=(t﹣3),∴AF=4﹣MF=﹣t+,∵点G为EF的三等分点,∴G(,t),代入直线AD的解析式y=﹣x+6得:t=;综上所述,当AD将△DEF分成的两部分的面积之比为1:2时,t的值为或考试小提示试卷一张一张,发的是希望;考试一场一场,考的是能力;笔尖一动一动,动的是梦想;问候一声一声,道的是真情;考试日,愿你们认真、细心做题,取得好成绩。
2017年中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.﹣2017的绝对值是()A.2017 B.﹣2017 C.12017D.﹣12017【答案】A.2.一组数据1,3,4,2,2的众数是()A.1 B.2 C.3 D.4【答案】B.3.单项式32xy的次数是()A.1 B.2 C.3 D.4【答案】D.4.如图,已知直线a∥b,c∥b,∠1=60°,则∠2的度数是()A.30°B.60°C.120°D.61°【答案】B.5.世界文化遗产长城总长约670000米,将数670000用科学记数法可表示为()A.6.7×104B.6.7×105C.6.7×106D.67×104【答案】B.6.如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S2【答案】C.7.一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8 B.9 C.10 D.11【答案】C.8.把不等式组231345xx x+>⎧⎨+≥⎩的解集表示在数轴上如下图,正确的是()A.B.C.D.【答案】B.9.如图,已知点A在反比例函数kyx=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.4yx=B.2yx=C.8yx=D.8yx=-【答案】C.10.观察下列关于自然数的式子:4×12﹣12①4×22﹣32②4×32﹣52③…根据上述规律,则第2017个式子的值是()A.8064 B.8065 C.8066 D.8067 【答案】D.二、填空题(本大题共8小题,每小题4分,共32分)11.5的相反数是 . 【答案】﹣5. 12.一组数据2,3,2,5,4的中位数是 .【答案】3.13.方程1201x x-=-的解为x = . 【答案】2.14.已知一元二次方程230x x k -+=有两个相等的实数根,则k = .【答案】94. 15.已知菱形的两条对角线的长分别是5cm ,6cm ,则菱形的面积是 cm 2.【答案】15.16.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B 处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB =2米,BC =18米,则旗杆CD 的高度是 米.【答案】3.42.17.从﹣1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为 .【答案】16. 18.如图,在Rt △ABC 中,∠C =90°,点D 是AB 的中点,ED ⊥AB 交AC 于点E .设∠A =α,且tanα=13,则tan2α= .【答案】34.三、解答题19.(1)计算:101()4sin 60(3 1.732)122----+; (2)先化简,再求值:2261213x x x x x +-⋅-++,其中x =2. 【答案】(1)1;(2)21x -,2. 20.如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .【答案】证明见解析.21.某校为了了解九年级九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩的样本,按A ,B ,C (A 等:成绩大于或等于80分;B 等:成绩大于或等于60分且小于80分;C 等:成绩小于60分)三个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(1)请把条形统计图补充完整;(2)扇形统计图中A 等所在的扇形的圆心角等于 度;(3)若九年级有1000名学生,请你用此样本估计体育测试众60分以上(包括60分)的学生人数.【答案】(1)作图见解析;(2)108;(3)800.22.如图,已知点E ,F 分别是平行四边形ABCD 对角线BD 所在直线上的两点,连接AE ,CF ,请你添加一个条件,使得△ABE ≌△CDF ,并证明.【答案】证明见解析.四、解答题23.某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间为一次函数关系,如图所示.(1)求y与x的函数表达式;(2)要使销售利润达到800元,销售单价应定为每千克多少元?【答案】(1)60(020)80(2080)xyx x<<⎧=⎨-+≤≤⎩;(2)40元或60元.五、解答题24.如图,已知在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,点E是BC的中点,连接BD,DE.(1)若ADAB=13,求sin C;(2)求证:DE是⊙O的切线.【答案】(1)13;(2)证明见解析. 六、解答题 25.如图,抛物线2y x bx c =++经过点A (﹣1,0),B (0,﹣2),并与x 轴交于点C ,点M 是抛物线对称轴l 上任意一点(点M ,B ,C 三点不在同一直线上).(1)求该抛物线所表示的二次函数的表达式;(2)在抛物线上找出两点P 1,P 2,使得△MP 1P 2与△MCB 全等,并求出点P 1,P 2的坐标;(3)在对称轴上是否存在点Q ,使得∠BQC 为直角,若存在,作出点Q (用尺规作图,保留作图痕迹),并求出点Q 的坐标.【答案】(1)22y x x =--;(2)P 1(﹣1,0),P 2(1,﹣2)或P 1(2,0),P 2(52,74);(3)点Q 的坐标是:(1227-+1227--.。
2017年湖北省荆州市中考数学试卷一、选择题(本大题共10小题,每小题只有唯一正确答案,每小题3分,共30分)1.下列实数中最大的数是()A.3 B.0 C .D.﹣42.中国企业2016年已经在“一带一路”沿线国家建立了56个经贸合作区,直接为东道国增加了180 000个就业岗位.将180 000用科学记数法表示应为()A.18×104 B.1.8×105C.1.8×106D.18×1053.一把直尺和一块三角板ABC(含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CDE=40°,那么∠BAF的大小为()A.40°B.45°C.50°D.10°4.为了解某班学生双休户外活动情况,对部分学生参加户外活动的时间进行抽样调查,结果如下表:1236户外活动的时间(小时)学生人数(人)2242则关于“户外活动时间”这组数据的众数、中位数、平均数分别是()A.3、3、3 B.6、2、3 C.3、3、2 D.3、2、35.下列根式是最简二次根式的是()A .B .C .D .6.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°7.为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款多少元?()A.140元B.150元C.160元D.200元8.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹稍恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为()A.x2﹣6=(10﹣x)2B.x2﹣62=(10﹣x)2C.x2+6=(10﹣x)2 D.x2+62=(10﹣x)2 9.如图是某几何体的三视图,根据图中的数据,求得该几何体的体积为()A.800π+1200 B.160π+1700 C.3200π+1200 D.800π+300010.规定:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论:①方程x2+2x﹣8=0是倍根方程;②若关于x的方程x2+ax+2=0是倍根方程,则a=±3;③若关于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,则抛物线y=ax2﹣6ax+c与x轴的公共点的坐标是(2,0)和(4,0);④若点(m,n)在反比例函数y=的图象上,则关于x的方程mx2+5x+n=0是倍根方程.上述结论中正确的有()A.①②B.③④C.②③D.②④二、填空题(本大题共8小题,每小题3分,共24分)11.化简(π﹣3.14)0+|1﹣2|﹣+()﹣1的结果是.12.若单项式﹣5x4y2m+n与2017x m﹣n y2是同类项,则m﹣7n的算术平方根是.13.若关于x的分式方程=2的解为负数,则k的取值范围为.14.观察下列图形:它们是按一定规律排列的,依照此规律,第9个图形中共有个点.15.将直线y=x+b沿y轴向下平移3个单位长度,点A(﹣1,2)关于y轴的对称点落在平移后的直线上,则b的值为.16.如图,A、B、C是⊙O上的三点,且四边形OABC是菱形.若点D是圆上异于A、B、C 的另一点,则∠ADC的度数是.17.如图,在5×5的正方形网格中有一条线段AB,点A与点B均在格点上.请在这个网格中作线段AB的垂直平分线.要求:①仅用无刻度直尺,且不能用直尺中的直角;②保留必要的作图痕迹.18.如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴的负半轴、y轴的正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,BC与OD相交于点M.若经过点M的反比例函数y=(x<0)的图象交AB于点N,S矩形OABC=32,tan∠DOE=,则BN的长为.三、解答题(本大题共7小题,共66分)19.(1)解方程组:(2)先化简,再求值:﹣÷,其中x=2.20.如图,在矩形ABCD中,连接对角线AC、BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.21.某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.请根据图中的信息解答下列问题:(1)补全条形统计图(2)该年级共有700人,估计该年级足球测试成绩为D等的人数为人;(3)在此次测试中,有甲、乙、丙、丁四个班的学生表现突出,现决定从这四个班中随机选取两个班在全校举行一场足球友谊赛.请用画树状图或列表的方法,求恰好选到甲、乙两个班的概率.22.如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方2米处的点C出发,沿斜面坡度i=1:的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB∥DE.求旗杆AB的高度.(参考数据:sin37°≈,cos37°≈,tan37°≈.计算结果保留根号)23.已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k为常数.(1)求证:无论k为何值,方程总有两个不相等实数根;(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,求k的取值范围;(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值.24.荆州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:(1)求日销售量y与时间t的函数关系式?(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2400元?(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m(m<7)元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求m 的取值范围.25.如图在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于A、B两点,点P、Q 同时从点A出发,运动时间为t秒.其中点P沿射线AB运动,速度为每秒4个单位长度,点Q沿射线AO运动,速度为每秒5个单位长度.以点Q为圆心,PQ长为半径作⊙Q.(1)求证:直线AB是⊙Q的切线;(2)过点A左侧x轴上的任意一点C(m,0),作直线AB的垂线CM,垂足为M.若CM与⊙Q相切于点D,求m与t的函数关系式(不需写出自变量的取值范围);(3)在(2)的条件下,是否存在点C,直线AB、CM、y轴与⊙Q同时相切?若存在,请直接写出此时点C的坐标;若不存在,请说明理由.2017年湖北省荆州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题只有唯一正确答案,每小题3分,共30分)1.下列实数中最大的数是()A.3 B.0 C.D.﹣4【考点】2A:实数大小比较.【分析】将各数按照从大到小顺序排列,找出最大数即可.【解答】解:各数排列得:3>>0>﹣4,则实数找最大的数是3,故选A2.中国企业2016年已经在“一带一路”沿线国家建立了56个经贸合作区,直接为东道国增加了180 000个就业岗位.将180 000用科学记数法表示应为()A.18×104 B.1.8×105C.1.8×106D.18×105【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:180000=1.8×105.故选:B.3.一把直尺和一块三角板ABC(含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CDE=40°,那么∠BAF的大小为()A.40°B.45°C.50°D.10°【考点】JA:平行线的性质.【分析】先根据∠CDE=40°,得出∠CED=50°,再根据DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.【解答】解:由图可得,∠CDE=40°,∠C=90°,∴∠CED=50°,又∵DE∥AF,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°﹣50°=10°,故选:D.4.为了解某班学生双休户外活动情况,对部分学生参加户外活动的时间进行抽样调查,结果如下表:1236户外活动的时间(小时)学生人数(人)2242则关于“户外活动时间”这组数据的众数、中位数、平均数分别是()A.3、3、3 B.6、2、3 C.3、3、2 D.3、2、3【考点】W5:众数;W2:加权平均数;W4:中位数.【分析】根据中位数、平均数和众数的概念求解即可.【解答】解:∵共10人,∴中位数为第5和第6人的平均数,∴中位数=(3+3)÷3=5;平均数=(1×2+2×2+3×4+6×2)÷10=3;众数是一组数据中出现次数最多的数据,所以众数为3;故选A.5.下列根式是最简二次根式的是()A .B .C .D .【考点】74:最简二次根式.【分析】根据最简二次根式是被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.【解答】解:A、该二次根式的被开方数中含有分母,不是最简二次根式,故本选项错误;B、该二次根式的被开方数中含有小数,不是最简二次根式,故本选项错误;C、该二次根式符合最简二次根式的定义,故本选项正确;D、20=22×5,该二次根式的被开方数中含开的尽的因数,不是最简二次根式,故本选项错误;故选:C.6.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°【考点】KH:等腰三角形的性质;KG:线段垂直平分线的性质.【分析】根据三角形的内角和定理,求出∠C,再根据线段垂直平分线的性质,推得∠A=∠ABD=30°,由外角的性质求出∠BDC的度数,从而得出∠CBD=45°.【解答】解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B.7.为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款多少元?()A.140元B.150元C.160元D.200元【考点】8A:一元一次方程的应用.【分析】此题的关键描述:“先买优惠卡再凭卡付款,结果节省了人民币10元”,设出未知数,根据题中的关键描述语列出方程求解.【解答】解:设李明同学此次购书的总价值是人民币是x元,则有:20+0.8x=x﹣10解得:x=150即:小慧同学不凭卡购书的书价为150元.故选:B.8.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹稍恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为()A.x2﹣6=(10﹣x)2B.x2﹣62=(10﹣x)2C.x2+6=(10﹣x)2 D.x2+62=(10﹣x)2【考点】KU:勾股定理的应用.【分析】根据题意画出图形,设折断处离地面的高度为x尺,再利用勾股定理列出方程即可.【解答】解:如图,设折断处离地面的高度为x尺,则AB=10﹣x,BC=6,在Rt△ABC中,AC2+BC2=AB2,即x2+62=(10﹣x)2.故选D.9.如图是某几何体的三视图,根据图中的数据,求得该几何体的体积为()A.800π+1200 B.160π+1700 C.3200π+1200 D.800π+3000【考点】U3:由三视图判断几何体.【分析】根据给出的几何体的三视图可知几何体是由一个圆柱和一个长方体组成,从而利用三视图中的数据,根据体积公式计算即可.【解答】解:由三视图可知,几何体是由一个圆柱和一个长方体组成,圆柱底面直径为20,高为8,长方体的长为30,宽为20,高为5,故该几何体的体积为:π×102×8+30×20×5=800π+3000,故选:D.10.规定:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论:①方程x2+2x﹣8=0是倍根方程;②若关于x的方程x2+ax+2=0是倍根方程,则a=±3;③若关于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,则抛物线y=ax2﹣6ax+c与x轴的公共点的坐标是(2,0)和(4,0);④若点(m,n)在反比例函数y=的图象上,则关于x的方程mx2+5x+n=0是倍根方程.上述结论中正确的有()A.①②B.③④C.②③D.②④【考点】G6:反比例函数图象上点的坐标特征;AA:根的判别式;AB:根与系数的关系;HA:抛物线与x轴的交点.【分析】①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设x2=2x1,得到x1•x2=2x12=2,得到当x1=1时,x2=2,当x1=﹣1时,x2=﹣2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m,n)在反比例函数y=的图象上,得到mn=4,然后解方程mx2+5x+n=0即可得到正确的结论;【解答】解:①由x2﹣2x﹣8=0,得(x﹣4)(x+2)=0,解得x1=4,x2=﹣2,∵x1≠2x2,或x2≠2x1,∴方程x2﹣2x﹣8=0不是倍根方程.故①错误;②关于x的方程x2+ax+2=0是倍根方程,∴设x2=2x1,∴x1•x2=2x12=2,∴x1=±1,当x1=1时,x2=2,当x1=﹣1时,x2=﹣2,∴x1+x2=﹣a=±3,∴a=±3,故②正确;③关于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,∴x2=2x1,∵抛物线y=ax2﹣6ax+c的对称轴是直线x=3,∴抛物线y=ax2﹣6ax+c与x轴的交点的坐标是(2,0)和(4,0),故③正确;④∵点(m,n)在反比例函数y=的图象上,∴mn=4,解mx2+5x+n=0得x1=﹣,x2=﹣,∴x2=4x1,∴关于x的方程mx2+5x+n=0不是倍根方程;故选C.二、填空题(本大题共8小题,每小题3分,共24分)11.化简(π﹣3.14)0+|1﹣2|﹣+()﹣1的结果是2.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=1+2﹣1﹣2+2=2,故答案为:212.若单项式﹣5x4y2m+n与2017x m﹣n y2是同类项,则m﹣7n的算术平方根是4.【考点】22:算术平方根;34:同类项;98:解二元一次方程组.【分析】根据同类项定义可以得到关于m、n的二元一次方程,即可求得m、n的值即可解题.【解答】解:∵单项式﹣5x4y2m+n与2017x m﹣n y2是同类项,∴4=m﹣n,2m+n=2,解得:m=2,n=﹣2,∴m﹣7n=16,∴m﹣7n的算术平方根==4,故答案为4.13.若关于x的分式方程=2的解为负数,则k的取值范围为k<3且k≠1.【考点】B2:分式方程的解;C6:解一元一次不等式.【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据解为负数确定出k的范围即可.【解答】解:去分母得:k﹣1=2x+2,解得:x=,由分式方程的解为负数,得到<0,且x+1≠0,即≠﹣1,解得:k<3且k≠1,故答案为:k<3且k≠114.观察下列图形:它们是按一定规律排列的,依照此规律,第9个图形中共有135个点.【考点】38:规律型:图形的变化类.【分析】仔细观察图形,找到图形变化的规律的通项公式,然后代入9求解即可.【解答】解:第一个图形有3=3×1=3个点,第二个图形有3+6=3×(1+2)=9个点;第三个图形有3+6+9=3×(1+2+3)=18个点;…第n个图形有3+6+9+…+3n=3×(1+2+3+…+n)=个点;当n=9时,=135个点,故答案为:135.15.将直线y=x+b沿y轴向下平移3个单位长度,点A(﹣1,2)关于y轴的对称点落在平移后的直线上,则b的值为4.【考点】F9:一次函数图象与几何变换.【分析】先根据一次函数平移规律得出直线y=x+b沿y轴向下平移3个单位长度后的直线解析式,再把点A(﹣1,2)关于y轴的对称点(1,2)代入,即可求出b的值.【解答】解:将直线y=x+b沿y轴向下平移3个单位长度,得直线y=x+b﹣3.∵点A(﹣1,2)关于y轴的对称点是(1,2),∴把点(1,2)代入y=x+b﹣3,得1+b﹣3=2,解得b=4.故答案为4.16.如图,A、B、C是⊙O上的三点,且四边形OABC是菱形.若点D是圆上异于A、B、C 的另一点,则∠ADC的度数是60°或120°.【考点】M6:圆内接四边形的性质;L8:菱形的性质;M5:圆周角定理.【分析】连接OB,则AB=OA=OB故可得出△AOB是等边三角形,所以∠ADC=60°,∠AD′C=120°,据此可得出结论.【解答】解:连接OB,∵四边形OABC是菱形,∴AB=OA=OB=BC,∴△AOB是等边三角形,∴∠ADC=60°,∠AD′C=120°.故答案为:60°或120°.17.如图,在5×5的正方形网格中有一条线段AB,点A与点B均在格点上.请在这个网格中作线段AB的垂直平分线.要求:①仅用无刻度直尺,且不能用直尺中的直角;②保留必要的作图痕迹.【考点】N4:作图—应用与设计作图;KG:线段垂直平分线的性质.【分析】以AB为边作正方形ABCD,正方形ABEF,连接AC,BD交于O,连接AE,BF交于O′,过O,O′作直线OO′于是得到结论.【解答】解:如图所示,直线OO′即为所求.18.如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴的负半轴、y轴的正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,BC与OD相交于点M.若经过点M的反比例函数y=(x<0)的图象交AB于点N,S矩形OABC=32,tan∠DOE=,则BN的长为3.【考点】R7:坐标与图形变化﹣旋转;G5:反比例函数系数k的几何意义;T7:解直角三角形.【分析】利用矩形的面积公式得到AB•BC=32,再根据旋转的性质得AB=DE,OD=OA,接着利用正切的定义得到an∠DOE==,所以DE•2DE=32,解得DE=4,于是得到AB=4,OA=8,同样在Rt△OCM中利用正切定义得到MC=2,则M(﹣2,4),易得反比例函数解析式为y=﹣,然后确定N点坐标,最后计算BN的长.=32,【解答】解:∵S矩形OABC∴AB•BC=32,∵矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,∴AB=DE,OD=OA,在Rt△ODE中,tan∠DOE==,即OD=2DE,∴DE•2DE=32,解得DE=4,∴AB=4,OA=8,在Rt△OCM中,∵tan∠COM==,而OC=AB=4,∴MC=2,∴M(﹣2,4),把M(﹣2,4)代入y=得k=﹣2×4=﹣8,∴反比例函数解析式为y=﹣,当x=﹣8时,y=﹣=1,则N(﹣8,1),∴BN=4﹣1=3.故答案为3.三、解答题(本大题共7小题,共66分)19.(1)解方程组:(2)先化简,再求值:﹣÷,其中x=2.【考点】6D:分式的化简求值;98:解二元一次方程组.【分析】(1)根据代入消元法可以解答此方程;(2)根据分式的除法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:(1)将①代入②,得3x+2(2x﹣3)=8,解得,x=2,将x=2代入①,得y=1,故原方程组的解是;(2)﹣÷===,当x=2时,原式=.20.如图,在矩形ABCD中,连接对角线AC、BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.【考点】LB:矩形的性质;KD:全等三角形的判定与性质;Q2:平移的性质.【分析】(1)由矩形的性质得出AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,得出AD=EC,由SAS即可得出结论;(2)由AC=BD,DE=AC,得出BD=DE即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,∴AD=EC,在△ACD和△EDC中,,∴△ACD≌△EDC(SAS);(2)解:△BDE是等腰三角形;理由如下:∵AC=BD,DE=AC,∴BD=DE,∴△BDE是等腰三角形.21.某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.请根据图中的信息解答下列问题:(1)补全条形统计图(2)该年级共有700人,估计该年级足球测试成绩为D等的人数为56人;(3)在此次测试中,有甲、乙、丙、丁四个班的学生表现突出,现决定从这四个班中随机选取两个班在全校举行一场足球友谊赛.请用画树状图或列表的方法,求恰好选到甲、乙两个班的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)根据A等学生人数除以它所占的百分比求得总人数,然后乘以B等所占的百分比求得B等人数,从而补全条形图;(2)用该年级学生总数乘以足球测试成绩为D等的人数所占百分比即可求解;(3)利用树状图法,将所有等可能的结果列举出来,利用概率公式求解即可.【解答】解:(1)总人数为14÷28%=50人,B等人数为50×40%=20人.条形图补充如下:(2)该年级足球测试成绩为D等的人数为700×=56(人).故答案为56;(3)画树状图:共有12种等可能的结果数,其中选取的两个班恰好是甲、乙两个班的情况占2种,所以恰好选到甲、乙两个班的概率是=.22.如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方2米处的点C出发,沿斜面坡度i=1:的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB ∥DE.求旗杆AB的高度.(参考数据:sin37°≈,cos37°≈,tan37°≈.计算结果保留根号)【考点】TA:解直角三角形的应用﹣仰角俯角问题;T9:解直角三角形的应用﹣坡度坡角问题.【分析】延长ED交BC延长线于点F,则∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=2、DF=CD=2,作EG⊥AB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠AEG=4•tan37°可得答案.【解答】解:如图,延长ED交BC延长线于点F,则∠CFD=90°,∵tan∠DCF=i==,∴∠DCF=30°,∵CD=4,∴DF=CD=2,CF=CDcos∠DCF=4×=2,∴BF=BC+CF=2+2=4,过点E作EG⊥AB于点G,则GE=BF=4,GB=EF=ED+DF=1.5+2=3.5,又∵∠AED=37°,∴AG=GEtan∠AEG=4•tan37°,则AB=AG+BG=4•tan37°+3.5=3+3.5,故旗杆AB的高度为(3+3.5)米.23.已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k为常数.(1)求证:无论k为何值,方程总有两个不相等实数根;(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,求k的取值范围;(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值.【考点】HA:抛物线与x轴的交点;AA:根的判别式;AB:根与系数的关系;H3:二次函数的性质.【分析】(1)求出方程的判别式△的值,利用配方法得出△>0,根据判别式的意义即可证明;(2)由于二次函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,又△=(k﹣5)2﹣4(1﹣k)=(k﹣3)2+12>0,所以抛物线的顶点在x轴的下方经过一、二、四象限,根据二次项系数知道抛物线开口向上,由此可以得出关于k的不等式组,解不等式组即可求解;(3)设方程的两个根分别是x1,x2,根据题意得(x1﹣3)(x2﹣3)<0,根据一元二次方程根与系数的关系求得k的取值范围,再进一步求出k的最大整数值.【解答】(1)证明:∵△=(k﹣5)2﹣4(1﹣k)=k2﹣6k+21=(k﹣3)2+12>0,∴无论k为何值,方程总有两个不相等实数根;(2)解:∵二次函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,∵二次项系数a=1,∴抛物线开口方向向上,∵△=(k﹣3)2+12>0,∴抛物线与x轴有两个交点,设抛物线与x轴的交点的横坐标分别为x1,x2,∴x1+x2=5﹣k>0,x1•x2=1﹣k>0,解得k<1,即k的取值范围是k<1;(3)解:设方程的两个根分别是x1,x2,根据题意,得(x1﹣3)(x2﹣3)<0,即x1•x2﹣3(x1+x2)+9<0,又x1+x2=5﹣k,x1•x2=1﹣k,代入得,1﹣k﹣3(5﹣k)+9<0,解得k<.则k的最大整数值为2.24.荆州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:(1)求日销售量y与时间t的函数关系式?(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2400元?(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m(m<7)元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求m 的取值范围.【考点】HE:二次函数的应用.【分析】(1)根据函数图象,利用待定系数法求解可得;(2)设日销售利润为w,分1≤t≤40和41≤t≤80两种情况,根据“总利润=每千克利润×销售量”列出函数解析式,由二次函数的性质分别求得最值即可判断;(3)求出w=2400时x的值,结合函数图象即可得出答案;(4)依据(2)中相等关系列出函数解析式,确定其对称轴,由1≤t≤40且销售利润随时间t的增大而增大,结合二次函数的性质可得答案.【解答】解:(1)设解析式为y=kt+b,将(1,198)、(80,40)代入,得:,解得:,∴y=﹣2t+200(1≤x≤80,t为整数);(2)设日销售利润为w,则w=(p﹣6)y,①当1≤t≤40时,w=(t+16﹣6)(﹣2t+200)=﹣(t﹣30)2+2450,∴当t=30时,w最大=2450;②当41≤t≤80时,w=(﹣t+46﹣6)(﹣2t+200)=(t﹣90)2﹣100,∴当t=41时,w最大=2301,∵2450>2301,∴第30天的日销售利润最大,最大利润为2450元.(3)由(2)得:当1≤t≤40时,w=﹣(t﹣30)2+2450,令w=2400,即﹣(t﹣30)2+2450=2400,解得:t1=20、t2=40,由函数w=﹣(t﹣30)2+2450图象可知,当20≤t≤40时,日销售利润不低于2400元,而当41≤t≤80时,w最大=2301<2400,∴t的取值范围是20≤t≤40,∴共有21天符合条件.(4)设日销售利润为w,根据题意,得:w=(t+16﹣6﹣m)(﹣2t+200)=﹣t2+(30+2m)t+2000﹣200m,其函数图象的对称轴为t=2m+30,∵w随t的增大而增大,且1≤t≤40,∴由二次函数的图象及其性质可知2m+30≥40,解得:m≥5,又m<7,∴5≤m<7.25.如图在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于A、B两点,点P、Q 同时从点A出发,运动时间为t秒.其中点P沿射线AB运动,速度为每秒4个单位长度,点Q沿射线AO运动,速度为每秒5个单位长度.以点Q为圆心,PQ长为半径作⊙Q.(1)求证:直线AB是⊙Q的切线;(2)过点A左侧x轴上的任意一点C(m,0),作直线AB的垂线CM,垂足为M.若CM与⊙Q相切于点D,求m与t的函数关系式(不需写出自变量的取值范围);(3)在(2)的条件下,是否存在点C,直线AB、CM、y轴与⊙Q同时相切?若存在,请直接写出此时点C的坐标;若不存在,请说明理由.【考点】FI:一次函数综合题.【分析】(1)只要证明△PAQ∽△BAO,即可推出∠APQ=∠AOB=90°,推出QP⊥AB,推出AB 是⊙O的切线;(2)分两种情形求解即可:①如图2中,当直线CM在⊙O的左侧与⊙Q相切时,设切点为D,则四边形PQDM是正方形.②如图3中,当直线CM在⊙O的右侧与⊙Q相切时,设切点为D,则四边形PQDM是正方形.分别列出方程即可解决问题.(3)分两种情形讨论即可,一共有四个点满足条件.【解答】(1)证明:如图1中,连接QP.在Rt△AOB中,OA=4,OB=3,∴AB==5,∵AP=4t,AQ=5t,∴==,∵∠PAQ=∠BAO,∴△PAQ∽△BAO,∴∠APQ=∠AOB=90°,∴QP⊥AB,∴AB是⊙O的切线.(2)解:①如图2中,当直线CM在⊙O的左侧与⊙Q相切时,设切点为D,则四边形PQDM是正方形.易知PQ=DQ=3t,CQ=•3t=,∵OC+CQ+AQ=4,∴m+t+5t=4,∴m=4﹣t.②如图3中,当直线CM在⊙O的右侧与⊙Q相切时,设切点为D,则四边形PQDM是正方形.∵OC+AQ﹣CQ=4,∴m+5t﹣t=4,∴m=4﹣t.(3)解:存在.理由如下:如图4中,当⊙Q在y则的右侧与y轴相切时,3t+5t=4,t=,由(2)可知,m=﹣或.如图5中,当⊙Q在y则的左侧与y轴相切时,5t﹣3t=4,t=2,由(2)可知,m=﹣或.综上所述,满足条件的点C的坐标为(﹣,0)或(,0)或(﹣,0)或(,0).考试小提示试卷一张一张,发的是希望;考试一场一场,考的是能力;笔尖一动一动,动的是梦想;问候一声一声,道的是真情;考试日,愿你们认真、细心做题,取得好成绩。
2017年盘锦市中考数学试题(含答案和解释)一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号涂在答题卡上,每小题3分,共30分)1.﹣2的相反数是()A.2B..﹣D.﹣2 【答案】A.【解析】试题分析:﹣2的相反数是2,故选A.考点:相反数.2.以下分别是回收、节水、绿色包装、低碳四个标志,其中是中心对称图形的是()A.B..D.【答案】.考点:中心对称图形.3.下列等式从左到右的变形,属于因式分解的是()A.B..D.【答案】.【解析】试题分析:A.,故A不是因式分解;B.,故B不是因式分解;.,故正确;D.=a(x+1)(x﹣1),故D分解不完全.故选.考点:因式分解的意义.4.如图,下面几何体的俯视图是()A.B..D.【答案】D.【解析】试题分析:从上面可看到第一行有三个正方形,第二行最左边有1个正方形.故选D.考点:简单组合体的三视图..在我市举办的中学生“争做明盘锦人”演讲比赛中,有1名学生进入决赛,他们决赛的成绩各不相同,小明想知道自己能否进入前8名,不仅要了解自己的成绩,还要了解这1名学生成绩的()A.众数B.方差.平均数D.中位数【答案】D.考点:统计量的选择.6.不等式组的解集是()A.﹣1<x≤3B.1≤x<3.﹣1≤x<3D.1<x≤3【答案】.考点:解一元一次不等式组.7.样本数据3,2,4,a,8的平均数是4,则这组数据的众数是()A.2B.3.4D.8【答案】B.【解析】试题分析:a=4×﹣3﹣2﹣4﹣8=3,则这组数据为3,2,4,3,8;众数为3,故选B.考点:众数;算术平均数.8.十一期间,几名同学共同包租一辆中巴车去红海滩游玩,中巴车的租价为480元,出发时又有4名学生参加进,结果每位同学比原少分摊4元车费.设原游玩的同学有x名,则可得方程()A.B..D.【答案】D.【解析】试题分析:由题意得:,故选D.考点:由实际问题抽象出分式方程.9.如图,双曲线(x<0)经过▱AB的对角线交点D,已知边在轴上,且A⊥于点,则▱AB的面积是()A.B..3D.6【答案】.考点:反比例函数系数的几何意义;平行四边形的性质.10.如图,抛物线与x轴交于点A(﹣1,0),顶点坐标(1,n),与轴的交点在(0,3),(0,4)之间(包含端点),则下列结论:①ab>0;②3a+b<0;③﹣≤a≤﹣1;④a+b≥a2+b(为任意实数);⑤一元二次方程有两个不相等的实数根,其中正确的有()A.2个B.3个.4个D.个【答案】B.【解析】试题分析:∵抛物线开口向下,∴a<0,∵顶点坐标(1,n),∴对称轴为直线x=1,∴=1,∴b=﹣2a>0,∵与轴的交点在(0,3),(0,4)之间(包含端点),∴3≤≤4,∴ab<0,故①错误;3a+b=3a+(﹣2a)=a<0,故②正确;∵与x轴交于点A(﹣1,0),∴a﹣b+=0,∴a﹣(﹣2a)+=0,∴=﹣3a,∴3≤﹣3a≤4,∴﹣≤a≤﹣1,故③正确;∵顶点坐标为(1,n),∴当x=1时,函数有最大值n,∴a+b+≥a2+b+,∴a+b≥a2+b,故④正确;一元二次方程有两个相等的实数根x1=x2=1,故⑤错误.综上所述,结论正确的是②③④共3个.故选B.考点:抛物线与x轴的交点;根的判别式;二次函数的性质.二、填空题(每小题3分,共24分)11.2016年我国对“一带一路”沿线国家直接投资14亿美元,将14亿用科学记数法表示为.【答案】14×1010.【解析】试题分析:将14亿用科学记数法表示为:14×1010.故答案为:14×1010.考点:科学记数法—表示较大的数.12.若式子有意义,则x的取值范围是.【答案】x>.考点:二次根式有意义的条.13.计算:= .【答案】.【解析】试题分析:原式= ,故答案为:.考点:整式的除法.14.对于▱ABD,从以下五个关系式中任取一个作为条:①AB=B;②∠BAD=90°;③A=BD;④A⊥BD;⑤∠DAB=∠AB,能判定▱ABD是矩形的概率是.【答案】.【解析】试题分析:由题意可知添加②③⑤可以判断平行四边形是矩形,∴能判定▱ABD是矩形的概率是,故答案为:.考点:概率公式;矩形的判定.1.如图,在△AB中,∠B=30°,∠=4°,AD是B边上的高,AB=4,分别以B、为圆心,以BD、D为半径画弧,交边AB、A于点E、F,则图中阴影部分的面积是2.【答案】.考点:扇形面积的计算;勾股定理.16.在平面直角坐标系中,点P的坐标为(0,﹣),以P为圆心的圆与x轴相切,⊙P的弦AB(B点在A点右侧)垂直于轴,且AB=8,反比例函数(≠0)经过点B,则= .【答案】﹣8或﹣32.【解析】试题分析:设线段AB交轴于点,当点在点P的上方时,连接PB,如图,∵⊙P 与x轴相切,且P(0,﹣),∴PB=P=,∵AB=8,∴B=4,在Rt△PB 中,由勾股定理可得P= =3,∴=P﹣P=﹣3=2,∴B点坐标为(4,﹣2),∵反比例函数(≠0)经过点B,∴=4×(﹣2)=﹣8;当点在点P下方时,同理可求得P=3,则=P+P=8,∴B(4,﹣8),∴=4×(﹣8)=﹣32;综上可知的值为﹣8或﹣32,故答案为:﹣8或﹣32.考点:反比例函数图象上点的坐标特征;切线的性质;分类讨论.17.如图,⊙的半径A=3,A的垂直平分线交⊙于B、两点,连接B、,用扇形B围成一个圆锥的侧面,则这个圆锥的高为.【答案】.考点:圆锥的计算;线段垂直平分线的性质.18.如图,点A1(1,1)在直线=x上,过点A1分别作轴、x轴的平行线交直线于点B1,B2,过点B2作轴的平行线交直线=x于点A2,过点A2作x轴的平行线交直线于点B3,…,按照此规律进行下去,则点An的横坐标为.【答案】.考点:一次函数图象上点的坐标特征;规律型:点的坐标;综合题.三、解答题(19小题8分,20小题10分,共18分)19.先化简,再求值:,其中a= .【答案】,1.【解析】试题分析:根据分式的加法和除法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题.试题解析:原式===当a=1+2=3时,原式= =1.考点:分式的化简求值;零指数幂;负整数指数幂.20.如图,码头A、B分别在海岛的北偏东4°和北偏东60°方向上,仓库在海岛的北偏东7°方向上,码头A、B均在仓库的正西方向,码头B和仓库的距离B=0,若将一批物资从仓库用汽车运送到A、B两个码头中的一处,再用货船运送到海岛,若汽车的行驶速度为0/h,货船航行的速度为2/h,问这批物资在哪个码头装船,最早运抵海岛?(两个码头物资装船所用的时间相同,参考数据:≈14,≈17)【答案】这批物资在B码头装船,最早运抵海岛.由题意∠=7°,∠B=60°,∠=4°,∠=90°,∴∠=1°,∠B=30°,=A,∵∠B=∠+∠B,∴∠=∠B=1°,∴B=B=0(),在Rt△B中,= B=2(),B= = (),在Rt△A中,=A=2(),A= ≈3,∴AB=B﹣A≈17(),∴从A码头的时间= =34(小时),从B码头的时间= =3(小时),3<34.答:这批物资在B码头装船,最早运抵海岛.考点:解直角三角形的应用﹣方向角问题;勾股定理的应用.21.如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A:自带白开水;B:瓶装矿泉水;:碳酸饮料;D:非碳酸饮料.根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题:(1)这个班级有多少名同学?并补全条形统计图.(2)若该班同学没人每天只饮用一种饮品(每种仅限1瓶,价格如下表),则该班同学用于饮品上的人均花费是多少元?(3)若我市约有初中生4万人,估计我市初中生每天用于饮品上的花费是多少元?(4)为了养成良好的生活习惯,班主任决定在自带白开水的名同学(男生2人,女生3人)中随机抽取2名同学做良好习惯监督员,请用列表法或树状图法求出恰好抽到2名女生的概率.【答案】(1)0;(2)26;(3)104000元;(4).【解析】试题分析:(1)由B类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出类型人数,即可补全条形图;(2)由各类的人数可得其总消费,进而可求出该班同学用于饮品上的人均花费是多少元;(3)用总人数乘以样本中的人均消费数额即可;(4)用列表法或画树状图法列出所有等可能结果,从中确定恰好抽到一名男生和一名女生的结果数,根据概率公式求解可得.试题解析:(1)∵抽查的总人数为:20÷40%=0人,∴类人数=0﹣20﹣﹣1=10人,补全条形统计图如下:(2)该班同学用于饮品上的人均花费=(×0+20×2+3×10+4×1)÷0=26元;(3)我市初中生每天用于饮品上的花费=40000×26=104000元.(4)列表得:或画树状图得:所有等可能的情况数有20种,其中一男一女的有12种,所以P(恰好抽到一男一女)= = .考点:列表法与树状图法;用样本估计总体;扇形统计图;条形统计图;加权平均数.22.如图,在平面直角坐标系中,直线l:与x轴、轴分别交于点,N,高为3的等边三角形AB,边B在x轴上,将此三角形沿着x轴的正方向平移,在平移过程中,得到△A1B11,当点B1与原点重合时,解答下列问题:(1)求出点A1的坐标,并判断点A1是否在直线l上;(2)求出边A11所在直线的解析式;(3)在坐标平面内找一点P,使得以P、A1、1、为顶点的四边形是平行四边形,请直接写出P点坐标.【答案】(1)A1(,3),在直线上;(2);(3)P1(,3),P2(,﹣3),P3(﹣,3).试题解析:(1)如图作A1H⊥x轴于H.在Rt△A1H中,∵A1H=3,∠A1H=60°,∴H=A1H•tan30°= ,∴A1(,3),∵x= 时,=3,∴A1在直线上.(2)∵A1(,3),1(,0),设直线A11的解析式为=x+b,则有:,解得:,∴直线A11的解析式为.(3)∵(4 ,0),A1(,3),1(2 ,0),由图象可知,当以P、A1、1、为顶点的四边形是平行四边形时,P1(,3),P2(,﹣3),P3(﹣,3).考点:一次函数综合题;分类讨论.23.端午节前夕,三位同学到某超市调研一种进价为80元的粽子礼盒的销售情况,请根据小梅提供的信息,解答小慧和小杰提出的问题.(价格取正整数)【答案】小慧:定价为102元;小杰:880元的销售利润不是最多,当定价为110元或111元时,销售利润最多,最多利润为9300元.=﹣10x2+2210x﹣112800,当=880时,﹣10x2+2210x﹣112800=880,整理,得:x2﹣221x+12138=0,解得:x=102或x=119,∵当x=102时,销量为1410﹣1020=390,当x=119时,销量为1410﹣1190=220,∴若要达到880元的利润,且薄利多销,∴此时的定价应为102元;小杰:=﹣10x2+2210x﹣112800= ,∵价格取整数,即x为整数,∴当x=110或x=111时,取得最大值,最大值为9300.答:880元的销售利润不是最多,当定价为110元或111元时,销售利润最多,最多利润为9300元.考点:二次函数的应用;二次函数的最值;最值问题.24.如图,在等腰△AB中,AB=B,以B为直径的⊙与A相交于点D,过点D作DE⊥AB交B延长线于点E,垂足为点F.(1)判断DE与⊙的位置关系,并说明理由;(2)若⊙的半径R=,tan= ,求EF的长.【答案】(1)直线DE是⊙的切线;(2).(2)过D作DH⊥B于H,∵⊙的半径R=,tan= ,∴B=10,设BD=,D=2,∴B= =10,∴=2 ,∴BD=2 ,D=4 ,∴DH= =4,∴H= =3,∵DE⊥D,DH⊥E,∴D2=H•E,∴E= ,∴BE= ,∵DE⊥AB,∴BF∥D,∴△BFE∽△DE,∴,即,∴BF=2,∴EF= = .考点:直线与圆的位置关系;等腰三角形的性质;解直角三角形;探究型.2.如图,在Rt△AB中,∠AB=90°,∠A=30°,点为AB中点,点P 为直线B上的动点(不与点B、点重合),连接、P,将线段P绕点P 顺时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段B上时,请直接写出线段BQ与P的数量关系.(2)如图2,当点P在B延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在B延长线上时,若∠BP=1°,BP=4,请求出BQ的长.【答案】(1)BQ=P;(2)成立:P=BQ;(3).(3)如图3中,作E⊥P于E,在PE上取一点F,使得FP=F,连接F.设E==a,则E=FP=2a,EF= a,在Rt△PE中,表示出P,根据P+B=4,可得方程,求出a即可解决问题;试题解析:(1)结论:BQ=P.理由:如图1中,作PH∥AB交于H.在Rt△AB中,∵∠AB=90°,∠A=30°,点为AB中点,∴=A=B,∠B=60°,∴△B是等边三角形,∴∠HP=∠B=60°,∠PH=∠B=60°,∴∠HP=∠PH=60°,∴△PH是等边三角形,∴P=PH=H,∴H=PB,∵∠PB=∠PQ+∠QPB=∠B+∠P,∵∠PQ=∠P=60°,∴∠PH=∠QPB,∵P=PQ,∴△PH≌△QPB,∴PH=QB,∴P=BQ.(3)如图3中,作E⊥P于E,在PE上取一点F,使得FP=F,连接F.∵∠P=1°,∠B=∠P+∠P,∴∠P=4°,∴E=E,设E==a,则E=FP=2a,EF= a,在Rt△PE中,P= = = ,∵P+B=4,∴,解得a= ,∴P= ,由(2)可知BQ=P,∴BQ= .考点:几何变换综合题;探究型;变式探究;压轴题.26.如图,直线=﹣2x+4交轴于点A,交抛物线于点B(3,﹣2),抛物线经过点(﹣1,0),交轴于点D,点P是抛物线上的动点,作PE⊥DB交DB所在直线于点E.(1)求抛物线的解析式;(2)当△PDE为等腰直角三角形时,求出PE的长及P点坐标;(3)在(2)的条下,连接PB,将△PBE沿直线AB翻折,直接写出翻折点后E的对称点坐标.【答案】(1);(2)PE=或2,P(2,﹣3)或(,3);(3)E的对称点坐标为(,﹣)或(36,﹣12).【解析】试题分析:(1)把B(3,﹣2),(﹣1,0)代入即可得到结论;(2)由求得D(0,﹣2),根据等腰直角三角形的性质得到DE=PE,列方程即可得到结论;(3)①当P点在直线BD的上方时,如图1,设点E关于直线AB 的对称点为E′,过E′作E′H⊥DE于H,求得直线EE′的解析式为,设E′(,),根据勾股定理即可得到结论;②当P点在直线BD的下方时,如图2,设点E关于直线AB的对称点为E′,过E′作E′H⊥DE 于H,得到直线EE′的解析式为,设E′(,),根据勾股定理即可得到结论.(2)设P(,),在中,当x=0时,=﹣2,∴D(0,﹣2),∵B(3,﹣2),∴BD∥x轴,∵PE⊥BD,∴E(,﹣2),∴DE=,PE= ,或PE= ,∵△PDE为等腰直角三角形,且∠PED=90°,∴DE=PE,∴= ,或= ,解得:=,=2,=0(不合题意,舍去),∴PE=或2,P(2,﹣3)或(,3);②当P点在直线BD的下方时,如图2,设点E关于直线AB的对称点为E′,过E′作E′H⊥DE于H,由(2)知,此时,E(2,﹣2),∴DE=2,∴BE′=BE=1,∵EE′⊥AB,∴设直线EE′的解析式为,∴﹣2= ×2+b,∴b=﹣3,∴直线EE′的解析式为,设E′(,),∴E′H= = ,BH=﹣3,∵E′H2+BH2=BE′2,∴()2+(﹣3)2=1,∴=36,=2(舍去),∴E′(36,﹣12).综上所述,E的对称点坐标为(,﹣)或(36,﹣12).考点:二次函数综合题;动点型;翻折变换(折叠问题);分类讨论;压轴题.。
江苏省扬州市2017年中考试卷数学答案解析一、选择题1.【答案】D【解析】解:1|3|4AB =-=-.故选D .【提示】根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得解.【考点】数轴2.【答案】B【解析】解:A .45a a a =g ,不符合题意;B .224()a a =,符合题意;C .3332a a a +=,不符合题意;D .43a a a ÷=,不符合题意,故选B .【提示】利用有关幂的运算性质直接运算后即可确定正确的选项.【考点】幂的运算3.【答案】A【解析】解:∵2(7)4(2)570∆=-⨯-=>-,∴方程有两个不相等的实数根.故选A .【提示】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【考点】一元二次方程的根的判别式4.【答案】D【解析】解:由于方差和标准差反映数据的波动情况.故选D .【提示】根据方差和标准差的意义:体现数据的稳定性,集中程度;方差越小,数据越稳定.【考点】数据的集中趋势和离散程度5.【答案】B【解析】解:经过圆锥顶点的截面的形状可能是B 中图形,故选:B .【提示】根据已知的特点解答【考点】立体图形的截面6.【答案】C【解析】解:设第三边的长为x ,∵三角形两边的长分别是2和4,∴4224x -<<+,即26x <<. 则三角形的周长:812C <<,C 选项11符合题意,故选C .【提示】连接CO ,根据圆周角定理可得280AOC B ∠=∠=︒,进而得出OAC ∠的度数.故答案为:50.x x164∴261016CB BB BC ''=-=-=.是O 的切线.是平行四边形,又∵都是等边三角形,∴ABF DBG =∠是O 的切线.)①由(1)可知:OCE △中,∵180是O 的切线.首先证明是等边三角形即可解决问题;211 / 11。
2017年安徽省中考数学试卷一、选择题(每题4分,共40分)1.(4分)的相反数是( )A. B.﹣C.2 D.﹣22.(4分)计算(﹣a3)2的结果是()A.a6B.﹣a6 C.﹣a5D.a53.(4分)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )A.B.C.D.4.(4分)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010B.1.6×1010 C.1.6×1011 D.0。
16×10125.(4分)不等式4﹣2x>0的解集在数轴上表示为( )A. B.C. D.6.(4分)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60° B.50° C.40° D.30°7.(4分)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.2608.(4分)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=169.(4分)已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.10.(4分)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B 两点距离之和PA+PB的最小值为()A. B. C.5 D.二、填空题(每题5分,共20分)11.(5分)27的立方根为.12.(5分)因式分解:a2b﹣4ab+4b= .13.(5分)如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为.14.(5分)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.三、(每题8分,共16分)15.(8分)计算:|﹣2|×cos60°﹣()﹣1.16.(8分)《九章算术》中有一道阐述“盈不足术"的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.四、(每题8分,共16分)17.(8分)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0。
一、选择题(共10小题,每小题3分,共30分)1.(3分)计算√36的结果为()A.6 B.﹣6 C.18 D.﹣182.(3分)若代数式1a−4在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠43.(3分)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)34.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.705.(3分)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+26.(3分)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)7.(3分)某物体的主视图如图所示,则该物体可能为()A.B. C.D.8.(3分)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()2017年湖北省武汉市中考数学试卷(官方)A .9B .10C .11D .129.(3分)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .√32B .32C .√3D .2√3 10.(3分)如图,在Rt △ABC 中,∠C=90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D .7二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算2×3+(﹣4)的结果为 .12.(3分)计算x x+1﹣1x+1的结果为 . 13.(3分)如图,在▱ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE=AB ,则∠EBC 的度数为 .14.(3分)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 .15.(3分)如图,在△ABC 中,AB=AC=2√3,∠BAC=120°,点D 、E 都在边BC 上,∠DAE=60°.若BD=2CE ,则DE 的长为 .16.(3分)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.三、解答题(共8题,共72分)17.(8分)解方程:4x﹣3=2(x﹣1)18.(8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.19.(8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表(1)①在扇形图中,C部门所对应的圆心角的度数为②在统计表中,b=,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=35,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=kx的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式6x−5>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=35,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=3 5,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒√2个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.2017年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2017•武汉)计算√36的结果为()A.6 B.﹣6 C.18 D.﹣18【考点】73:二次根式的性质与化简.【分析】根据算术平方根的定义计算即可求解.【解答】解:√36=6.故选:A.【点评】考查了算术平方根,关键是熟练掌握算术平方根的计算法则.2.(3分)(2017•武汉)若代数式1a−4在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠4【考点】62:分式有意义的条件.【分析】分式有意义时,分母a﹣4≠0.【解答】解:依题意得:a﹣4≠0,解得a≠4.故选:D.【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.3.(3分)(2017•武汉)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)3【考点】A:48:同底数幂的除法;B:35:合并同类项;C:46:同底数幂的乘法;D:47:幂的乘方与积的乘方.【分析】根据同底数幂的乘法法则,同底数幂除法法则,幂的乘方以及合并同类项,进行运算即可.【解答】解:A、x10÷x2=x8.B、x6﹣x=x6﹣x.C、x2•x3=x5.D、(x2)3=x6故选C.【点评】此题考查了同底数幂的乘法、除法法则,幂的乘方以及合并同类项,解答此题关键是熟练运算法则.4.(3分)(2017•武汉)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70【考点】W5:众数;W4:中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选C.【点评】本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)(2017•武汉)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+2【考点】4B:多项式乘多项式.【专题】11 :计算题;512:整式.【分析】原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:原式=x2+2x+x+2=x2+3x+2,故选B【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6.(3分)(2017•武汉)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)【考点】P5:关于x轴、y轴对称的点的坐标.【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:A(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:B.【点评】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.7.(3分)(2017•武汉)某物体的主视图如图所示,则该物体可能为()A.B. C.D.【考点】U3:由三视图判断几何体.【分析】根据主视图利用排除法确定正确的选项即可.【解答】解:A、球的主视图为圆,符合题意;B、圆锥的主视图为矩形,不符合题意;C 、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D 、五棱柱的主视图为矩形,不符合题意,故选:A .【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够了解各个几何体的主食图,难度不大.8.(3分)(2017•武汉)按照一定规律排列的n 个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n 为( )A .9B .10C .11D .12【考点】37:规律型:数字的变化类.【分析】观察得出第n 个数为(﹣2)n ,根据最后三个数的和为768,列出方程,求解即可.【解答】解:由题意,得第n 个数为(﹣2)n ,那么(﹣2)n ﹣2+(﹣2)n ﹣1+(﹣2)n =768,当n 为偶数:整理得出:3×2n ﹣2=768,解得:n=10;当n 为奇数:整理得出:﹣3×2n ﹣2=768,则求不出整数,故选B .【点评】此题考查规律型:数字的变化类,找出数字的变化规律,得出第n 个数为(﹣2)n 是解决问题的关键.9.(3分)(2017•武汉)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .√32B .32C .√3D .2√3 【考点】MI :三角形的内切圆与内心.【分析】如图,AB=7,BC=5,AC=8,内切圆的半径为r ,切点为D 、E 、F ,作AD ⊥BC 于D ,设BD=x ,则CD=5﹣x .由AD 2=AB 2﹣BD 2=AC 2﹣CD 2,可得72﹣x 2=82﹣(5﹣x )2,解得x=1,推出AD=4√3,由12•BC•AD=12(AB +BC +AC )•r ,列出方程即可解决问题.【解答】解:如图,AB=7,BC=5,AC=8,内切圆的半径为r ,切点为D 、E 、F ,作AD ⊥BC 于D ,设BD=x ,则CD=5﹣x .由勾股定理可知:AD 2=AB 2﹣BD 2=AC 2﹣CD 2,即72﹣x 2=82﹣(5﹣x )2,解得x=1,∴AD=4√3,∵12•BC•AD=12(AB +BC +AC )•r , 12×5×4√3=12×20×r , ∴r=√3,故选C【点评】本题考查三角形的内切圆与内心、勾股定理、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用面积法求内切圆的半径,属于中考常考题型.10.(3分)(2017•武汉)如图,在Rt △ABC 中,∠C=90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D .7【考点】KJ :等腰三角形的判定与性质.【分析】①以B 为圆心,BC 长为半径画弧,交AB 于点D ,△BCD 就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④作AC的垂直平分线交AB于点H,△ACH就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI是等腰三角形.⑦以C为圆心,BC长为半径画弧,交AB于点K,△BCK就是等腰三角形;【解答】解:如图:故选D.【点评】本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2017•武汉)计算2×3+(﹣4)的结果为2.【考点】1G:有理数的混合运算.【专题】11 :计算题;511:实数.【分析】原式先计算乘法运算,再计算加减运算即可得到结果.【解答】解:原式=6﹣4=2,故答案为:2【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.(3分)(2017•武汉)计算x x+1﹣1x+1的结果为 x−1x+1 . 【考点】6B :分式的加减法. 【分析】根据同分母分式加减运算法则化简即可.【解答】解:原式=x−1x+1, 故答案为:x−1x+1. 【点评】本题考查了分式的加减运算,熟记运算法则是解题的关键.13.(3分)(2017•武汉)如图,在▱ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE=AB ,则∠EBC 的度数为 30° .【考点】L5:平行四边形的性质.【分析】由平行四边形的性质得出∠ABC=∠D=100°,AB ∥CD ,得出∠BAD=180°﹣∠D=80°,由等腰三角形的性质和三角形内角和定理求出∠ABE=70°,即可得出∠EBC 的度数.【解答】解:∵四边形ABCD 是平行四边形,∴∠ABC=∠D=100°,AB ∥CD ,∴∠BAD=180°﹣∠D=80°,∵AE 平分∠DAB ,∴∠BAE=80°÷2=40°,∵AE=AB ,∴∠ABE=(180°﹣40°)÷2=70°,∴∠EBC=∠ABC ﹣∠ABE=30°;故答案为:30°.【点评】此题主要考查了平行四边形的性质,等腰三角形的性质,三角形和内角和定理等知识;关键是掌握平行四边形对边平行,对角相等.14.(3分)(2017•武汉)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 25. 【考点】X6:列表法与树状图法.【分析】根据题意画出树状图,再根据树状图即可求得所有等可能的结果与两次取出的小球颜色相同的情况,然后根据概率公式求解.【解答】解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果,∴两次取出的小球颜色相同的概率为820=25, 故答案为:25【点评】此题考查了树状图法与列表法求概率.解题的关键是根据题意列表或画树状图,注意列表法与树状图法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.15.(3分)(2017•武汉)如图,在△ABC 中,AB=AC=2√3,∠BAC=120°,点D 、E 都在边BC 上,∠DAE=60°.若BD=2CE ,则DE 的长为 3√3﹣3 .【考点】KD :全等三角形的判定与性质;KQ :勾股定理;PB :翻折变换(折叠问题);R2:旋转的性质.【分析】将△ABD 绕点A 逆时针旋转120°得到△ACF ,连接EF ,过点E 作EM ⊥CF 于点M ,过点A 作AN ⊥BC 于点N ,由AB=AC=2√3、∠BAC=120°,可得出BC=6、∠B=∠ACB=30°,通过角的计算可得出∠FAE=60°,结合旋转的性质可证出△ADE≌△AFE (SAS ),进而可得出DE=FE ,设CE=2x ,则CM=x ,EM=√3x 、FM=4x ﹣x=3x 、EF=ED=6﹣6x ,在Rt △EFM 中利用勾股定理可得出关于x 的一元二次方程,解之可得出x 的值,再将其代入DE=6﹣6x 中即可求出DE 的长.【解答】解:将△ABD 绕点A 逆时针旋转120°得到△ACF ,连接EF ,过点E 作EM ⊥CF 于点M ,过点A 作AN ⊥BC 于点N ,如图所示.∵AB=AC=2√3,∠BAC=120°,∴BN=CN ,∠B=∠ACB=30°.在Rt △BAN 中,∠B=30°,AB=2√3,∴AN=12AB=√3,BN=√AB 2−AN 2=3, ∴BC=6.∵∠BAC=120°,∠DAE=60°,∴∠BAD +∠CAE=60°,∴∠FAE=∠FAC +∠CAE=∠BAD +∠CAE=60°.在△ADE 和△AFE 中,{AD =AF ∠DAE =∠FAE =60°AE =AE,∴△ADE ≌△AFE (SAS ),∴DE=FE .∵BD=2CE ,BD=CF ,∠ACF=∠B=30°,∴设CE=2x ,则CM=x ,EM=√3x ,FM=4x ﹣x=3x ,EF=ED=6﹣6x .在Rt △EFM 中,FE=6﹣6x ,FM=3x ,EM=√3x ,∴EF 2=FM 2+EM 2,即(6﹣6x )2=(3x )2+(√3x )2,解得:x 1=3−√32,x 2=3+√32(不合题意,舍去), ∴DE=6﹣6x=3√3﹣3. 故答案为:3√3﹣3.【点评】本题考查了全等三角形的判定与性质、勾股定理、解一元二次方程以及旋转的性质,通过勾股定理找出关于x 的一元二次方程是解题的关键.16.(3分)(2017•武汉)已知关于x 的二次函数y=ax 2+(a 2﹣1)x ﹣a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值范围是 13<a <12或﹣3<a <﹣2 .【考点】HA :抛物线与x 轴的交点.【分析】先用a 表示出抛物线与x 轴的交点,再分a >0与a <0两种情况进行讨论即可.【解答】解:∵y=ax 2+(a 2﹣1)x ﹣a=(ax ﹣1)(x +a ),∴当y=0时,x 1=1a,x 2=﹣a , ∴抛物线与x 轴的交点为(1a,0)和(﹣a ,0). ∵抛物线与x 轴的一个交点的坐标为(m ,0)且2<m <3,∴当a >0时,2<1a <3,解得13<a <12; 当a <0时,2<﹣a <3,解得﹣3<a <﹣2.故答案为:13<a <12或﹣3<a <﹣2. 【点评】本题考查的是抛物线与x 轴的交点,在解答此题时要注意进行分类讨论,不要漏解.三、解答题(共8题,共72分)17.(8分)(2017•武汉)解方程:4x ﹣3=2(x ﹣1)【考点】86:解一元一次方程.【分析】去括号、移项、合并同类项、系数化为1即可得到方程的解.【解答】解:4x ﹣3=2(x ﹣1)4x ﹣3=2x ﹣24x ﹣2x=﹣2+32x=1x=12【点评】本题主要考查了解一元一次方程,解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.18.(8分)(2017•武汉)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.【考点】KD:全等三角形的判定与性质.【分析】求出CF=BE,根据SAS证△AEB≌△CFD,推出CD=AB,∠C=∠B,根据平行线的判定推出CD∥AB.【解答】解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,{CF=BE∠CFD=∠BEA DF=AE,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.【点评】本题考查了平行线的判定和全等三角形的性质和判定的应用.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.19.(8分)(2017•武汉)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表(1)①在扇形图中,C 部门所对应的圆心角的度数为 108°②在统计表中,b= 9 ,c= 6(2)求这个公司平均每人所创年利润.【考点】VB :扇形统计图;W2:加权平均数.【分析】(1)①根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;②先求得A 部门的员工人数所占的百分比,进而得到各部门的员工总人数,据此可得B ,C 部门的人数;(2)根据总利润除以总人数,即可得到这个公司平均每人所创年利润.【解答】解:(1)①在扇形图中,C 部门所对应的圆心角的度数为:360°×30%=108°; ②A 部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,各部门的员工总人数为:5÷25%=20(人),∴b=20×45%=9,c=20×30%=6,故答案为:108°,9,6;(2)这个公司平均每人所创年利润为:5×10+9×8+6×520=7.6(万元). 【点评】本题主要考查了扇形统计图以及平均数的计算,解题时注意:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.20.(8分)(2017•武汉)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?【考点】CE :一元一次不等式组的应用;9A :二元一次方程组的应用.【专题】12 :应用题.【分析】(1)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件,利用购买甲、乙两种奖品共花费了650元列方程40x +30(20﹣x )=650,然后解方程求出x ,再计算20﹣x 即可;(2)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件,利用购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元列不等式组{20−x ≤2x 40x +30(20−x)≤680,然后解不等式组后确定x 的整数值即可得到该公司的购买方案.【解答】解:(1)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件, 根据题意得40x +30(20﹣x )=650,解得x=5,则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件,根据题意得{20−x ≤2x 40x +30(20−x)≤680,解得203≤x ≤8, ∵x 为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.【点评】本题考查了一元一次不等式组的应用:对具有多种不等关系的问题,考虑列一元一次不等式组,并求解;一元一次不等式组的应用主要是列一元一次不等式组解应用题,21.(8分)(2017•武汉)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB 于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=35,求AC和CD的长.【考点】MA:三角形的外接圆与外心;T7:解直角三角形.【分析】(1)延长AO交BC于H,连接BO,证明A、O在线段BC的垂直平分线上,得出AO⊥BC,再由等腰三角形的性质即可得出结论;(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径,由圆周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=53BC=10,由勾股定理求出BE=8,证出BE∥OA,得出OABE=ODDE,求出OD=2513,得出CD═9013,而BE∥OA,由三角形中位线定理得出OH=12BE=4,CH=12BC=3,在Rt△ACH中,由勾股定理求出AC的长即可.【解答】(1)证明:延长AO交BC于H,连接BO,如图1所示:∵AB=AC,OB=OC,∴A、O在线段BC的垂直平分线上,∴AO⊥BC,又∵AB=AC,∴AO平分∠BAC;(2)解:延长CD交⊙O于E,连接BE,如图2所示:则CE是⊙O的直径,∴∠EBC=90°,BC ⊥BE ,∵∠E=∠BAC ,∴sinE=sin ∠BAC ,∴BC CE =35, ∴CE=53BC=10, ∴BE=√CE 2−BC 2=8,OA=OE=12CE=5, ∵AH ⊥BC ,∴BE ∥OA ,∴OA BE =OD DE ,即58=OD 5−OD, 解得:OD=2513, ∴CD=5+2513=9013, ∵BE ∥OA ,即BE ∥OH ,OC=OE ,∴OH 是△CEB 的中位线,∴OH=12BE=4,CH=12BC=3, ∴AH=5+4=9,在Rt △ACH 中,AC=√AH 2+CH 2=√92+32=3√10.【点评】本题考查了等腰三角形的判定与性质、圆周角定理、勾股定理、平行线分线段成比例定理、三角形中位线定理、三角函数等知识;本题综合性强,有一定难度.22.(10分)(2017•武汉)如图,直线y=2x+4与反比例函数y=kx的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式6x−5>x的解集.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)把点A(﹣3,a)代入y=2x+4与y=kx即可得到结论;(2)根据已知条件得到M(m+42,m),N(6m,m),根据MN=4列方程即可得到结论;(3)根据6x−5>x得到6−x2+5xx−5>0解不等式组即可得到结论.【解答】(1)∵点A(﹣3,a)在y=2x+4与y=kx的图象上,∴2×(﹣3)+4=a ,∴a=﹣2,∴k=(﹣3)×(﹣2)=6;(2)∵M 在直线AB 上,∴M (m+42,m ),N 在反比例函数y=6x上, ∴N (6m,m ), ∴MN=x N ﹣x m =6m ﹣m−42=4或x M ﹣x N =m−42﹣6m =4, 解得:∵m >0,∴m=2或m=6+4√3;(3)x <﹣1或x5<x <6,由6x−5>x 得:6x−5﹣x >0, ∴6−x 2+5x x−5>0, ∴x 2−5x−6x−5<0, ∴{x 2−5x −6>0x −5<0或{x 2−5x −6<0x −5>0, 结合抛物线y=x 2﹣5x ﹣6的图象可知,由{x 2−5x −6>0x −5<0得 {x <−1或x >6x <5, ∴{x <−1x <5或{x >6x <5, ∴此时x <﹣1,由{x 2−5x −6<0x −5>0得,{−1<x <6x >5, ∴{−1<x <6x >5, 解得:5<x <6,综上,原不等式的解集是:x<﹣1或5<x<6.【点评】本题考查了反比例函数与一次函数的交点问题,求不等式组的解集,正确的理解题意是解题的关键23.(10分)(2017•武汉)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=35,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=3 5,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)【考点】SO :相似形综合题.【分析】(1)只要证明△EDC ∽△EBA ,可得ED EB =EC EA,即可证明ED•EA=EC•EB ; (2)如图2中,过C 作CF ⊥AD 于F ,AG ⊥EB 于G .想办法求出EB ,AG 即可求出△ABE 的面积,即可解决问题;(3)如图3中,作CH ⊥AD 于H ,则CH=4,DH=3,作AG ⊥DF 于点G ,设AD=5a ,则DG=3a ,AG=4a ,只要证明△AFG ∽△CEH ,可得AG CH =FG EH,即4a 5+n−3a =4n+3,求出a 即可解决问题;【解答】解:(1)如图1中,∵∠ADC=90°,∠EDC +∠ADC=180°,∴∠EDC=90°,∵∠ABC=90°,∴∠EDC=∠ABC ,∵∠E=∠E ,∴△EDC ∽△EBA ,∴ED EB =EC EA ,∴ED•EA=EC•EB .(2)如图2中,过C 作CF ⊥AD 于F ,AG ⊥EB 于G .在Rt △CDF 中,cos ∠ADC=35,∴DF CD =35,∵CD=5, ∴DF=3,∴CF=√CD 2−DF 2=4,∵S △CDE =6,∴12•ED•CF=6, ∴ED=12CF=3,EF=ED +DF=6, ∵∠ABC=120°,∠G=90°,∠G +∠BAG=∠ABC ,∴∠BAG=30°,∴在Rt △ABG 中,BG=12AB=6,AG=√AB 2−BG 2=6√3, ∵CF ⊥AD ,AG ⊥EB ,∴∠EFC=∠G=90°,∵∠E=∠E ,∴△EFC ∽△EGA ,∴EF EG =CF AG, ∴6EG =6√3, ∴EG=9√3, ∴BE=EG ﹣BG=9√3﹣6,∴S 四边形ABCD =S △ABE ﹣S △CDE =12(9√3﹣6)×6√3﹣6=75﹣18√3.(3)如图3中,作CH ⊥AD 于H ,则CH=4,DH=3,∴tan ∠E=4n+3, 作AG ⊥DF 于点G ,设AD=5a ,则DG=3a ,AG=4a ,∴FG=DF ﹣DG=5+n ﹣3a ,∵CH ⊥AD ,AG ⊥DF ,∠E=∠F ,易证△AFG ∽△CEH ,∴AG CH =FG EH, ∴4a 5+n−3a =4n+3, ∴a=n+5n+6, ∴AD=5a=5(n+5)n+6. 【点评】本题考查相似形综合题、相似三角形的判定和性质、直角三角形的30度角性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.24.(12分)(2017•武汉)已知点A (﹣1,1)、B (4,6)在抛物线y=ax 2+bx 上(1)求抛物线的解析式;(2)如图1,点F 的坐标为(0,m )(m >2),直线AF 交抛物线于另一点G ,过点G 作x 轴的垂线,垂足为H .设抛物线与x 轴的正半轴交于点E ,连接FH 、AE ,求证:FH ∥AE ;(3)如图2,直线AB 分别交x 轴、y 轴于C 、D 两点.点P 从点C 出发,沿射线CD 方向匀速运动,速度为每秒√2个单位长度;同时点Q 从原点O 出发,沿x 轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ 与抛物线的一个交点,当运动到t 秒时,QM=2PM ,直接写出t 的值.【考点】HF :二次函数综合题.【分析】(1)根据点A 、B 的坐标利用待定系数法,即可求出抛物线的解析式;(2)根据点A 、F 的坐标利用待定系数法,可求出直线AF 的解析式,联立直线AF 和抛物线的解析式成方程组,通过解方程组可求出点G 的坐标,进而可得出点H 的坐标,利用分解因式法将抛物线解析式变形为交点式,由此可得出点E 的坐标,再根据点A 、E (F 、H )的坐标利用待定系数法,可求出直线AE (FH )的解析式,由此可证出FH ∥AE ;(3)根据点A 、B 的坐标利用待定系数法,可求出直线AB 的解析式,进而可找出点P 、Q 的坐标,分点M 在线段PQ 上以及点M 在线段QP 的延长线上两种情况考虑,借助相似三角形的性质可得出点M 的坐标,再利用二次函数图象上点的坐标特征可得出关于t 的一元二次方程,解之即可得出结论.【解答】解:(1)将点A (﹣1,1)、B (4,6)代入y=ax 2+bx 中,{a −b =116a +4b =6,解得:{a =12b =−12, ∴抛物线的解析式为y=12x 2﹣12x .(2)证明:设直线AF 的解析式为y=kx +m ,将点A (﹣1,1)代入y=kx +m 中,即﹣k +m=1,∴k=m ﹣1,∴直线AF 的解析式为y=(m ﹣1)x +m .联立直线AF 和抛物线解析式成方程组,{y =(m −1)x +m y =12x 2−12x,解得:{x 1=−1y 1=1,{x 2=2m y 2=2m 2−m , ∴点G 的坐标为(2m ,2m 2﹣m ).∵GH ⊥x 轴,∴点H 的坐标为(2m ,0).∵抛物线的解析式为y=12x 2﹣12x=12x (x ﹣1), ∴点E 的坐标为(1,0).设直线AE 的解析式为y=k 1x +b 1,将A (﹣1,1)、E (1,0)代入y=k 1x +b 1中,{−k 1+b 1=1k 1+b 1=0,解得:{k 1=−12b 1=12, ∴直线AE 的解析式为y=﹣12x +12. 设直线FH 的解析式为y=k 2x +b 2,将F (0,m )、H (2m ,0)代入y=k 2x +b 2中,{b 2=m 2mk 2+b 2=0,解得:{k 2=−12b 2=m , ∴直线FH 的解析式为y=﹣12x +m . ∴FH ∥AE .(3)设直线AB 的解析式为y=k 0x +b 0,将A (﹣1,1)、B (4,6)代入y=k 0x +b 0中,{−k 0+b 0=14k 0+b 0=6,解得:{k 0=1b 0=2, ∴直线AB 的解析式为y=x +2.当运动时间为t 秒时,点P 的坐标为(t ﹣2,t ),点Q 的坐标为(t ,0).当点M 在线段PQ 上时,过点P 作PP′⊥x 轴于点P′,过点M 作MM′⊥x 轴于点M′,则△PQP′∽△MQM′,如图2所示.∵QM=2PM ,∴QM′QP′=MM′PP′=23, ∴QM′=43,MM′=23t , ∴点M 的坐标为(t ﹣43,23t ). 又∵点M 在抛物线y=12x 2﹣12x 上, ∴23t=12×(t ﹣43)2﹣12(t ﹣43), 解得:t=15±√1136; 当点M 在线段QP 的延长线上时,同理可得出点M 的坐标为(t ﹣4,2t ),∵点M 在抛物线y=12x 2﹣12x 上, ∴2t=12×(t ﹣4)2﹣12(t ﹣4), 解得:t=13±√892. 综上所述:当运动时间为15−√1136秒、15+√1136秒、13−√892秒或13+√892秒时,QM=2PM .【点评】本题考查了待定系数法求一次(二次)函数解析式、二次函数图象上点的坐标特征、二次函数的三种形式、相似三角形的性质以及两条直线相交或平行,解题的关键是:(1)根据点A 、B 的坐标利用待定系数法,求出抛物线的解析式;(2)根据点A 、E (F 、H )的坐标利用待定系数法,求出直线AE (FH )的解析式:(3)分点M 在线段PQ 上以及点M 在线段QP 的延长线上两种情况,借助相似三角形的性质找出点M 的坐标.。
2017年湖南省岳阳市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)6的相反数是()A.﹣6 B.C.6 D.±62.(3分)下列运算正确的是()A.(x3)2=x5B.(﹣x)5=﹣x5C.x3•x2=x6D.3x2+2x3=5x53.(3分)据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为()A.3.9×1010 B.3.9×109C.0.39×1011D.39×1094.(3分)下列四个立体图形中,主视图、左视图、俯视图都相同的是()A. B.C.D.5.(3分)从,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是()A.B.C.D.6.(3分)解分式方程﹣=1,可知方程的解为()A.x=1 B.x=3 C.x= D.无解7.(3分)观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,…,根据这个规律,则21+22+23+24+…+22017的末位数字是()A.0 B.2 C.4 D.68.(3分)已知点A在函数y1=﹣(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.有1对或2对 B.只有1对 C.只有2对 D.有2对或3对二、填空题(本大题共8小题,每小题4分,共32分)9.(4分)函数y=中自变量x的取值范围是.10.(4分)因式分解:x2﹣6x+9= .11.(4分)在环保整治行动中,某市环保局对辖区内的单位进行了抽样调查,他们的综合得分如下:95,85,83,95,92,90,96,则这组数据的中位数是,众数是.12.(4分)如图,点P是∠NOM的边OM上一点,PD⊥ON于点D,∠OPD=30°,PQ∥ON,则∠MPQ的度数是.13.(4分)不等式组的解集是.14.(4分)在△ABC中BC=2,AB=2,AC=b,且关于x的方程x2﹣4x+b=0有两个相等的实数根,则AC边上的中线长为.15.(4分)我国魏晋时期的数学家刘徽创立了“割圆术”,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率π的近似值,设半径为r的圆内接正n边形的周长为L,圆的直径为d,如图所示,当n=6时,π≈==3,那么当n=12时,π≈= .(结果精确到0.01,参考数据:sin15°=cos75°≈0.259)16.(4分)如图,⊙O为等腰△ABC的外接圆,直径AB=12,P为弧上任意一点(不与B,C重合),直线CP交AB延长线于点Q,⊙O在点P处切线PD交BQ于点D,下列结论正确的是.(写出所有正确结论的序号)①若∠PAB=30°,则弧的长为π;②若PD∥BC,则AP平分∠CAB;③若PB=BD,则PD=6;④无论点P在弧上的位置如何变化,CP•CQ为定值.三、解答题(本大题共8小题,共64分)17.(6分)计算:2sin60°+|3﹣|+(π﹣2)0﹣()﹣1.18.(6分)求证:对角线互相垂直的平行四边形是菱形.小红同学根据题意画出了图形,并写出了已知和求证的一部分,请你补全已知和求证,并写出证明过程.已知:如图,在▱ABCD中,对角线AC,BD交于点O,.求证:.19.(8分)如图,直线y=x+b与双曲线y=(k为常数,k≠0)在第一象限内交于点A(1,2),且与x轴、y轴分别交于B,C两点.(1)求直线和双曲线的解析式;(2)点P在x轴上,且△BCP的面积等于2,求P点的坐标.20.(8分)我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的,结果打了16个包还多40本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本?21.(8分)为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:课外阅读时间(单位:小时)频数(人数)频率0<t≤2 2 0.042<t≤4 3 0.064<t≤6 15 0.306<t≤8 a 0.50t>8 5 b请根据图表信息回答下列问题:(1)频数分布表中的a= ,b= ;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?22.(8分)某太阳能热水器的横截面示意图如图所示,已知真空热水管AB与支架CD所在直线相交于点O,且OB=OD,支架CD与水平线AE垂直,∠BAC=∠CDE=30°,DE=80cm,AC=165cm.(1)求支架CD的长;(2)求真空热水管AB的长.(结果保留根号)23.(10分)问题背景:已知∠EDF的顶点D在△ABC的边AB所在直线上(不与A,B重合),DE交AC所在直线于点M,DF交BC所在直线于点N,记△ADM的面积为S1,△BND的面积为S2.(1)初步尝试:如图①,当△ABC是等边三角形,AB=6,∠EDF=∠A,且DE∥BC,AD=2时,则S1•S2= ;(2)类比探究:在(1)的条件下,先将点D沿AB平移,使AD=4,再将∠EDF绕点D旋转至如图②所示位置,求S1•S2的值;(3)延伸拓展:当△ABC是等腰三角形时,设∠B=∠A=∠EDF=α.(Ⅰ)如图③,当点D在线段AB上运动时,设AD=a,BD=b,求S1•S2的表达式(结果用a,b和α的三角函数表示).(Ⅱ)如图④,当点D在BA的延长线上运动时,设AD=a,BD=b,直接写出S1•S2的表达式,不必写出解答过程.24.(10分)如图,抛物线y=x2+bx+c经过点B(3,0),C(0,﹣2),直线l:y=﹣x﹣交y轴于点E,且与抛物线交于A,D两点,P为抛物线上一动点(不与A,D重合).(1)求抛物线的解析式;(2)当点P在直线l下方时,过点P作PM∥x轴交l于点M,PN∥y轴交l于点N,求PM+PN 的最大值.(3)设F为直线l上的点,以E,C,P,F为顶点的四边形能否构成平行四边形?若能,求出点F的坐标;若不能,请说明理由.2017年湖南省岳阳市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)(2017•岳阳)6的相反数是()A.﹣6 B.C.6 D.±6【考点】14:相反数.【分析】根据相反数的定义求解即可.【解答】解:6的相反数是﹣6,故选A.2.(3分)(2017•岳阳)下列运算正确的是()A.(x3)2=x5B.(﹣x)5=﹣x5C.x3•x2=x6D.3x2+2x3=5x5【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【分析】根据幂的乘方,同底数幂的乘法以及合并同类项计算法则进行解答.【解答】解:A、原式=x6,故本选项错误;B、原式=﹣x5,故本选项正确;C、原式=x5,故本选项错误;D、3x2与2x3不是同类项,不能合并,故本选项错误;故选:B.3.(3分)(2017•岳阳)据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为()A.3.9×1010 B.3.9×109C.0.39×1011D.39×109【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:39000000000=3.9×1010.故选:A.4.(3分)(2017•岳阳)下列四个立体图形中,主视图、左视图、俯视图都相同的是()A. B.C.D.【考点】U1:简单几何体的三视图.【分析】分别分析圆锥、圆柱、球体、三棱柱的主视图、左视图、俯视图,从而得出结论.【解答】解:∵球的主视图、左视图、俯视图都是圆,∴主视图、左视图、俯视图都相同的是B,故选B.5.(3分)(2017•岳阳)从,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是()A.B.C.D.【考点】X4:概率公式;12:有理数.【分析】根据有理数的定义可找出在,0,π,3.14,6这5个数中只有0、3.14和6为有理数,再根据概率公式即可求出抽到有理数的概率.【解答】解:∵在,0,π,3.14,6这5个数中只有0、3.14和6为有理数,∴从,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是.故选C.6.(3分)(2017•岳阳)解分式方程﹣=1,可知方程的解为()A.x=1 B.x=3 C.x= D.无解【考点】B3:解分式方程.【分析】直接利用分式方程的解法,首先去分母,进而解方程得出答案.【解答】解:去分母得:2﹣2x=x﹣1,解得:x=1,检验:当x=1时,x﹣1=0,故此方程无解.故选:D.7.(3分)(2017•岳阳)观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,…,根据这个规律,则21+22+23+24+…+22017的末位数字是()A.0 B.2 C.4 D.6【考点】1Q:尾数特征.【分析】根据题目中的式子可以知道,末尾数字出现的2、4、8、6的顺序出现,从而可以求得21+22+23+24+…+22017的末位数字.本题得以解决.【解答】解:∵21=2,22=4,23=8,24=16,25=32,26=64,…,∴2017÷4=506…1,∵(2+4+8+6)×506+2=10122,∴21+22+23+24+…+22017的末位数字是2,故选B.8.(3分)(2017•岳阳)已知点A在函数y1=﹣(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.有1对或2对 B.只有1对 C.只有2对 D.有2对或3对【考点】G6:反比例函数图象上点的坐标特征;F8:一次函数图象上点的坐标特征;R6:关于原点对称的点的坐标.【分析】根据“友好点”的定义知,函数y1图象上点A(a,﹣)关于原点的对称点B(a,﹣)一定位于直线y2上,即方程ka2﹣(k+1)a+1=0 有解,整理方程得(a﹣1)(ka﹣1)=0,据此可得答案.【解答】解:设A(a,﹣),由题意知,点A关于原点的对称点B((a,﹣),)在直线y2=kx+1+k上,则=﹣ak+1+k,整理,得:ka2﹣(k+1)a+1=0 ①,即(a﹣1)(ka﹣1)=0,∴a﹣1=0或ka﹣1=0,则a=1或ka﹣1=0,若k=0,则a=1,此时方程①只有1个实数根,即两个函数图象上的“友好点”只有1对;若k≠0,则a=,此时方程①有2个实数根,即两个函数图象上的“友好点”有2对,综上,这两个函数图象上的“友好点”对数情况为1对或2对,故选:A.二、填空题(本大题共8小题,每小题4分,共32分)9.(4分)(2017•岳阳)函数y=中自变量x的取值范围是x≠7 .【考点】E4:函数自变量的取值范围.【分析】根据分母不为零,即可解决问题.【解答】解:函数y=中自变量x的范围是x≠7.故答案为x≠710.(4分)(2017•岳阳)因式分解:x2﹣6x+9= (x﹣3)2.【考点】54:因式分解﹣运用公式法.【分析】直接运用完全平方公式进行因式分解即可.【解答】解:x2﹣6x+9=(x﹣3)2.11.(4分)(2017•岳阳)在环保整治行动中,某市环保局对辖区内的单位进行了抽样调查,他们的综合得分如下:95,85,83,95,92,90,96,则这组数据的中位数是92 ,众数是95 .【考点】W5:众数;W4:中位数.【分析】环保整治行动中,某市环保局对辖区内的单位进行了抽样调查,他们的综合得分如下:95,85,83,95,92,90,96,则这组数据的中位数.【解答】解:这组数据从小到大排列为:83,85,90,92,95,95,96.则中位数是:92;众数是95.故答案是:92,95.12.(4分)(2017•岳阳)如图,点P是∠NOM的边OM上一点,PD⊥ON于点D,∠OPD=30°,PQ∥ON,则∠MPQ的度数是60°.【考点】JA:平行线的性质;J3:垂线.【分析】根据直角三角形的内角和,求得∠O,再根据平行线的性质,即可得到∠MPQ.【解答】解:∵PD⊥ON于点D,∠OPD=30°,∴Rt△OPD中,∠O=60°,又∵PQ∥ON,∴∠MPQ=∠O=60°,故答案为:60°.13.(4分)(2017•岳阳)不等式组的解集是x<﹣3 .【考点】CB:解一元一次不等式组.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≤3,解不等式②得:x<﹣3,∴不等式组的解集为x<﹣3,故答案为:x<﹣3.14.(4分)(2017•岳阳)在△ABC中BC=2,AB=2,AC=b,且关于x的方程x2﹣4x+b=0有两个相等的实数根,则AC边上的中线长为 2 .【考点】AA:根的判别式;KP:直角三角形斜边上的中线;KS:勾股定理的逆定理.【分析】由根的判别式求出AC=b=4,由勾股定理的逆定理证出△ABC是直角三角形,再由直角三角形斜边上的中线性质即可得出结论.【解答】解:∵关于x的方程x2﹣4x+b=0有两个相等的实数根,∴△=16﹣4b=0,∴AC=b=4,∵BC=2,AB=2,∴BC2+AB2=AC2,∴△ABC是直角三角形,AC是斜边,∴AC边上的中线长=AC=2;故答案为:2.15.(4分)(2017•岳阳)我国魏晋时期的数学家刘徽创立了“割圆术”,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率π的近似值,设半径为r的圆内接正n边形的周长为L,圆的直径为d,如图所示,当n=6时,π≈==3,那么当n=12时,π≈= 3.10 .(结果精确到0.01,参考数据:sin15°=cos75°≈0.259)【考点】MM:正多边形和圆;T7:解直角三角形.【分析】圆的内接正十二边形被半径分成顶角为30°的十二个等腰三角形,作辅助线构造直角三角形,根据中心角的度数以及半径的大小,求得L=6.207r,d=2r,进而得到π≈=≈3.10.【解答】解:如图,圆的内接正十二边形被半径分成如图所示的十二个等腰三角形,其顶角为30°,即∠O=30°,∠ABO=∠A=75°,作BC⊥AO于点C,则∠ABC=15°,∵AO=BO=r,∴BC=r,OC=r,∴AC=(1﹣)r,∵Rt△ABC中,cosA=,即0.259=,∴AB≈0.517r,∴L=12×0.517r=6.207r,又∵d=2r,∴π≈=≈3.10,故答案为:3.1016.(4分)(2017•岳阳)如图,⊙O为等腰△ABC的外接圆,直径AB=12,P为弧上任意一点(不与B,C重合),直线CP交AB延长线于点Q,⊙O在点P处切线PD交BQ于点D,下列结论正确的是②③④.(写出所有正确结论的序号)①若∠PAB=30°,则弧的长为π;②若PD∥BC,则AP平分∠CAB;③若PB=BD,则PD=6;④无论点P在弧上的位置如何变化,CP•CQ为定值.【考点】S9:相似三角形的判定与性质;KH:等腰三角形的性质;MC:切线的性质;MN:弧长的计算.【分析】①根据∠POB=60°,OB=6,即可求得弧的长;②根据切线的性质以及垂径定理,即可得到=,据此可得AP平分∠CAB;③根据BP=BO=PO=6,可得△BOP是等边三角形,据此即可得出PD=6;④判定△ACP∽△QCA,即可得到=,即CP•CQ=CA2,据此可得CP•CQ为定值.【解答】解:如图,连接OP,∵AO=OP,∠PAB=30°,∴∠POB=60°,∵AB=12,∴OB=6,∴弧的长为=2π,故①错误;∵PD是⊙O的切线,∴OP⊥PD,∵PD∥BC,∴OP⊥BC,∴=,∴∠PAC=∠PAB,∴AP平分∠CAB,故②正确;若PB=BD,则∠BPD=∠BDP,∵OP⊥PD,∴∠BPD+∠BPO=∠BDP+∠BOP,∴∠BOP=∠BPO,∴BP=BO=PO=6,即△BOP是等边三角形,∴PD=OP=6,故③正确;∵AC=BC,∴∠BAC=∠ABC,又∵∠ABC=∠APC,∴∠APC=BAC,又∵∠ACP=∠QCA,∴△ACP∽△QCA,∴=,即CP•CQ=CA2(定值),故④正确;故答案为:②③④.三、解答题(本大题共8小题,共64分)17.(6分)(2017•岳阳)计算:2sin60°+|3﹣|+(π﹣2)0﹣()﹣1.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】根据特殊角的三角函数值、零指数幂的运算法则、负整数指数幂的运算法则、绝对值的性质进行化简,计算即可.【解答】解:原式=2×+3﹣+1﹣2=2.18.(6分)(2017•岳阳)求证:对角线互相垂直的平行四边形是菱形.小红同学根据题意画出了图形,并写出了已知和求证的一部分,请你补全已知和求证,并写出证明过程.已知:如图,在▱ABCD中,对角线AC,BD交于点O,AC⊥BD .求证:四边形ABCD是菱形.【考点】L9:菱形的判定;L5:平行四边形的性质.【分析】由命题的题设和结论可填出答案,由平行四边形的性质可证得AC为线段BD的垂直平分线,可求得AB=AD,可得四边形ABCD是菱形.【解答】已知:如图,在▱ABCD中,对角线AC,BD交于点O,AC⊥BD,求证:四边形ABCD是菱形.证明:∵四边形ABCD为平行四边形,∴BO=DO,∵AC⊥BD,∴AC垂直平分BD,∴AB=AD,∴四边形ABCD为菱形.故答案为:AC⊥BD;四边形ABCD是菱形.19.(8分)(2017•岳阳)如图,直线y=x+b与双曲线y=(k为常数,k≠0)在第一象限内交于点A(1,2),且与x轴、y轴分别交于B,C两点.(1)求直线和双曲线的解析式;(2)点P在x轴上,且△BCP的面积等于2,求P点的坐标.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)把A(1,2)代入双曲线以及直线y=x+b,分别可得k,b的值;(2)先根据直线解析式得到BO=CO=1,再根据△BCP的面积等于2,即可得到P的坐标.【解答】解:(1)把A(1,2)代入双曲线y=,可得k=2,∴双曲线的解析式为y=;把A(1,2)代入直线y=x+b,可得b=1,∴直线的解析式为y=x+1;(2)设P点的坐标为(x,0),在y=x+1中,令y=0,则x=﹣1;令x=0,则y=1,∴B(﹣1,0),C(0,1),即BO=1=CO,∵△BCP的面积等于2,∴BP×CO=2,即|x﹣(﹣1)|×1=2,解得x=3或﹣5,∴P点的坐标为(3,0)或(﹣5,0).20.(8分)(2017•岳阳)我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的,结果打了16个包还多40本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本?【考点】8A:一元一次方程的应用.【分析】设这批书共有3x本,根据每包书的数目相等.即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这批书共有3x本,根据题意得:=,解得:x=500,∴3x=1500.答:这批书共有500本.21.(8分)(2017•岳阳)为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:课外阅读时间(单位:小时)频数(人数)频率0<t≤2 2 0.042<t≤4 3 0.064<t≤6 15 0.306<t≤8 a 0.50t>8 5 b请根据图表信息回答下列问题:(1)频数分布表中的a= 25 ,b= 0.10 ;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)由阅读时间为0<t≤2的频数除以频率求出总人数,确定出a与b的值即可;(2)补全条形统计图即可;(3)由阅读时间在8小时以上的百分比乘以2000即可得到结果.【解答】解:(1)根据题意得:2÷0.04=50(人),则a=50﹣(2+3+15+5)=25;b=5÷50=0.10;故答案为:25;0.10;(2)阅读时间为6<t≤8的学生有25人,补全条形统计图,如图所示:(3)根据题意得:2000×0.10=200(人),则该校2000名学生中评为“阅读之星”的有200人.22.(8分)(2017•岳阳)某太阳能热水器的横截面示意图如图所示,已知真空热水管AB与支架CD所在直线相交于点O,且OB=OD,支架CD与水平线AE垂直,∠BAC=∠CDE=30°,DE=80cm,AC=165cm.(1)求支架CD的长;(2)求真空热水管AB的长.(结果保留根号)【考点】T8:解直角三角形的应用.【分析】(1)在Rt△CDE中,根据∠CDE=30°,DE=80cm,求出支架CD的长是多少即可.(2)首先在Rt△OAC中,根据∠BAC=30°,AC=165cm,求出OC的长是多少,进而求出OD 的长是多少;然后求出OA的长是多少,即可求出真空热水管AB的长是多少.【解答】解:(1)在Rt△CDE中,∠CDE=30°,DE=80cm,∴CD=80×cos30°=80×=40(cm).(2)在Rt△OAC中,∠BAC=30°,AC=165cm,∴OC=AC×tan30°=165×=55(cm),∴OD=OC﹣CD=55﹣40=15(cm),∴AB=AO﹣OB=AO﹣OD=55×2﹣15=95(cm).23.(10分)(2017•岳阳)问题背景:已知∠EDF的顶点D在△ABC的边AB所在直线上(不与A,B重合),DE交AC所在直线于点M,DF交BC所在直线于点N,记△ADM的面积为S1,△BND的面积为S2.(1)初步尝试:如图①,当△ABC是等边三角形,AB=6,∠EDF=∠A,且DE∥BC,AD=2时,则S1•S2= 12 ;(2)类比探究:在(1)的条件下,先将点D沿AB平移,使AD=4,再将∠EDF绕点D旋转至如图②所示位置,求S1•S2的值;(3)延伸拓展:当△ABC是等腰三角形时,设∠B=∠A=∠EDF=α.(Ⅰ)如图③,当点D在线段AB上运动时,设AD=a,BD=b,求S1•S2的表达式(结果用a,b和α的三角函数表示).(Ⅱ)如图④,当点D在BA的延长线上运动时,设AD=a,BD=b,直接写出S1•S2的表达式,不必写出解答过程.【考点】RB:几何变换综合题.【分析】(1)首先证明△ADM,△BDN都是等边三角形,可得S1=•22=,S2=•(4)2=4,由此即可解决问题;(2)如图2中,设AM=x,BN=y.首先证明△AMD∽△BDN,可得=,推出=,推出xy=8,由S1=•AD•AM•sin60°=x,S2=DB•sin60°=y,可得S1•S2=x•y=xy=12;(3)Ⅰ如图3中,设AM=x,BN=y,同法可证△AMD∽△BDN,可得xy=ab,由S1=•AD•AM•sinα=axsinα,S2=DB•BN•sinα=bysinα,可得S1•S2=(ab)2sin2α.(Ⅱ)结论不变,证明方法类似;【解答】解:(1)如图1中,∵△ABC是等边三角形,∴AB=CB=AC=6,∠A=∠B=60°,∵DE∥BC,∠EDF=60°,∴∠BND=∠EDF=60°,∴∠BDN=∠ADM=60°,∴△ADM,△BDN都是等边三角形,∴S1=•22=,S2=•(4)2=4,∴S1•S2=12,故答案为12.(2)如图2中,设AM=x,BN=y.∵∠MDB=∠MDN+∠NDB=∠A+∠AMD,∠MDN=∠A,∴∠AMD=∠NDB,∵∠A=∠B,∴△AMD∽△BDN,∴=,∴=,∴xy=8,∵S1=•AD•AM•sin60°=x,S2=DB•sin60°=y,∴S1•S2=x•y=xy=12.(3)Ⅰ如图3中,设AM=x,BN=y,同法可证△AMD∽△BDN,可得xy=ab,∵S1=•AD•AM•sinα=axsinα,S2=DB•BN•sinα=bysinα,∴S1•S2=(ab)2sin2α.Ⅱ如图4中,设AM=x,BN=y,同法可证△AMD∽△BDN,可得xy=ab,∵S1=•AD•AM•sinα=axsinα,S2=DB•BN•sinα=bysinα,∴S1•S2=(ab)2sin2α.24.(10分)(2017•岳阳)如图,抛物线y=x2+bx+c经过点B(3,0),C(0,﹣2),直线l:y=﹣x﹣交y轴于点E,且与抛物线交于A,D两点,P为抛物线上一动点(不与A,D重合).(1)求抛物线的解析式;(2)当点P在直线l下方时,过点P作PM∥x轴交l于点M,PN∥y轴交l于点N,求PM+PN 的最大值.(3)设F为直线l上的点,以E,C,P,F为顶点的四边形能否构成平行四边形?若能,求出点F的坐标;若不能,请说明理由.【考点】HF:二次函数综合题.【分析】(1)把B(3,0),C(0,﹣2)代入y=x2+bx+c解方程组即可得到结论;(2)设P(m,m2﹣m﹣2),得到N(m,﹣m﹣),M(﹣m2+2m+2,m2﹣m﹣2),根据二次函数的性质即可得到结论;(3)求得E(0,﹣),得到CE=,设P(m,m2﹣m﹣2),①以CE为边,根据CE=PF,列方程得到m=1,m=0(舍去),②以CE为对角线,连接PF交CE于G,CG=GE,PG=FG,得到G(0,﹣),设P(m,m2﹣m﹣2),则F(﹣m,m﹣),列方程得到此方程无实数根,于是得到结论.【解答】解:(1)把B(3,0),C(0,﹣2)代入y=x2+bx+c得,,∴∴抛物线的解析式为:y=x2﹣x﹣2;(2)设P(m,m2﹣m﹣2),∵PM∥x轴,PN∥y轴,M,N在直线AD上,∴N(m,﹣m﹣),M(﹣m2+2m+2,m2﹣m﹣2),∴PM+PN=﹣m2+2m+2﹣m﹣m﹣﹣m2+m+2=﹣m2+m+=﹣(m﹣)2+,∴当m=时,PM+PN的最大值是;(3)能,理由:∵y=﹣x﹣交y轴于点E,∴E(0,﹣),∴CE=,设P(m,m2﹣m﹣2),∵以E,C,P,F为顶点的四边形能否构成平行四边形,①以CE为边,∴CE∥PF,CE=PF,∴F(m,﹣m﹣),∴﹣m﹣﹣m2+m+2=,∴m=1,m=0(舍去),②以CE为对角线,连接PF交CE于G,∴CG=GE,PG=FG,∴G(0,﹣),设P(m,m2﹣m﹣2),则F(﹣m,m﹣),∴×(m2﹣m﹣2+m﹣)=﹣,∵△<0,∴此方程无实数根,综上所述,当m=1时,以E,C,P,F为顶点的四边形能否构成平行四边形.参与本试卷答题和审题的老师有:sjzx;nhx600;放飞梦想;弯弯的小河;曹先生;sd2011;zgm666;三界无我;HLing;wdxwwzy;zhjh;szl;zjx111;家有儿女;知足长乐;Ldt;sks;王学峰(排名不分先后)21世纪教育网2017年7月7日21 / 21。
2017年中考数学真题卷及答案详解一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)计算:(﹣12)2﹣1=( ) A .﹣54 B .﹣14 C .﹣34D .0 【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘方运算,再计算加减运算即可得到结果.【解答】解:原式=14﹣1=﹣34,故选C 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(3分)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )A .B .C .D .【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看下边是一个较大的矩形,上便是一个角的矩形,故选:B .【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.(3分)若一个正比例函数的图象经过A (3,﹣6),B (m ,﹣4)两点,则m 的值为( )A .2B .8C .﹣2D .﹣8【考点】一次函数图象上点的坐标特征.【分析】运用待定系数法求得正比例函数解析式,把点B 的坐标代入所得的函数解析式,即可求出m的值.【解答】解:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选:A.【点评】本题考查了一次函数图象上点的坐标特征.解题时需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.4.(3分)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55°B.75°C.65°D.85°【考点】平行线的性质.【分析】由余角的定义求出∠3的度数,再根据平行线的性质求出∠2的度数,即可得出结论.【解答】解:∵∠1=25°,∴∠3=90°﹣∠1=90°﹣25°=65°.∵a∥b,∴∠2=∠3=65°.故选:C.【点评】本题考查的是平行线的性质,解题时注意:两直线平行,同位角相等.5.(3分)化简:xx−y ﹣yx+y,结果正确的是()A.1 B.x2+y2x−yC.x−yx+yD.x2+y2【考点】分式的加减法.【专题】计算题;分式.【分析】原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=x2+xy−xy+y2x2−y2=x2+y2x2−y2.故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.(3分)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.33 B.6 C.32 D.21【考点】勾股定理.【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算.【解答】解:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB=AC2+BC2=32,∠CAB=45°,∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=32,∴∠CAB′=90°,∴B′C=CA2+B′A2=33,故选:A.【点评】本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(3分)如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<2【考点】两条直线相交或平行问题;F8:一次函数图象上点的坐标特征.【专题】推理填空题.【分析】首先根据直线l2与x轴的交点为A(﹣2,0),求出k、b的关系;然后求出直线l1、直线l2的交点坐标,根据直线l1、直线l2的交点横坐标、纵坐标都大于0,求出k的取值范围即可.【解答】解:∵直线l2与x轴的交点为A(﹣2,0),∴﹣2k+b=0,∴y=−2x+4y=kx+2k解得x=4−2kk+2y=8kk+2∵直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)的交点在第一象限,∴4−2kk+2>08kk+2>0解得0<k<2.故选:D.【点评】此题主要考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握.8.(3分)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.3102B.3105C.105D.355【考点】相似三角形的判定与性质;LB:矩形的性质.【分析】根据S△ABE =12S矩形ABCD=3=12•AE•BF,先求出AE,再求出BF即可.【解答】解:如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE中,AE=AD2+DE2=32+12=10,∵S△ABE =12S矩形ABCD=3=12•AE•BF,∴BF=310 5.故选B.【点评】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.9.(3分)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B.532C.52 D.53【考点】三角形的外接圆与外心;KH:等腰三角形的性质.【分析】连接OA、OB、OP,根据圆周角定理求得∠APB=∠C=30°,进而求得∠PAB=∠APB=30°,∠ABP=120°,根据垂径定理得到OB⊥AP,AD=PD,∠OBP=∠OBA=60°,即可求得△AOB是等边三角形,从而求得PB=OA=5,解直角三角形求得PD,即可求得PA.【解答】解:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,则Rt△PBD中,PD=cos30°•PB=32×5=532,∴AP=2PD=53,故选D.【点评】本题考查了圆周角定理、垂径定理、等边三角形的判定和性质以及解直角三角形等,作出辅助性构建等边三角形是解题的关键.10.(3分)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)【考点】二次函数的性质.【分析】先利用配方法求得点M的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可.【解答】解:y=x2﹣2mx﹣4=x2﹣2mx+m2﹣m2﹣4=(x﹣m)2﹣m2﹣4.∴点M(m,﹣m2﹣4).∴点M′(﹣m,m2+4).∴m2+2m2﹣4=m2+4.解得m=±2.∵m>0,∴m=2.∴M(2,﹣8).故选C.【点评】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点M′的坐标是解题的关键.二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)在实数﹣5,﹣3,0,π,6中,最大的一个数是.【考点】实数大小比较.【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:根据实数比较大小的方法,可得π> 6>0>− 3>﹣5,故实数﹣5,− 3,0,π, 6其中最大的数是π.故答案为:π.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A .如图,在△ABC 中,BD 和CE 是△ABC 的两条角平分线.若∠A=52°,则∠1+∠2的度数为 .B. 173tan38°15′≈ .(结果精确到0.01)【考点】计算器—三角函数;25:计算器—数的开方;K7:三角形内角和定理.【分析】A :由三角形内角和得∠ABC +∠ACB=180°﹣∠A=128°,根据角平分线定义得∠1+∠2=12∠ABC +12∠ACB=12(∠ABC +∠ACB ); B :利用科学计算器计算可得.【解答】解:A 、∵∠A=52°,∴∠ABC +∠ACB=180°﹣∠A=128°,∵BD 平分∠ABC 、CE 平分∠ACB ,∴∠1=12∠ABC 、∠2=12∠ACB , 则∠1+∠2=12∠ABC +12∠ACB=12(∠ABC +∠ACB )=64°, 故答案为:64°;B 、 173tan38°15′≈2.5713×0.7883≈2.03,故答案为:2.03.【点评】本题主要考查三角形内角和定理、角平分线的定义及科学计算器的运用,熟练掌握三角形内角和定理、角平分线的定义是解题的关键.13.(3分)已知A ,B 两点分别在反比例函数y=3m x (m ≠0)和y=2m−5x (m≠52)的图象上,若点A 与点B 关于x 轴对称,则m 的值为 . 【考点】反比例函数图象上点的坐标特征;关于x 轴、y 轴对称的点的坐标.【分析】设A (a ,b ),则B (a ,﹣b ),将它们的坐标分别代入各自所在的函数解析式,通过方程来求m 的值.【解答】解:设A (a ,b ),则B (a ,﹣b ),依题意得: b =3m a −b =2m−5a, 所以3m +2m−5a =0,即5m ﹣5=0,解得m=1.故答案是:1.【点评】本题考查了反比例函数图象上点的坐标特征,关于x 轴,y 轴对称的点的坐标.根据题意得3m +2m−5a =0,即5m ﹣5=0是解题的难点.14.(3分)如图,在四边形ABCD 中,AB=AD ,∠BAD=∠BCD=90°,连接AC .若AC=6,则四边形ABCD 的面积为 .【考点】全等三角形的判定与性质.【分析】作辅助线;证明△ABM ≌△ADN ,得到AM=AN ,△ABM 与△ADN 的面积相等;求出正方形AMCN 的面积即可解决问题.【解答】解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;∵∠BAD=∠BCD=90°∴四边形AMCN为矩形,∠MAN=90°;∵∠BAD=90°,∴∠BAM=∠DAN;在△ABM与△ADN中,∠BAM=∠DAN∠AMB=∠ANDAB=AD,∴△ABM≌△ADN(AAS),∴AM=AN(设为λ);△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC2=AM2+MC2,而AC=6;∴2λ2=36,λ2=18,故答案为:18.【点评】本题主要考查了全等三角形的判定及其性质、正方形的判定及其性质等几何知识点的应用问题;解题的关键是作辅助线,构造全等三角形和正方形.三、解答题(本大题共11小题,共78分)15.(5分)计算:(﹣2)×6+|3﹣2|﹣(12)﹣1.【考点】二次根式的混合运算;负整数指数幂.【分析】根据二次根式的性质以及负整数指数幂的意义即可求出答案.【解答】解:原式=﹣12+2﹣3﹣2=﹣23﹣3=﹣33【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.16.(5分)解方程:x+3x−3﹣2x+3=1.【考点】解分式方程.【分析】利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.【解答】解:去分母得,(x+3)2﹣2(x﹣3)=(x﹣3)(x+3),去括号得,x2+6x+9﹣2x+6=x2﹣9,移项,系数化为1,得x=﹣6,经检验,x=﹣6是原方程的解.【点评】此题是解分式方程,主要考查了解分式方程的方法和完全平方公式,平方差公式,解本题的关键是将分式方程转化为整式方程.17.(5分)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)【考点】作图—基本作图.【分析】根据题意可知,作∠BDC的平分线交BC于点P即可.【解答】解:如图,点P即为所求.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.18.(5分)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)【考点】频数(率)分布直方图;V5:用样本估计总体;VB:扇形统计图;W4:中位数.【分析】(1)先根据A区间人数及其百分比求得总人数,再根据各区间人数之和等于总人数、百分比之和为1求得C区间人数及D区间百分比可得答案;(2)根据中位数的定义求解可得;(3)利用样本估计总体思想求解可得.【解答】解:(1)本次调查的总人数为10÷5%=200,则20~30分钟的人数为200×65%=130(人),D项目的百分比为1﹣(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;(3)1200×(65%+20%)=1020(人),答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(7分)如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.【考点】正方形的性质;KD:全等三角形的判定与性质.【分析】根据正方向的性质,可得∠ADF=CDE=90°,AD=CD,根据全等三角形的判定与性质,可得答案.【解答】证明:∵四边形ABCD是正方形,∴∠ADF=CDE=90°,AD=CD.∵AE=CF,∴DE=DF,在△ADF和△CDE中AD=CD∠ADF=∠CDE DF=DE,∴△ADF≌△CDE(SAS),∴∠DAF=∠DCE,在△AGE和△CGF中,∠GAE=∠GCF ∠AGE=∠CGF AE=CF,∴△AGE≌△CGF(AAS),∴AG=CG.【点评】本题考查了正方形的性质,利用全等三角形的判定与性质是解题关键,又利用了正方形的性质.20.(7分)某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x 米,再由锐角三角函数的定义即可得出结论.【解答】解:如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,在Rt△MBD中,MD=x•tan23°,在Rt△MCE中,ME=x•tan24°,∵ME﹣MD=DE=BC,∴x•tan24°﹣x•tan23°=1.7﹣1,∴x=0.7tan24°−tan23°,解得x≈34(米).答:“聚贤亭”与“乡思柳”之间的距离AN的长约为34米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.21.(7分)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.【考点】一次函数的应用.【分析】(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000建立不等式,即可确定出结论.【解答】解:(1)由题意得,y=(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)=7500x+68000,(2)由题意得,7500x+6800≥100000,∴x≥44 15,∵x为整数,∴李师傅种植的8个大棚中,香瓜至少种植5个大棚.【点评】此题是一次函数的应用,主要考查了一次函数的应用以及解一元一次不等式,解题的关键是:(1)根据数量关系,列出函数关系式;(2)根据题意建立不等式,是一道基础题目.22.(7分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【考点】列表法与树状图法;X4:概率公式.【分析】(1)根据题意可以得到小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率;(2)根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:(1)由题意可得,小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是:24=1 2,即小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是1 2;(2)由题意可得,出现的所有可能性是:(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:316.【点评】本题考查列表法与树状图法、概率公式,解答本题的关键是明确题意,写出所有的可能性,利用概率的知识解答.23.(8分)如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,(1)求弦AC的长;(2)求证:BC∥PA.【考点】切线的性质.【分析】(1)连接OA,由于PA是⊙O的切线,从而可求出∠AOD=60°,由垂径定理可知:AD=DC,由锐角三角函数即可求出AC的长度.(2)由于∠AOP=60°,所以∠BOA=120°,从而由圆周角定理即可求出∠BCA=60°,从而可证明BC∥PA【解答】解:(1)连接OA,∵PA 是⊙O 的切线,∴∠PAO=90°∵∠P=30°,∴∠AOD=60°,∵AC ⊥PB ,PB 过圆心O ,∴AD=DC在Rt △ODA 中,AD=OA•sin60°=5 32∴AC=2AD=5 3(2)∵AC ⊥PB ,∠P=30°,∴∠PAC=60°,∵∠AOP=60°∴∠BOA=120°,∴∠BCA=60°,∴∠PAC=∠BCA∴BC ∥PA【点评】本题考查圆的综合问题,涉及切线的性质,解直角三角形,平行线的判定等知识,综合程度较高,属于中等题型.24.(10分)在同一直角坐标系中,抛物线C 1:y=ax 2﹣2x ﹣3与抛物线C 2:y=x 2+mx +n 关于y 轴对称,C 2与x 轴交于A 、B 两点,其中点A 在点B 的左侧.(1)求抛物线C 1,C 2的函数表达式;(2)求A 、B 两点的坐标;(3)在抛物线C 1上是否存在一点P ,在抛物线C 2上是否存在一点Q ,使得以AB 为边,且以A 、B 、P 、Q 四点为顶点的四边形是平行四边形?若存在,求出P 、Q 两点的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由对称可求得a、n的值,则可求得两函数的对称轴,可求得m的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B的坐标;(3)由题意可知AB只能为平行四边形的边,利用平行四边形的性质,可设出P点坐标,表示出Q点坐标,代入C2的函数表达式可求得P、Q的坐标.【解答】解:(1)∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=﹣3,∴C1的对称轴为x=1,∴C2的对称轴为x=﹣1,∴m=2,∴C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)在C2的函数表达式为y=x2+2x﹣3中,令y=0可得x2+2x﹣3=0,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0);(3)存在.∵AB的中点为(﹣1,0),且点P在抛物线C1上,点Q在抛物线C2上,∴AB只能为平行四边形的一边,∴PQ∥AB且PQ=AB,由(2)可知AB=1﹣(﹣3)=4,∴PQ=4,设P(t,t2﹣2t﹣3),则Q(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(﹣2,﹣3),Q(2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).【点评】本题为二次函数的综合应用,涉及待定系数法、对称的性质、函数图象与坐标轴的交点、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)中由对称性质求得a、n的值是解题的关键,在(2)中注意函数图象与坐标轴的交点的求法即可,在(3)中确定出PQ的长度,设P点坐标表示出Q点的坐标是解题的关键.本题考查知识点较多,综合性较强,难度适中.25.(12分)问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m ,MB=10m ,△AMB 的面积为96m 2;过弦AB 的中点D作DE ⊥AB 交AB于点E ,又测得DE=8m . 请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)【考点】圆的综合题.【分析】(1)构建Rt △AOD 中,利用cos ∠OAD=cos30°=AD OA,可得OA 的长; (2)经过矩形对角线交点的直线将矩形面积平分,根据此结论作出PQ ,利用勾股定理进行计算即可;(3)如图3,作辅助线,先确定圆心和半径,根据勾股定理计算半径:在Rt △AOD 中,r 2=122+(r ﹣8)2,解得:r=13根据三角形面积计算高MN 的长,证明△ADC ∽△ANM ,列比例式求DC 的长,确定点O 在△AMB 内部,利用勾股定理计算OM ,则最大距离FM 的长可利用相加得出结论.【解答】解:(1)如图1,过O 作OD ⊥AC 于D ,则AD=12AC=12×12=6, ∵O 是内心,△ABC 是等边三角形,∴∠OAD=12∠BAC=12×60°=30°, 在Rt △AOD 中,cos ∠OAD=cos30°=AD OA, ∴OA=6÷ 32=4 3, 故答案为:4 3;(2)存在,如图2,连接AC 、BD 交于点O ,连接PO 并延长交BC 于Q ,则线段PQ 将矩形ABCD 的面积平分,∵点O 为矩形ABCD 的对称中心,∴CQ=AP=3,过P 作PM ⊥BC 于点,则PM=AB=12,MQ=18﹣3﹣3=12,由勾股定理得:PQ= PM 2+MQ 2= 122+122=12 2;(3)如图3,作射线ED 交AM 于点C∵AD=DB ,ED ⊥AB ,AB是劣弧, ∴AB所在圆的圆心在射线DC 上, 假设圆心为O ,半径为r ,连接OA ,则OA=r ,OD=r ﹣8,AD=12AB=12, 在Rt △AOD 中,r 2=122+(r ﹣8)2,解得:r=13,∴OD=5,过点M 作MN ⊥AB ,垂足为N ,∵S △ABM =96,AB=24,∴12AB•MN=96, 12×24×MN=96, ∴MN=8,NB=6,AN=18,∵CD ∥MN ,∴△ADC ∽△ANM ,∴DC MN =AD AN, ∴DC 8=1218, ∴DC=163, ∴OD <CD ,∴点O 在△AMB 内部,∴连接MO 并延长交AB于点F ,则MF 为草坪上的点到M 点的最大距离, ∵在AB上任取一点异于点F 的点G ,连接GO ,GM , ∴MF=OM +OF=OM +OG >MG ,即MF >MG ,过O 作OH ⊥MN ,垂足为H ,则OH=DN=6,MH=3,∴OM=MH2+OH2=32+62=35,∴MF=OM+r=35+13≈19.71(米),答:喷灌龙头的射程至少为19.71米.【点评】本题是圆的综合题,考查了三角形相似的性质和判定、勾股定理、等边三角形的性质及内心的定义、特殊的三角函数值、矩形的性质等知识,明确在特殊的四边形中将面积平分的直线一定过对角线的交点,本题的第三问比较复杂,辅助线的作出是关键,根据三角形的三角关系确定其最大射程为MF.。
保密 ★ 启用前2017年中考题数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上) 1、计算2(1)⨯-的结果是( ) A 、12-B 、2-C 、1D 、22、若∠α的余角是30°,则cos α的值是( )A 、12B 、 32C 、22D 、33 3、下列运算正确的是( ) A 、21a a -= B 、22a a a +=C 、2a a a ⋅=D 、22()a a -=-4、下列图形是轴对称图形,又是中心对称图形的有( )A 、4个B 、3个C 、2个D 、1个5、如图,在平行四边形ABCD 中,∠B=80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( ) A 、40° B 、50° C 、60° D 、80°6、已知二次函数2y ax =的图象开口向上,则直线1y ax =-经过的象限是( )A 、第一、二、三象限B 、第二、三、四象限C 、第一、二、四象限D 、第一、三、四象限 7、如图,你能看出这个倒立的水杯的俯视图是( )8、如图,是我市5月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是( ) A 、28℃,29℃ B 、28℃,29.5℃ C 、28℃,30℃ D 、29℃,29℃A B C D9、已知拋物线2123y x =-+,当15x ≤≤时,y 的最大值是( ) A 、2B 、23C 、 53D 、 7310、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是( ) A 、2 B 、5C 、22D 、3 11、如图,是反比例函数1k y x=和2ky x =(12k k <)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B 两点,若2AOB S ∆=,则21k k -的值是( ) A 、1B 、2C 、4D 、812、一个容器装有1升水,按照如下要求把水倒出:第1次倒出12升水,第2次倒出的水量是12升的13,第3次倒出的水量是13升的14,第4次倒出的水量是14升的15,…按照这种倒水的方法,倒了10次后容器内剩余的水量是( ) A 、1011升 B 、19升C 、110升 D 、111升 二、填空题(本大题共6小题,每小题3分,共18分.把答案填在答题卡中的横线上) 13、2011-的相反数是__________14、近似数0.618有__________个有效数字. 15、分解因式:39a a -= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为__________17、如图,等边△ABC 绕点B 逆时针旋转30°时,点C 转到C ′的位置,且BC ′与AC 交于点D ,则'C DCD的值为__________18、如图,AB 是半圆O 的直径,以0A 为直径的半圆O ′与弦AC 交于点D ,O ′E ∥AC ,并交OC 于点E .则下列四个结论:16题图 17题图 18题图①点D 为AC 的中点;②'12O OE AOC S S ∆∆=;③2AC AD = ;④四边形O'DEO 是菱形.其中正确的结论是 __________.(把所有正确的结论的序号都填上)三、解答题(本大题共8小题,满分共66分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤).19、计算:101()(5)342π-----+20、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为60°,已知风筝线BC 的长为10米,小强的身高AB 为1.55米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到1米,参考数据2≈1.413 1.73 )21、如图,△OAB 的底边经过⊙O 上的点C ,且OA=OB ,CA=CB ,⊙O 与OA 、OB 分别交于D 、E 两点. (1)求证:AB 是⊙O 的切线;(2)若D 为OA 33π,求⊙O 的半径r .22、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子3个(分别用白A 、白B 、白C 表示),若从中任意摸出一个棋子,是白色棋子的概率为34. (1)求纸盒中黑色棋子的个数;(2)第一次任意摸出一个棋子(不放回),第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.23、上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元. (1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元? (利润率=100%⨯利润进价)24、如图,点G 是正方形ABCD 对角线CA 的延长线上任意一点,以线段AG 为边作一个正方形AEFG ,线段EB 和GD 相交于点H . (1)求证:EB=GD ;(2)判断EB 与GD 的位置关系,并说明理由; (3)若AB=2,2,求EB 的长.25、已知抛物线223 (0)y ax ax a a =--<与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,点D 为抛物线的顶点. (1)求A 、B 的坐标;(2)过点D 作DH 丄y 轴于点H ,若DH=HC ,求a 的值和直线CD 的解析式;(3)在第(2)小题的条件下,直线CD 与x 轴交于点E ,过线段OB 的中点N 作NF 丄x 轴,并交直线CD 于点F ,则直线NF 上是否存在点M ,使得点M 到直线CD 的距离等于点M 到原点O 的距离?若存在,求出点M 的坐标;若不存在,请说明理由.中考数学试题答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B A CCBDBACBCD二、填空题 13. 201114. 315. (3)(3)a a a +- 16. 144°17. 23- 18. ①③④三、解答题19. 解:原式=2-1-3+2, =0.故答案为:0.20. 解:∵一元二次方程x 2-4x+1=0的两个实数根是x 1、x 2, ∴x 1+x 2=4,x 1•x 2=1, ∴(x 1+x 2)2÷( )=42÷=42÷4 =4.21. 解:在Rt △CEB 中, sin60°=,∴CE=BC•sin60°=10×≈8.65m ,∴CD=CE+ED=8.65+1.55=10.2≈10m , 答:风筝离地面的高度为10m .22. (1)证明:连OC ,如图, ∵OA=OB ,CA=CB , ∴OC ⊥AB ,∴AB 是⊙O 的切线;(2)解:∵D 为OA 的中点,OD=OC=r , ∴OA=2OC=2r , ∴∠A=30°,∠AOC=60°,AC= r , ∴∠AOB=120°,AB=2 r , ∴S 阴影部分=S △OAB -S 扇形ODE = •OC•AB - =- ,∴ •r•2r- r 2=- ,∴r=1,即⊙O 的半径r 为1. 23. 解:(1)3÷ -3=1.答:黑色棋子有1个;(2)共12种情况,有6种情况两次摸到相同颜色棋子,所以概率为.24. 解:(1)设第一批购进水果x千克,则第二批购进水果2.5千克,依据题意得:,解得x=200,经检验x=200是原方程的解,∴x+2.5x=700,答:这两批水果功够进700千克;(2)设售价为每千克a元,则:,630a≥7500×1.26,∴,∴a≥15,答:售价至少为每千克15元.25. (1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,∴∠GAD=∠EAB,又∵AG=AE,AB=AD,∴△GAD≌△EAB,∴EB=GD;(2)EB⊥GD,理由如下:连接BD,由(1)得:∠ADG=∠ABE,则在△BDH中,∠DHB=180°-(∠HDB+∠HBD)=180°-90°=90°,∴EB⊥GD;(3)设BD与AC交于点O,∵AB=AD=2在Rt△ABD中,DB= ,∴EB=GD= .26. 解:(1)由y=0得,ax2-2ax-3a=0,∵a≠0,∴x2-2x-3=0,解得x1=-1,x2=3,∴点A的坐标(-1,0),点B的坐标(3,0);(2)由y=ax2-2ax-3a,令x=0,得y=-3a,∴C(0,-3a),又∵y=ax2-2ax-3a=a(x-1)2-4a,得D(1,-4a),∴DH=1,CH=-4a-(-3a)=-a,∴-a=1,∴a=-1,∴C(0,3),D(1,4),设直线CD的解析式为y=kx+b,把C、D两点的坐标代入得,,解得,∴直线CD的解析式为y=x+3;(3)存在.由(2)得,E(-3,0),N(- ,0)∴F(,),EN= ,作MQ⊥CD于Q,设存在满足条件的点M(,m),则FM= -m,EF= = ,MQ=OM=由题意得:Rt△FQM∽Rt△FNE,∴= ,整理得4m2+36m-63=0,∴m2+9m= ,m2+9m+ = +(m+ )2=m+ =±∴m1= ,m2=- ,∴点M的坐标为M1(,),M2(,- ).。
2017年四川省成都市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为( )A.零上3℃B.零下3℃C.零上7℃D.零下7℃2.(3分)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.3.(3分)总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6。
47×109C.6.47×1010 D.6.47×10114.(3分)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<15.(3分)下列图标中,既是轴对称图形,又是中心对称图形的是()A. B.C.D.6.(3分)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6D.(﹣a3)2=﹣a67.(3分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分) 60 70 80 90 100人数(人) 7 12 10 8 3则得分的众数和中位数分别为( )A.70分,70分B.80分,80分C.70分,80分D.80分,70分8.(3分)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:9.(3分)已知x=3是分式方程﹣=2的解,那么实数k的值为()A.﹣1 B.0 C.1 D.210.(3分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是( )A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(﹣1)0= .12.(4分)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为.13.(4分)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y 1y2.(填“>”或“<").14.(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.16.(6分)化简求值:÷(1﹣),其中x=﹣1.17.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解"四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解"的人数是人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.18.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.20.(12分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)如图,数轴上点A表示的实数是.22.(4分)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a= .23.(4分)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P,则= .224.(4分)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点",直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k= .25.(4分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG= cm.五、解答题(本大题共3小题,共30分)26.(8分)随着地铁和共享单车的发展,“地铁+单车"已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回(单位:分钟)是关家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1于x的一次函数,其关系如下表:地铁站 A B C D Ex(千米) 8 9 10 11。
2017年吉林省长春市中考数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)3的相反数是()A.﹣3 B.﹣13C.13D.32.(3分)据统计,2016年长春市接待旅游人数约67000000人次,67000000这个数用科学记数法表示为()A.67×106B.6.7×105 C.6.7×107 D.6.7×1083.(3分)下列图形中,可以是正方体表面展开图的是()A.B.C.D.4.(3分)不等式组{x−1≤02x−5<1的解集为()A.x<﹣2 B.x≤﹣1 C.x≤1 D.x<35.(3分)如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC.若∠A=62°,∠AED=54°,则∠B的大小为()A.54° B.62° C.64° D.74°6.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )A .3a+2bB .3a+4bC .6a+2bD .6a+4b7.(3分)如图,点A ,B ,C 在⊙O 上,∠ABC=29°,过点C 作⊙O 的切线交OA 的延长线于点D ,则∠D 的大小为( )A .29°B .32°C .42°D .58°8.(3分)如图,在平面直角坐标系中,平行四边形OABC 的顶点A 的坐标为(﹣4,0),顶点B 在第二象限,∠BAO=60°,BC 交y 轴于点D ,DB :DC=3:1.若函数y=x x(k >0,x >0)的图象经过点C ,则k 的值为( )A .√33B .√32C .2√33D .√3二、填空题(每题3分,满分18分,将答案填在答题纸上)9.(3分)计算:√2×√3= .10.(3分)若关于x 的一元二次方程x 2+4x+a=0有两个相等的实数根,则a 的值是.11.(3分)如图,直线a∥b∥c,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.若AB:BC=1:2,DE=3,则EF的长为.12.(3分)如图,则△ABC中,∠BAC=100°,AB=AC=4,以点B为圆心,BA长为半径作圆弧,交BC于点D,则xx̂的长为.(结果保留π)13.(3分)如图1,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图2,其中四边形ABCD和四边形EFGH都是正方形,△ABF、△BCG、△CDH、△DAE是四个全等的直角三角形.若EF=2,DE=8,则AB的长为.14.(3分)如图,在平面直角坐标系中,△ABC的顶点A在第一象限,点B,C 的坐标为(2,1),(6,1),∠BAC=90°,AB=AC,直线AB交x轴于点P.若△ABC 与△A'B'C'关于点P成中心对称,则点A'的坐标为.三、解答题(本大题共10小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.(6分)先化简,再求值:3a(a2+2a+1)﹣2(a+1)2,其中a=2.16.(6分)一个不透明的口袋中有三个小球,上面分别标有字母a,b,c,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从可口袋中随机摸出一个小球记下字母.用画树状图(或列表)的方法,求小园同学两次摸出的小球上的字母相同的概率.17.(6分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,求大厅两层之间的距离BC的长.(结果精确到0.1米)(参考数据:sin31°=0.515,cos31°=0.857,tan31°=0.60)18.(7分)某校为了丰富学生的课外体育活动,购买了排球和跳绳.已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.19.(7分)如图,在菱形ABCD中,∠A=110°,点E是菱形ABCD内一点,连结CE绕点C顺时针旋转110°,得到线段CF,连结BE,DF,若∠E=86°,求∠F的度数.20.(7分)某校八年级学生会为了解本年级600名学生的睡眠情况,将同学们某天的睡眠时长t(小时)分为A,B,C,D,E(A:9≤t≤24;B:8≤t<9;C:7≤t<8;D:6≤t<7;E:0≤t<6)五个选项,进行了一次问卷调查,随机抽取n名同学的调查问卷并进行了整理,绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该年级600名学生中睡眠时长不足7小时的人数.21.(8分)甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为件;这批服装的总件数为件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.22.(9分)【再现】如图①,在△ABC中,点D,E分别是AB,AC的中点,可以得到:DE∥BC,且DE=12BC.(不需要证明)【探究】如图②,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,判断四边形EFGH的形状,并加以证明.【应用】在(1)【探究】的条件下,四边形ABCD中,满足什么条件时,四边形EFGH是菱形?你添加的条件是:.(只添加一个条件)(2)如图③,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,对角线AC,BD相交于点O.若AO=OC,四边形ABCD面积为5,则阴影部分图形的面积和为.23.(10分)如图①,在Rt△ABC中,∠C=90°,AB=10,BC=6,点P从点A出发,沿折线AB﹣BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动,点Q 从点C 出发,沿CA 方向以每秒43个单位长度的速度运动,P ,Q 两点同时出发,当点P 停止时,点Q 也随之停止.设点P 运动的时间为t 秒.(1)求线段AQ 的长;(用含t 的代数式表示)(2)连结PQ ,当PQ 与△ABC 的一边平行时,求t 的值;(3)如图②,过点P 作PE ⊥AC 于点E ,以PE ,EQ 为邻边作矩形PEQF ,点D 为AC 的中点,连结DF .设矩形PEQF 与△ABC 重叠部分图形的面积为S .①当点Q 在线段CD 上运动时,求S 与t 之间的函数关系式;②直接写出DF 将矩形PEQF 分成两部分的面积比为1:2时t 的值.24.(12分)定义:对于给定的两个函数,任取自变量x 的一个值,当x <0时,它们对应的函数值互为相反数;当x ≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x ﹣1,它的相关函数为y={−x +1(x<0)x −1(x ≥0). (1)已知点A (﹣5,8)在一次函数y=ax ﹣3的相关函数的图象上,求a 的值;(2)已知二次函数y=﹣x 2+4x ﹣12.①当点B (m ,32)在这个函数的相关函数的图象上时,求m 的值;②当﹣3≤x ≤3时,求函数y=﹣x 2+4x ﹣12的相关函数的最大值和最小值; (3)在平面直角坐标系中,点M ,N 的坐标分别为(﹣12,1),(92,1),连结MN .直接写出线段MN与二次函数y=﹣x2+4x+n的相关函数的图象有两个公共点时n的取值范围.2017年吉林省长春市中考数学试卷参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)3的相反数是()A.﹣3 B.﹣13C.13D.3【解答】解:3的相反数是﹣3故选:A.2.(3分)据统计,2016年长春市接待旅游人数约67000000人次,67000000这个数用科学记数法表示为()A.67×106B.6.7×105 C.6.7×107 D.6.7×108【解答】解:67000000这个数用科学记数法表示为6.7×107.故选:C.3.(3分)下列图形中,可以是正方体表面展开图的是()A.B.C.D.【解答】解:下列图形中,可以是正方体表面展开图的是,故选:D.4.(3分)不等式组{x−1≤02x−5<1的解集为()A.x<﹣2 B.x≤﹣1 C.x≤1 D.x<3【解答】解:{x−1≤0x 2x−5<1x解不等式①得:x≤1,解不等式②得:x<3,∴不等式组的解集为x≤1,故选:C.5.(3分)如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC.若∠A=62°,∠AED=54°,则∠B的大小为()A.54° B.62° C.64° D.74°【解答】解:∵DE∥BC,∴∠C=∠AED=54°,∵∠A=62°,∴∠B=180°﹣∠A﹣∠C=64°,故选:C.6.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【解答】解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选:A.7.(3分)如图,点A,B,C在⊙O上,∠ABC=29°,过点C作⊙O的切线交OA 的延长线于点D,则∠D的大小为()A.29° B.32° C.42° D.58°【解答】解:作直径B′C,交⊙O于B′,连接AB′,则∠AB′C=∠ABC=29°,∵OA=OB′,∴∠AB′C=∠OAB′=29°.∴∠DOC=∠AB′C+∠OAB′=58°.∵CD是⊙的切线,∴∠OCD=90°.∴∠D=90°﹣58°=32°.故选:B .8.(3分)如图,在平面直角坐标系中,平行四边形OABC 的顶点A 的坐标为(﹣4,0),顶点B 在第二象限,∠BAO=60°,BC 交y 轴于点D ,DB :DC=3:1.若函数y=x x(k >0,x >0)的图象经过点C ,则k 的值为( )A .√33B .√32C .2√33D .√3 【解答】解:∵四边形ABCD 是平行四边形,点A 的坐标为(﹣4,0), ∴BC=4,∵DB :DC=3:1,∴B (﹣3,OD ),C (1,OD ),∵∠BAO=60°,∴∠COD=30°,∴OD=√3,∴C(1,√3),∴k=√3,故选:D.二、填空题(每题3分,满分18分,将答案填在答题纸上)9.(3分)计算:√2×√3= √6.【解答】解:√2×√3=√6;故答案为:√6.10.(3分)若关于x的一元二次方程x2+4x+a=0有两个相等的实数根,则a的值是 4 .【解答】解:∵关于x的一元二次方程x2+4x+a=0有两个相等的实数根,∴△=42﹣4a=16﹣4a=0,解得:a=4.故答案为:4.11.(3分)如图,直线a∥b∥c,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.若AB:BC=1:2,DE=3,则EF的长为 6 .【解答】解:∵a∥b∥c,∴xx xx =xx xx, ∴12=3xx, ∴EF=6,故答案为6.12.(3分)如图,则△ABC 中,∠BAC=100°,AB=AC=4,以点B 为圆心,BA 长为半径作圆弧,交BC 于点D ,则xx ̂的长为 8x 9.(结果保留π)【解答】解:∵△ABC 中,∠BAC=100°,AB=AC ,∴∠B=∠C=12(180°﹣100°)=40°, ∵AB=4,∴xx ̂的长为40x ×4180=8x 9. 故答案为8x 9.13.(3分)如图1,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图2,其中四边形ABCD 和四边形EFGH 都是正方形,△ABF 、△BCG 、△CDH 、△DAE 是四个全等的直角三角形.若EF=2,DE=8,则AB 的长为 10 .【解答】解:依题意知,BG=AF=DE=8,EF=FG=2∴BF=BG﹣BF=6,∴直角△ABF中,利用勾股定理得:AB=√xx2+xx2=√82+62=10.故答案是:10.14.(3分)如图,在平面直角坐标系中,△ABC的顶点A在第一象限,点B,C 的坐标为(2,1),(6,1),∠BAC=90°,AB=AC,直线AB交x轴于点P.若△ABC 与△A'B'C'关于点P成中心对称,则点A'的坐标为(﹣2,﹣3).【解答】解:如图,点B,C的坐标为(2,1),(6,1),得BC=4.由∠BAC=90°,AB=AC,得AB=2√2,∠ABD=45°,∴BD=AD=2,A(4,3),设AB的解析式为y=kx+b,将A,B点坐标代入,得{2x+x=1,4x+x=3,解得{x=1x=−1AB的解析式为y=x﹣1,当y=0时,x=1,即P(1,0),由中点坐标公式,得x A′=2x P﹣x A=2﹣4=﹣2,y A′=2y A′﹣y A=0﹣3=﹣3,A′(﹣2,﹣3).故答案为:(﹣2,﹣3).三、解答题(本大题共10小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.(6分)先化简,再求值:3a(a2+2a+1)﹣2(a+1)2,其中a=2.【解答】解:原式=3a3+6a2+3a﹣2a2﹣4a﹣2=3a3+4a2﹣a﹣2,当a=2时,原式=24+16﹣2﹣2═36.16.(6分)一个不透明的口袋中有三个小球,上面分别标有字母a,b,c,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从可口袋中随机摸出一个小球记下字母.用画树状图(或列表)的方法,求小园同学两次摸出的小球上的字母相同的概率.【解答】解:列表如下:a b ca(a,a)(b,a)(c,a)b(a,b)(b,b)(c,b)c(a,c)(b,c)(c,c)所有等可能的情况有9种,其中两次摸出的小球的标号相同的情况有3种,则P=39=1 3.17.(6分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,求大厅两层之间的距离BC的长.(结果精确到0.1米)(参考数据:sin31°=0.515,cos31°=0.857,tan31°=0.60)【解答】解:过B作地平面的垂线段BC,垂足为C.在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515≈6.2(米).即大厅两层之间的距离BC的长约为6.2米.18.(7分)某校为了丰富学生的课外体育活动,购买了排球和跳绳.已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.【解答】解:设跳绳的单价为x 元,则排球的单价为3x 元,依题意得:750x ﹣9003x=30, 解方程,得x=15.经检验:x=15是原方程的根,且符合题意.答:跳绳的单价是15元.19.(7分)如图,在菱形ABCD 中,∠A=110°,点E 是菱形ABCD 内一点,连结CE 绕点C 顺时针旋转110°,得到线段CF ,连结BE ,DF ,若∠E=86°,求∠F 的度数.【解答】解:∵菱形ABCD ,∴BC=CD ,∠BCD=∠A=110°,由旋转的性质知,CE=CF ,∠ECF=∠BCD=110°,∴∠BCE=∠DCF=110°﹣∠DCE ,在△BCE 和△DCF 中,{xx =xx ∠xxx =∠xxx xx =xx,∴△BCE ≌△DCF ,∴∠F=∠E=86°.20.(7分)某校八年级学生会为了解本年级600名学生的睡眠情况,将同学们某天的睡眠时长t(小时)分为A,B,C,D,E(A:9≤t≤24;B:8≤t<9;C:7≤t<8;D:6≤t<7;E:0≤t<6)五个选项,进行了一次问卷调查,随机抽取n名同学的调查问卷并进行了整理,绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该年级600名学生中睡眠时长不足7小时的人数.【解答】解:(1)n=12+24+15+6+3=60;(2)(6+3)÷60×600=90,答:估计该年级600名学生中睡眠时长不足7小时的人数为90人.21.(8分)甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为80 件;这批服装的总件数为1140 件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.【解答】解:(1)甲车间每小时加工服装件数为720÷9=80(件),这批服装的总件数为720+420=1140(件).故答案为:80;1140.(2)乙车间每小时加工服装件数为120÷2=60(件),乙车间修好设备的时间为9﹣(420﹣120)÷60=4(时).∴乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式为y=120+60(x﹣4)=60x﹣120(4≤x≤9).(3)甲车间加工服装数量y与x之间的函数关系式为y=80x,当80x+60x﹣120=1000时,x=8.答:甲、乙两车间共同加工完1000件服装时甲车间所用的时间为8小时.22.(9分)【再现】如图①,在△ABC中,点D,E分别是AB,AC的中点,可以得到:DE∥BC,且DE=12BC.(不需要证明)【探究】如图②,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,判断四边形EFGH的形状,并加以证明.【应用】在(1)【探究】的条件下,四边形ABCD中,满足什么条件时,四边形EFGH是菱形?你添加的条件是:AC=BD .(只添加一个条件)(2)如图③,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,对角线AC,BD相交于点O.若AO=OC,四边形ABCD面积为5,则阴影部分图形的面积和为54.【解答】解:【探究】平行四边形.理由:如图1,连接AC,∵E是AB的中点,F是BC的中点,∴EF∥AC,EF=12 AC,同理HG∥AC,HG=12 AC,综上可得:EF∥HG,EF=HG,故四边形EFGH是平行四边形.【应用】(1)添加AC=BD,理由:连接AC,BD,同(1)知,EF=12 AC,同【探究】的方法得,FG=12 BD,∵AC=BD,∴EF=FG,∵四边形EFGH是平行四边形,∴▱EFGH是菱形;故答案为AC=BD;(2)如图2,由【探究】得,四边形EFGH是平行四边形,∵F ,G 是BC ,CD 的中点,∴FG ∥BD ,FG=12BD , ∴△CFG ∽△CBD ,∴x △xxx x △xxx =14, ∴S △BCD =4S △CFG ,同理:S △ABD =4S △AEH ,∵四边形ABCD 面积为5,∴S △BCD +S △ABD =5,∴S △CFG +S △AEH =54, 同理:S △DHG +S △BEF =54, ∴S 四边形EFGH =S 四边形ABCD ﹣(S △CFG +S △AEH +S △DHG +S △BEF )=5﹣52=52, 设AC 与FG ,EH 相交于M ,N ,EF 与BD 相交于P ,∵FG ∥BD ,FG=12BD , ∴CM=OM=12OC , 同理:AN=ON=12OA , ∵OA=OC ,∴OM=ON ,易知,四边形ENOP ,FMOP 是平行四边形,∴S 阴影=12S 四边形EFGH =54, 故答案为54.23.(10分)如图①,在Rt△ABC中,∠C=90°,AB=10,BC=6,点P从点A出发,沿折线AB﹣BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒43个单位长度的速度运动,P,Q两点同时出发,当点P停止时,点Q也随之停止.设点P 运动的时间为t秒.(1)求线段AQ的长;(用含t的代数式表示)(2)连结PQ,当PQ与△ABC的一边平行时,求t的值;(3)如图②,过点P作PE⊥AC于点E,以PE,EQ为邻边作矩形PEQF,点D为AC的中点,连结DF.设矩形PEQF与△ABC重叠部分图形的面积为S.①当点Q 在线段CD上运动时,求S与t之间的函数关系式;②直接写出DF将矩形PEQF 分成两部分的面积比为1:2时t的值.【解答】解:(1)在Rt △ABC 中,∵∠C=90°,AB=10,BC=6,∴AC=√xx 2−xx 2=√102−62=8, ∵CQ=43t , ∴AQ=8﹣43t (0≤t ≤4).(2)①当PQ ∥BC 时,xx xx =xx xx, ∴5x 10=8−43x 8, ∴t=32s . ②当PQ ∥AB 时,xx xx =xx xx , ∴43x 8=6−3(x −2)6, ∴t=3,综上所述,t=32s 或3s 时,当PQ 与△ABC 的一边平行.(3)①如图1中,a 、当0≤t ≤32时,重叠部分是四边形PEQF .S=PE•EQ=3t•(8﹣4t ﹣43t )=﹣16t 2+24t . b 、如图2中,当32<t ≤2时,重叠部分是四边形PNQE .S=S 四边形PEQF ﹣S △PFN =(16t 2﹣24t )﹣12•45[5t ﹣54(8﹣43t )]•35[5t ﹣54(8﹣43t )]=163x 2+8x −24. c 、如图3中,当2<t ≤3时,重叠部分是五边形MNPBQ .S=S 四边形PBQF ﹣S △FNM =43t•[6﹣3(t ﹣2)]﹣12•[43t ﹣4(t ﹣2)]•34[43t ﹣4(t ﹣2)]=﹣203t 2+32t ﹣24.②a、如图4中,当DE:DQ=1:2时,DF将矩形PEQF分成两部分的面积比为1:2.则有(4﹣4t):(4﹣43t)=1:2,解得t=35s,b、如图5中,当NE:PN=1:2时,DF将矩形PEQF分成两部分的面积比为1:2.∴DE:DQ=NE:FQ=1:3,∴(4t﹣4):(4﹣43t)=1:3,解得t=65 s,综上所述,当t=35s或65s时,DF将矩形PEQF分成两部分的面积比为1:2.24.(12分)定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它的相关函数为y={−x +1(x<0)x −1(x ≥0). (1)已知点A (﹣5,8)在一次函数y=ax ﹣3的相关函数的图象上,求a 的值;(2)已知二次函数y=﹣x 2+4x ﹣12.①当点B (m ,32)在这个函数的相关函数的图象上时,求m 的值;②当﹣3≤x ≤3时,求函数y=﹣x 2+4x ﹣12的相关函数的最大值和最小值; (3)在平面直角坐标系中,点M ,N 的坐标分别为(﹣12,1),(92,1),连结MN .直接写出线段MN 与二次函数y=﹣x 2+4x+n 的相关函数的图象有两个公共点时n 的取值范围.【解答】解:(1)函数y=ax ﹣3的相关函数为y={−xx +3(x<0)xx −3(x ≥0),将点A (﹣5,8)代入y=﹣ax+3得:5a+3=8,解得:a=1.(2)二次函数y=﹣x 2+4x ﹣12的相关函数为y={x 2−4x +12(x<0)−x 2+4x −12(x ≥0) ①当m <0时,将B (m ,32)代入y=x 2﹣4x+12得m 2﹣4m+12=32,解得:m=2+√5(舍去)或m=2﹣√5.当m ≥0时,将B (m ,32)代入y=﹣x 2+4x ﹣12得:﹣m 2+4m ﹣12=32,解得:m=2+√2或m=2﹣√2.综上所述:m=2﹣√5或m=2+√2或m=2﹣√2.②当﹣3≤x <0时,y=x 2﹣4x+12,抛物线的对称轴为x=2,此时y 随x 的增大而减小,∴此时y 的最大值为432. 当0≤x ≤3时,函数y=﹣x 2+4x ﹣12,抛物线的对称轴为x=2,当x=0有最小值,最小值为﹣12,当x=2时,有最大值,最大值y=72. 综上所述,当﹣3≤x ≤3时,函数y=﹣x 2+4x ﹣12的相关函数的最大值为432,最小值为﹣12; (3)如图1所示:线段MN 与二次函数y=﹣x 2+4x+n 的相关函数的图象恰有1个公共点.所以当x=2时,y=1,即﹣4+8+n=1,解得n=﹣3.如图2所示:线段MN 与二次函数y=﹣x 2+4x+n 的相关函数的图象恰有3个公共点∵抛物线y=x 2﹣4x ﹣n 与y 轴交点纵坐标为1,∴﹣n=1,解得:n=﹣1.∴当﹣3<n <﹣1时,线段MN 与二次函数y=﹣x 2+4x+n 的相关函数的图象恰有2个公共点.如图3所示:线段MN 与二次函数y=﹣x 2+4x+n 的相关函数的图象恰有3个公共点.∵抛物线y=﹣x 2+4x+n 经过点(0,1),∴n=1.如图4所示:线段MN 与二次函数y=﹣x 2+4x+n 的相关函数的图象恰有2个公共点.∵抛物线y=x 2﹣4x ﹣n 经过点M (﹣12,1), ∴14+2﹣n=1,解得:n=54. ∴1<n ≤54时,线段MN 与二次函数y=﹣x 2+4x+n 的相关函数的图象恰有2个公共点.综上所述,n 的取值范围是﹣3<n <﹣1或1<n ≤54.。
2017年吉林省中考数学试卷一、单项选择题(每小题2分,共12分)1.(2分)计算(﹣1)2的正确结果是()A.1B.2C.﹣1D.﹣22.(2分)如图是一个正六棱柱的茶叶盒,其俯视图为()A.B.C.D.3.(2分)下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab24.(2分)不等式x+1≥2的解集在数轴上表示正确的是()A.B.C.D.5.(2分)如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70°B.44°C.34°D.24°6.(2分)如图,直线l是⊙O的切线,A为切点,B为直线l上一点,连接OB 交⊙O于点C.若AB=12,OA=5,则BC的长为()A.5B.6C.7D.8二、填空题(每小题3分,共24分)7.(3分)2016年我国资助各类家庭困难学生超过84 000 000人次.将84 000 000这个数用科学记数法表示为.8.(3分)苹果原价是每千克x元,按8折优惠出售,该苹果现价是每千克元(用含x的代数式表示).9.(3分)分解因式:a2+4a+4=.10.(3分)我们学过用直尺和三角尺画平行线的方法,如图所示,直线a∥b的根据是.11.(3分)如图,在矩形ABCD中,AB=5,AD=3.矩形ABCD绕着点A逆时针旋转一定角度得到矩形AB'C'D'.若点B的对应点B'落在边CD上,则B'C的长为.12.(3分)如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=4m,BD=14m,则旗杆AB的高为m.13.(3分)如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径画BÊ,CÊ.若AB=1,则阴影部分图形的周长为(结果保留π).14.(3分)我们规定:当k,b为常数,k≠0,b≠0,k≠b时,一次函数y=kx+b 与y=bx+k互为交换函数.例如:y=4x+3的交换函数为y=3x+4.一次函数y=kx+2与它的交换函数图象的交点横坐标为.三、解答题(每小题5分,共20分)15.(5分)某学生化简分式1x+1+2x2−1出现了错误,解答过程如下:原式=1(x+1)(x−1)+2(x+1)(x−1)(第一步)=1+2(x+1)(x−1)(第二步)=3x2−1.(第三步)(1)该学生解答过程是从第步开始出错的,其错误原因是;(2)请写出此题正确的解答过程.16.(5分)被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km,隧道累计长度的2倍比桥梁累计长度多36km.求隧道累计长度与桥梁累计长度.17.(5分)在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率.18.(5分)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.四、解答题(每小题7分,共28分)19.(7分)某商场甲、乙、丙三名业务员5个月的销售额(单位:万元)如下表:第1月第2月第3月第4月第5月月份销售额人员甲7.29.69.67.89.3乙 5.89.79.8 5.89.9丙4 6.28.59.99.9(1)根据上表中的数据,将下表补充完整:平均数(万元)中位数(万元)众数(万元)统计值数值人员甲9.39.6乙8.2 5.8丙7.78.5(2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理由.20.(7分)图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB的端点在格点上.(1)在图①、图2中,以AB 为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)(2)在图③中,以AB 为边画一个平行四边形,且另外两个顶点在格点上. 21.(7分)如图,一枚运载火箭从距雷达站C 处5km 的地面O 处发射,当火箭到达点A ,B 时,在雷达站C 处测得点A ,B 的仰角分别为34°,45°,其中点O ,A ,B 在同一条直线上.求A ,B 两点间的距离(结果精确到0.1km ). (参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67.)22.(7分)如图,在平面直角坐标系中,直线AB 与函数y=kx(x >0)的图象交于点A (m ,2),B (2,n ).过点A 作AC 平行于x 轴交y 轴于点C ,在y 轴负半轴上取一点D ,使OD=12OC ,且△ACD 的面积是6,连接BC .(1)求m ,k ,n 的值; (2)求△ABC 的面积.五、解答题(每小题8分,共16分)23.(8分)如图①,BD是矩形ABCD的对角线,∠ABD=30°,AD=1.将△BCD 沿射线BD方向平移到△B'C'D'的位置,使B'为BD中点,连接AB',C'D,AD',BC',如图②.(1)求证:四边形AB'C'D是菱形;(2)四边形ABC'D′的周长为;(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.24.(8分)如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.(1)正方体的棱长为cm;(2)求线段AB对应的函数解析式,并写出自变量x的取值范围;(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.六、解答题(每小题10分,共20分)25.(10分)如图,在Rt△ABC中,∠ACB=90°,∠A=45°,AB=4cm.点P从点A 出发,以2cm/s的速度沿边AB向终点B运动.过点P作PQ⊥AB交折线ACB于点Q,D为PQ中点,以DQ为边向右侧作正方形DEFQ.设正方形DEFQ与△ABC 重叠部分图形的面积是y(cm2),点P的运动时间为x(s).(1)当点Q在边AC上时,正方形DEFQ的边长为cm(用含x的代数式表示);(2)当点P不与点B重合时,求点F落在边BC上时x的值;(3)当0<x<2时,求y关于x的函数解析式;(4)直接写出边BC的中点落在正方形DEFQ内部时x的取值范围.26.(10分)《函数的图象与性质》拓展学习片段展示:【问题】如图①,在平面直角坐标系中,抛物线y=a(x﹣2)2﹣43经过原点O,与x轴的另一个交点为A,则a=.【操作】将图①中抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,如图②.直接写出图象G对应的函数解析式.【探究】在图②中,过点B(0,1)作直线l平行于x轴,与图象G的交点从左至右依次为点C,D,E,F,如图③.求图象G在直线l上方的部分对应的函数y 随x增大而增大时x的取值范围.【应用】P是图③中图象G上一点,其横坐标为m,连接PD,PE.直接写出△PDE的面积不小于1时m的取值范围.2017年吉林省中考数学试卷参考答案与试题解析一、单项选择题(每小题2分,共12分)1.(2分)(2017•吉林)计算(﹣1)2的正确结果是()A.1B.2C.﹣1D.﹣2【考点】1E:有理数的乘方.【分析】根据有理数乘方的定义计算即可.【解答】解:原式=1.故选A.【点评】本题考查有理数的乘方,记住乘方法则是解题的关键.2.(2分)(2017•吉林)如图是一个正六棱柱的茶叶盒,其俯视图为()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】根据正六棱柱的俯视图为正六边形,即可得出结论.【解答】解:正六棱柱的俯视图为正六边形.故选B.【点评】本题考查了简单几何体的三视图,熟记正六棱柱的三视图是解题的关键.3.(2分)(2017•吉林)下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab2【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)a2与a3不是同类项,故A错误;(B)原式=a5,故B错误;(D)原式=a2b2,故D错误;故选(C)【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.4.(2分)(2017•吉林)不等式x+1≥2的解集在数轴上表示正确的是()A.B.C.D.【考点】C6:解一元一次不等式;C4:在数轴上表示不等式的解集.【分析】先求出原不等式的解集,再根据解集即可求出结论.【解答】解:∵x+1≥2,∴x≥1.故选A.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.5.(2分)(2017•吉林)如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70°B.44°C.34°D.24°【考点】K7:三角形内角和定理.【分析】由AB=BD,∠B=40°得到∠ADB=70°,再根据三角形的外角的性质即可得到结论.【解答】解:∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.【点评】本题考查了等腰三角形的性质,三角形内角和定理,掌握等边对等角是解题的关键,注意三角形外角性质的应用.6.(2分)(2017•吉林)如图,直线l是⊙O的切线,A为切点,B为直线l上一点,连接OB交⊙O于点C.若AB=12,OA=5,则BC的长为()A.5B.6C.7D.8【考点】MC:切线的性质.【分析】根据勾股定理,可得OB的长,根据线段的和差,可得答案.【解答】解:由勾股定理,得OB=√OA2+AB2=13,CB=OB﹣OC=13﹣5=8,故选:D.【点评】本题考查了切线的性质,利用勾股定理得出OB的长是解题关键.二、填空题(每小题3分,共24分)7.(3分)(2017•吉林)2016年我国资助各类家庭困难学生超过84 000 000人次.将84 000 000这个数用科学记数法表示为8.4×107.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:84 000 000=8.4×107,故答案为:8.4×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)(2017•吉林)苹果原价是每千克x元,按8折优惠出售,该苹果现价是每千克0.8x元(用含x的代数式表示).【考点】32:列代数式.【分析】按8折优惠出售,就是按照原价的80%进行销售.【解答】解:依题意得:该苹果现价是每千克80%x=0.8x.故答案是:0.8x.【点评】本题考查了列代数式.解题的关键是理解“按8折优惠出售”的含义.9.(3分)(2017•吉林)分解因式:a2+4a+4=(a+2)2.【考点】54:因式分解﹣运用公式法.【专题】44 :因式分解.【分析】利用完全平方公式直接分解即可求得答案.【解答】解:a2+4a+4=(a+2)2.故答案为:(a+2)2.【点评】此题考查了完全平方公式法分解因式.题目比较简单,注意要细心.10.(3分)(2017•吉林)我们学过用直尺和三角尺画平行线的方法,如图所示,直线a∥b的根据是同位角相等,两直线平行.【考点】N3:作图—复杂作图;J9:平行线的判定.【分析】关键题意得出∠1=∠2;∠1和∠2是同位角;由平行线的判定定理即可得出结论.【解答】解:如图所示:根据题意得出:∠1=∠2;∠1和∠2是同位角;∵∠1=∠2,∴a∥b(同位角相等,两直线平行);故答案为:同位角相等,两直线平行.【点评】本题考查了复杂作图以及平行线的判定方法;熟练掌握平行线的判定方法,根据题意得出同位角相等是解决问题的关键.11.(3分)(2017•吉林)如图,在矩形ABCD中,AB=5,AD=3.矩形ABCD绕着点A逆时针旋转一定角度得到矩形AB'C'D'.若点B的对应点B'落在边CD上,则B'C的长为1.【考点】R2:旋转的性质;LB:矩形的性质.【分析】B′C=5﹣B′D.在直角△AB′D中,利用勾股定理求得B′D的长度即可.【解答】解:由旋转的性质得到AB=AB′=5, 在直角△AB′D 中,∠D=90°,AD=3,AB′=AB=5, 所以B′D=√AB′2−AD 2=√52−32=4, 所以B′C=5﹣B′D=1. 故答案是:1.【点评】本题考查了旋转的性质,矩形的性质.解题时,根据旋转的性质得到AB=AB′=5是解题的关键.12.(3分)(2017•吉林)如图,数学活动小组为了测量学校旗杆AB 的高度,使用长为2m 的竹竿CD 作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O 处重合,测得OD=4m ,BD=14m ,则旗杆AB 的高为 9 m .【考点】SA :相似三角形的应用.【分析】由条件可证明△OCD ∽△OAB ,利用相似三角形的性质可求得答案. 【解答】解:∵OD=4m ,BD=14m , ∴OB=OD +BD=18m ,由题意可知∠ODC=∠OBA ,且∠O 为公共角, ∴△OCD ∽△OAB ,∴OD OB =CD AB ,即418=2AB,解得AB=9, 即旗杆AB 的高为9m . 故答案为:9.【点评】本题主要考查相似三角形的应用,证得三角形相似得到关于AB 的方程是解题的关键.13.(3分)(2017•吉林)如图,分别以正五边形ABCDE 的顶点A ,D 为圆心,以AB 长为半径画BÊ,CE ̂.若AB=1,则阴影部分图形的周长为 65π+1 (结果保留π).【考点】MM :正多边形和圆.【分析】由五边形ABCDE 可得出,AB=BC=CD=DE=EA=1、∠A=∠D=108°,利用弧长公式可求出BÊ、CE ̂的长度,再根据周长的定义,即可求出阴影部分图形的周长.【解答】解:∵五边形ABCDE 为正五边形,AB=1, ∴AB=BC=CD=DE=EA=1,∠A=∠D=108°,∴BÊ=CE ̂=108°180°•πAB=35π, ∴C 阴影=BÊ+CE ̂+BC=65π+1. 故答案为:65π+1.【点评】本题考查了正多边形和圆、弧长公式以及周长的定义,利用弧长公式求出BÊ、CE ̂的长度是解题的关键.14.(3分)(2017•吉林)我们规定:当k ,b 为常数,k ≠0,b ≠0,k ≠b 时,一次函数y=kx +b 与y=bx +k 互为交换函数.例如:y=4x +3的交换函数为y=3x +4.一次函数y=kx +2与它的交换函数图象的交点横坐标为 1 . 【考点】FF :两条直线相交或平行问题.【分析】根据题意可以得到相应的二元一次方程组,从而可以解答本题. 【解答】解:由题意可得,{y =kx +2y =2x +k,解得,{x =1y =k +2,故答案为:1.【点评】本题考查两条直线相交或平行问题,解答本题的关键是明确题意,列出相应的方程组.三、解答题(每小题5分,共20分)15.(5分)(2017•吉林)某学生化简分式1x+1+2x 2−1出现了错误,解答过程如下:原式=1(x+1)(x−1)+2(x+1)(x−1)(第一步)=1+2(x+1)(x−1)(第二步) =3x 2−1.(第三步) (1)该学生解答过程是从第 一 步开始出错的,其错误原因是 分式的基本性质 ;(2)请写出此题正确的解答过程. 【考点】6B :分式的加减法.【分析】根据分式的运算法则即可求出答案. 【解答】解:(1)一、分式的基本性质用错;(2)原式=x−1(x+1)(x−1)+2(x+1)(x−1)=x+1(x+1)(x−1) =1x−1故答案为:(1)一、分式的基本性质用错;【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.16.(5分)(2017•吉林)被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km ,隧道累计长度的2倍比桥梁累计长度多36km .求隧道累计长度与桥梁累计长度. 【考点】9A :二元一次方程组的应用.【分析】设隧道累计长度为xkm ,桥梁累计长度为yk ,根据“隧道累计长度与桥梁累计长度之和为342km ,隧道累计长度的2倍比桥梁累计长度多36km”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论. 【解答】解:设隧道累计长度为xkm ,桥梁累计长度为yk , 根据题意得:{x +y =3422x =y +36,解得:{x =126y =216.答:隧道累计长度为126km ,桥梁累计长度为216km .【点评】本题考查了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.17.(5分)(2017•吉林)在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率. 【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案即可. 【解答】解:画树状图得:∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,∴两次两次抽取的卡片上数字之和是奇数的概率为49.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.18.(5分)(2017•吉林)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【考点】KD:全等三角形的判定与性质.【专题】14 :证明题.【分析】可通过证△ABF≌△DCE,来得出∠A=∠D的结论.【解答】证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE;(SAS)∴∠A=∠D.【点评】此题考查简单的角相等,可以通过全等三角形来证明,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.四、解答题(每小题7分,共28分)19.(7分)(2017•吉林)某商场甲、乙、丙三名业务员5个月的销售额(单位:万元)如下表:第1月第2月第3月第4月第5月月份销售额人员甲7.29.69.67.89.3乙 5.89.79.8 5.89.9丙4 6.28.59.99.9(1)根据上表中的数据,将下表补充完整:统计值数值人员平均数(万元)中位数(万元)众数(万元)甲8.79.39.6乙8.29.7 5.8丙7.78.59.9(2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理由.【考点】W5:众数;W2:加权平均数;W4:中位数.【分析】(1)根据算术平均数、众数、中位数的定义解答;(2)根据平均数意义进行解答.【解答】解:(1)x甲=15(7.2+9.6+9.6+7.8+9.3)=8.7(万元)把乙按照从小到大依次排列,可得5.8,5.8,9.7,9.8,9.9;中位数为9.7万元.丙中出现次数最多的数为9.9万元.故答案为:8.7,9.7,9.9;(2)我赞同甲的说法.甲的平均销售额比乙、丙都高.【点评】本题考查了众数、中位数、加权平均数的定义,学会分析图表是解题的关键.20.(7分)(2017•吉林)图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB的端点在格点上.(1)在图①、图2中,以AB为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)(2)在图③中,以AB为边画一个平行四边形,且另外两个顶点在格点上.【考点】N4:作图—应用与设计作图;KI:等腰三角形的判定;KK:等边三角形的性质;L6:平行四边形的判定.【分析】(1)根据等腰三角形的定义作图可得;(2)根据平行四边形的判定作图可得.【解答】解:(1)如图①、②所示,△ABC和△ABD即为所求;(2)如图③所示,▱ABCD即为所求.【点评】本题主要考查作图﹣应用与设计作图,熟练掌握等腰三角形的定义和平行四边形的判定是解题的关键.21.(7分)(2017•吉林)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求A,B两点间的距离(结果精确到0.1km).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67.)【考点】TA :解直角三角形的应用﹣仰角俯角问题.【分析】在Rt △AOC 中,求出OA 、OC ,在Rt △BOC 中求出OB ,即可解决问题.【解答】解:由题意可得:∠AOC=90°,OC=5km .在Rt △AOC 中,∵tan34°=OA OC, ∴OA=OC•tan34°=5×0.67=3.35km ,在Rt △BOC 中,∠BCO=45°,∴OB=OC=5km ,∴AB=5﹣3.35=1.65≈1.7km ,答:求A ,B 两点间的距离约为1.7km .【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.22.(7分)(2017•吉林)如图,在平面直角坐标系中,直线AB 与函数y=k x (x >0)的图象交于点A (m ,2),B (2,n ).过点A 作AC 平行于x 轴交y 轴于点C ,在y 轴负半轴上取一点D ,使OD=12OC ,且△ACD 的面积是6,连接BC . (1)求m ,k ,n 的值;(2)求△ABC 的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)由点A 的纵坐标为2知OC=2,由OD=12OC 知OD=1、CD=3,根据△ACD 的面积为6求得m=4,将A 的坐标代入函数解析式求得k ,将点B 坐标代入函数解析式求得n ;(2)作BE ⊥AC ,得BE=2,根据三角形面积公式求解可得.【解答】解:(1)∵点A 的坐标为(m ,2),AC 平行于x 轴,∴OC=2,AC ⊥y 轴,∵OD=12OC , ∴OD=1,∴CD=3,∵△ACD 的面积为6,∴12CD•AC=6, ∴AC=4,即m=4,则点A 的坐标为(4,2),将其代入y=k x 可得k=8, ∵点B (2,n )在y=8x的图象上, ∴n=4;(2)如图,过点B 作BE ⊥AC 于点E ,则BE=2,∴S △ABC =12AC•BE=12×4×2=4, 即△ABC 的面积为4.【点评】本题主要考查反比例函数与一次函数的交点问题,根据三角形的面积求得点A的坐标及待定系数法求函数解析式是解题的关键.五、解答题(每小题8分,共16分)23.(8分)(2017•吉林)如图①,BD是矩形ABCD的对角线,∠ABD=30°,AD=1.将△BCD沿射线BD方向平移到△B'C'D'的位置,使B'为BD中点,连接AB',C'D,AD',BC',如图②.(1)求证:四边形AB'C'D是菱形;(2)四边形ABC'D′的周长为4√3;(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.【考点】LA:菱形的判定与性质;LB:矩形的性质;PC:图形的剪拼;Q2:平移的性质.【分析】(1)有一组邻边相等的平行四边形是菱形,据此进行证明即可;(2)先判定四边形ABC'D'是菱形,再根据边长AB=√3AD=√3,即可得到四边形ABC'D′的周长为4√3;(3)根据两种不同的拼法,分别求得可能拼成的矩形周长.【解答】解:(1)∵BD是矩形ABCD的对角线,∠ABD=30°,∴∠ADB=60°,由平移可得,B'C'=BC=AD,∠D'B'C'=∠DBC=∠ADB=60°,∴AD∥B'C'∴四边形AB'C'D是平行四边形,∵B'为BD中点,∴Rt△ABD中,AB'=12BD=DB',又∵∠ADB=60°,∴△ADB'是等边三角形,∴AD=AB',∴四边形AB'C'D是菱形;(2)由平移可得,AB=C'D',∠ABD'=∠C'D'B=30°,∴AB∥C'D',∴四边形ABC'D'是平行四边形,由(1)可得,AC'⊥B'D,∴四边形ABC'D'是菱形,∵AB=√3AD=√3,∴四边形ABC'D′的周长为4√3,故答案为:4√3;(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形如下:∴矩形周长为6+√3或2√3+3.【点评】本题主要考查了菱形的判定与性质,矩形的性质以及勾股定理的运用,解题时注意:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形.24.(8分)(2017•吉林)如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.(1)正方体的棱长为 10 cm ;(2)求线段AB 对应的函数解析式,并写出自变量x 的取值范围;(3)如果将正方体铁块取出,又经过t (s )恰好将此水槽注满,直接写出t 的值.【考点】FH :一次函数的应用.【分析】(1)直接利用一次函数图象结合水面高度的变化得出正方体的棱长;(2)直接利用待定系数法求出一次函数解析式,再利用函数图象得出自变量x 的取值范围;(3)利用一次函数图象结合水面高度的变化得出t 的值.【解答】解:(1)由题意可得:12秒时,水槽内水面的高度为10cm ,12秒后水槽内高度变化趋势改变,故正方体的棱长为10cm ;故答案为:10;(2)设线段AB 对应的函数解析式为:y=kx +b ,∵图象过A (12,0),B (28,20),∴{12k +b =1028k +b =20, 解得:{k =58b =52, ∴线段AB 对应的解析式为:y=58x +52(12≤x ≤28);(3)∵28﹣12=16(cm ),∴没有立方体时,水面上升10cm,所用时间为:16秒,∵前12秒由立方体的存在,导致水面上升速度加快了4秒,∴将正方体铁块取出,经过4秒恰好将此水槽注满.【点评】此题主要考查了一次函数的应用,正确利用函数图象获取正确信息是解题关键.六、解答题(每小题10分,共20分)25.(10分)(2017•吉林)如图,在Rt△ABC中,∠ACB=90°,∠A=45°,AB=4cm.点P从点A出发,以2cm/s的速度沿边AB向终点B运动.过点P作PQ⊥AB交折线ACB于点Q,D为PQ中点,以DQ为边向右侧作正方形DEFQ.设正方形DEFQ 与△ABC重叠部分图形的面积是y(cm2),点P的运动时间为x(s).(1)当点Q在边AC上时,正方形DEFQ的边长为x cm(用含x的代数式表示);(2)当点P不与点B重合时,求点F落在边BC上时x的值;(3)当0<x<2时,求y关于x的函数解析式;(4)直接写出边BC的中点落在正方形DEFQ内部时x的取值范围.【考点】LO:四边形综合题.【分析】(1)国际已知条件得到∠AQP=45°,求得PQ=AP=2x,由于D为PQ中点,于是得到DQ=x;(2)如图①,延长FE交AB于G,由题意得AP=2x,由于D为PQ中点,得到DQ=x,求得GP=2x,列方程于是得到结论;(3)如图②,当0<x≤45时,根据正方形的面积公式得到y=x2;如图③,当45<x≤1时,过C作CH⊥AB于H,交FQ于K,则CH=12AB=2,根据正方形和三角形面积公式得到y=﹣232x2+20x﹣8;如图④,当1<x<2时,PQ=4﹣2x,根据三角形的面积公式得到结论;(4)当Q 与C 重合时,E 为BC 的中点,得到x=1,当Q 为BC 的中点时,BQ=√2,得到x=32,于是得到结论. 【解答】解:(1)∵∠ACB=90°,∠A=45°,PQ ⊥AB ,∴∠AQP=45°,∴PQ=AP=2x ,∵D 为PQ 中点,∴DQ=x ,故答案为:x ;(2)如图①,延长FE 交AB 于G ,由题意得AP=2x ,∵D 为PQ 中点,∴DQ=x ,∴GP=2x ,∴2x +x +2x=4,∴x=45; (3)如图②,当0<x ≤45时,y=S 正方形DEFQ =DQ 2=x 2, ∴y=x 2;如图③,当45<x ≤1时,过C 作CH ⊥AB 于H ,交FQ 于K ,则CH=12AB=2, ∵PQ=AP=2x ,CK=2﹣2x ,∴MQ=2CK=4﹣4x ,FM=x ﹣(4﹣4x )=5x ﹣4,∴y=S 正方形DEFQ ﹣S △MNF =DQ 2﹣12FM 2, ∴y=x 2﹣12(5x ﹣4)2=﹣232x 2+20x ﹣8, ∴y=﹣232x 2+20x ﹣8; 如图④,当1<x <2时,PQ=4﹣2x ,∴DQ=2﹣x ,∴y=S △DEQ =12DQ 2,∴y=12(2﹣x)2,∴y=12x2﹣2x+2;(4)当Q与C重合时,E为BC的中点,即2x=2,∴x=1,当Q为BC的中点时,BQ=√2,PB=1,∴AP=3,∴2x=3,∴x=3 2,∴边BC的中点落在正方形DEFQ内部时x的取值范围为:1<x<3 2.【点评】本题考查了等腰直角三角形的性质,正方形的性质,图形面积的计算,正确的作出图形是解题的关键.26.(10分)(2017•吉林)《函数的图象与性质》拓展学习片段展示:【问题】如图①,在平面直角坐标系中,抛物线y=a(x﹣2)2﹣43经过原点O,与x轴的另一个交点为A,则a=13.【操作】将图①中抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,如图②.直接写出图象G对应的函数解析式.【探究】在图②中,过点B(0,1)作直线l平行于x轴,与图象G的交点从左至右依次为点C,D,E,F,如图③.求图象G在直线l上方的部分对应的函数y 随x增大而增大时x的取值范围.【应用】P是图③中图象G上一点,其横坐标为m,连接PD,PE.直接写出△PDE的面积不小于1时m的取值范围.【考点】HF:二次函数综合题.【分析】【问题】:把(0,0)代入可求得a的值;【操作】:先写出沿x轴折叠后所得抛物线的解析式,根据图象可得对应取值的解析式;【探究】:令y=0,分别代入两个抛物线的解析式,分别求出四个点CDEF的坐标,根据图象呈上升趋势的部分,即y随x增大而增大,写出x的取值;【应用】:先求DE的长,根据三角形面积求高的取值h≥1;分三部分进行讨论:①当P在C的左侧或F的右侧部分时,设P[m,13(m−2)2−43],根据h≥1,列不等式解出即可;②如图③,作对称轴由最大面积小于1可知:点P不可能在DE的上方;③P 与O 或A 重合时,符合条件,m=0或m=4.【解答】解:【问题】∵抛物线y=a (x ﹣2)2﹣43经过原点O , ∴0=a (0﹣2)2﹣43, a=13, 故答案为:13;【操作】:如图①,抛物线:y=13(x ﹣2)2﹣43, 对称轴是:直线x=2,由对称性得:A (4,0),沿x 轴折叠后所得抛物线为:y=﹣13(x ﹣2)2+43 如图②,图象G 对应的函数解析式为:y={13(x −2)2−43(x ≤0或x ≥4)−13(x −2)2+43(0<x <4);【探究】:如图③,由题意得:当y=1时,13(x ﹣2)2﹣43=0, 解得:x 1=2+√7,x 2=2﹣√7,∴C (2﹣√7,1),F (2+√7,1),当y=1时,﹣13(x ﹣2)2+43=0, 解得:x 1=3,x 2=1,∴D (1,1),E (3,1),由图象得:图象G 在直线l 上方的部分,当1<x <2或x >2+√7时,函数y 随x 增大而增大;【应用】:∵D (1,1),E (3,1),∴DE=3﹣1=2,∵S △PDE =12DE•h ≥1,。
江西省2017年中等学校招生考试数学试卷(江西 毛庆云)说明:1.本卷共有六个大题,24个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分. 一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项) 1.下列四个数中,最小的数是( ). A .-12B .0C .-2D .2【答案】 C.【考点】 有理数大小比较.【分析】 根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数进行比较即可.【解答】 解:在-12 ,0,-2,2这四个数中,大小顺序为:﹣2<-12<0<2,所以最小的数是-12.故选C .【点评】 本题主要考查了有理数的大小的比较,解题的关键是熟练掌握有理数大小比较的 法则,属于基础题.2.某市6月份某周气温(单位:℃)为23,25,28,25,28,31,28,这给数据的众数和中位数分别是( ). A .25,25 B .28,28C .25,28D .28,31【答案】 B .【考点】 众数和中位数.【分析】 根据中位数的定义“将一组数据从小到大或从大到小排序,处于中间(数据个数为奇数时)的数或中间两个数的平均数(数据为偶数个时)就是这组数据的中位数”;众数是指一组数据中出现次数最多的那个数。
【解答】 这组数据中28出现4次,最多,所以众数为28。
由小到大排列为:23,25,25,28,28,28,31,所以中位数为28,选B 。
【点评】 本题考查的是统计初步中的基本概念——中位数和众数,要知道什么是中位数、众数.3.下列运算正确的是是( ). A .a 2+a 3=a 5B .(-2a 2)3=-6a 5C .(2a+1)(2a-1)=2a 2-1D .(2a 3-a 2)÷2a=2a-1【答案】 D.【考点】 代数式的运算。
【分析】 本题考查了代数式的有关运算,涉及单项式的加法、除法、完全平方公式、幂的运算性质中的同底数幂相除、积的乘方和幂的乘方等运算性质,正确掌握相关运算性质、法则是解题的前提.根据法则直接计算.【解答】 A 选项中3a 与2a 不是同类项,不能相加(合并),3a 与2a 相乘才得5a ;B 是幂的乘方,幂的运算性质(积的乘方等于把积中的每一个因式分别乘方,再把所得的幂相乘,幂的乘方(底数不变,指数相乘),结果应该-86a ;C 是平方差公式的应用,结果应该是24a 1-;D.是多项式除以单项式,除以2a 变成乘以它的倒数,约分后得2a-1。
2017年辽宁省沈阳市中考数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)7的相反数是()A.﹣7 B.﹣47C.17D.72.(2分)如图所示的几何体的左视图()A.B.C.D.3.(2分)“弘扬雷锋精神,共建幸福沈阳”,幸福沈阳需要830万沈阳人共同缔造,将数据830万用科学记数法可以表示为()万.A.83×10 B.8.3×102C.8.3×103D.0.83×1034.(2分)如图,AB∥CD,∠1=50°,∠2的度数是()A.50°B.100°C.130° D.140°5.(2分)点A(﹣2,5)在反比例函数y=kx(k≠0)的图象上,则k的值是()A.10 B.5 C.﹣5 D.﹣106.(2分)在平面直角坐标系中,点A,点B关于y轴对称,点A的坐标是(2,﹣8),则点B的坐标是()A.(﹣2,﹣8)B.(2,8) C.(﹣2,8)D.(8,2)7.(2分)下列运算正确的是()A.x3+x5=x8B.x3+x5=x15C.(x+1)(x﹣1)=x2﹣1 D.(2x)5=2x58.(2分)下列事件中,是必然事件的是( )A .将油滴入水中,油会浮在水面上B .车辆随机到达一个路口,遇到红灯C .如果a 2=b 2,那么a=bD .掷一枚质地均匀的硬币,一定正面向上9.(2分)在平面直角坐标系中,一次函数y=x ﹣1的图象是( )A .B .C .D . 10.(2分)正六边形ABCDEF 内接于⊙O ,正六边形的周长是12,则⊙O 的半径是( )A .√3B .2C .2√2D .2√3二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)因式分解3a 2+a= .12.(3分)一组数2,3,5,5,6,7的中位数是 .13.(3分)x+1x •x x 2+2x+1= . 14.(3分)甲、乙、丙三人进行射击测试,每人10次射击成绩的平均值都是8.9环,方差分别是S 甲2=0.53,S 乙2=0.51,S 丙2=0.43,则三人中成绩最稳定的是(填“甲”或“乙”或“丙”)15.(3分)某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售量单价是 元/时,才能在半月内获得最大利润.16.(3分)如图,在矩形ABCD 中,AB=5,BC=3,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是.三、解答题(本大题共22分)17.(6分)计算|√2﹣1|+3﹣2﹣2sin45°+(3﹣π)0.18.(8分)如图,在菱形ABCD中,过点D作DE⊥AB于点E,作DF⊥BC于点F,连接EF.求证:(1)△ADE≌△CDF;(2)∠BEF=∠BFE.19.(8分)把3,5,6三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下卡片上的数字,放回后洗匀,再从中抽取一张卡片,记录下数字,请用列表法或树状图法求两次抽取的卡片上的数字都是奇数的概率.四、解答题(每题8分,共16分)20.(8分)某校为了开展读书月活动,对学生最喜欢的图书种类进行了一次抽样调查,所有图书分成四类:艺术、文学、科普、其他.随机调查了该校m名学生(每名学生必选且只能选择一类图书),并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)m= ,n= ;(2)扇形统计图中,“艺术”所对应的扇形的圆心角度数是 度;(3)请根据以上信息直接在答题卡中补全条形统计图;(4)根据抽样调查的结果,请你估计该校600名学生中有多少学生最喜欢科普类图书.21.(8分)小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品?五、解答题(共10分)22.(10分)如图,在△ABC 中,以BC 为直径的⊙O 交AC 于点E ,过点E 作EF ⊥AB 于点F ,延长EF 交CB 的延长线于点G ,且∠ABG=2∠C .(1)求证:EF 是⊙O 的切线;(2)若sin ∠EGC=35,⊙O 的半径是3,求AF 的长.六、解答题(共10分)23.(10分)如图,在平面直角坐标系中,四边形OABC 的顶点O 是坐标原点,点A 的坐标为(6,0),点B 的坐标为(0,8),点C 的坐标为(﹣2√5,4),点M ,N 分别为四边形OABC 边上的动点,动点M 从点O 开始,以每秒1个单位长度的速度沿O→A→B 路线向中点B 匀速运动,动点N 从O 点开始,以每秒两个单位长度的速度沿O→C→B→A 路线向终点A 匀速运动,点M ,N 同时从O 点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间t 秒(t >0),△OMN 的面积为S .(1)填空:AB 的长是 ,BC 的长是 ;(2)当t=3时,求S 的值;(3)当3<t <6时,设点N 的纵坐标为y ,求y 与t 的函数关系式;(4)若S=485,请直接写出此时t 的值.七、解答题(共12分)24.(12分)四边形ABCD 是边长为4的正方形,点E 在边AD 所在直线上,连接CE ,以CE 为边,作正方形CEFG (点D ,点F 在直线CE 的同侧),连接BF .(1)如图1,当点E 与点A 重合时,请直接写出BF 的长;(2)如图2,当点E 在线段AD 上时,AE=1;①求点F 到AD 的距离;②求BF 的长;(3)若BF=3√10,请直接写出此时AE 的长.八、解答题(共12分)25.(12分)如图1,在平面直角坐标系中,O是坐标原点,抛物线y=﹣√312x2﹣√33x+8√3与x轴正半轴交于点A,与y轴交于点B,连接AB,点M,N分别是OA,AB的中点,Rt△CDE≌Rt△ABO,且△CDE始终保持边ED经过点M,边CD经过点N,边DE与y轴交于点H,边CD与y轴交于点G.(1)填空:OA的长是,∠ABO的度数是度;(2)如图2,当DE∥AB,连接HN.①求证:四边形AMHN是平行四边形;②判断点D是否在该抛物线的对称轴上,并说明理由;(3)如图3,当边CD经过点O时,(此时点O与点G重合),过点D作DQ∥OB,交AB延长线上于点Q,延长ED到点K,使DK=DN,过点K作KI∥OB,在KI上取一点P,使得∠PDK=45°(点P,Q在直线ED的同侧),连接PQ,请直接写出PQ的长.2017年辽宁省沈阳市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)(2017•沈阳)7的相反数是()A.﹣7 B.﹣47C.17D.7【考点】14:相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:7的相反数是﹣7,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(2分)(2017•沈阳)如图所示的几何体的左视图()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是一个小正方形,第二层是一个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.3.(2分)(2017•沈阳)“弘扬雷锋精神,共建幸福沈阳”,幸福沈阳需要830万沈阳人共同缔造,将数据830万用科学记数法可以表示为()万.A.83×10 B.8.3×102C.8.3×103D.0.83×103【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:830万=8.3×102万.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.(2分)(2017•沈阳)如图,AB∥CD,∠1=50°,∠2的度数是()A.50°B.100°C.130° D.140°【考点】JA:平行线的性质.【分析】先根据平行线的性质得∠3=∠1=50°,然后根据邻补角的定义,即可求得∠2的度数.【解答】解:∵AB∥CD,∴∠3=∠1=50°,∴∠2=180°﹣∠3=130°.故选C.【点评】本题考查了平行线性质,解题时注意:两直线平行,同位角相等.5.(2分)(2017•沈阳)点A(﹣2,5)在反比例函数y=kx(k≠0)的图象上,则k的值是()A.10 B.5 C.﹣5 D.﹣10【考点】G6:反比例函数图象上点的坐标特征.【分析】直接利用反比例函数图象上点的坐标性质得出k的值.【解答】解:∵点A(﹣2,5)在反比例函数y=kx(k≠0)的图象上,∴k的值是:k=xy=﹣2×5=﹣10.故选:D.【点评】此题主要考查了反比例函数图象上点的坐标性质,得出xy=k是解题关键.6.(2分)(2017•沈阳)在平面直角坐标系中,点A,点B关于y轴对称,点A 的坐标是(2,﹣8),则点B的坐标是()A.(﹣2,﹣8)B.(2,8) C.(﹣2,8)D.(8,2)【考点】P5:关于x轴、y轴对称的点的坐标.【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解答】解:∵点A,点B关于y轴对称,点A的坐标是(2,﹣8),∴点B的坐标是(﹣2,﹣8),故选:A.【点评】此题主要考查了关于y轴的对称点的坐标,关键是掌握点的坐标特点.7.(2分)(2017•沈阳)下列运算正确的是()A.x3+x5=x8B.x3+x5=x15C.(x+1)(x﹣1)=x2﹣1 D.(2x)5=2x5【考点】4F:平方差公式;35:合并同类项;47:幂的乘方与积的乘方.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)x3与x5不是同类项,故不能合并,故A不正确;(B)x3与x5不是同类项,故不能合并,故B不正确;(D)原式=25x5=32x5,故D不正确;故选(C)【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型8.(2分)(2017•沈阳)下列事件中,是必然事件的是()A.将油滴入水中,油会浮在水面上B.车辆随机到达一个路口,遇到红灯C.如果a2=b2,那么a=bD.掷一枚质地均匀的硬币,一定正面向上【考点】X1:随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、将油滴入水中,油会浮在水面上是必然事件,故A符合题意;B、车辆随机到达一个路口,遇到红灯是随机事件,故B不符合题意;C、如果a2=b2,那么a=b是随机事件,D、掷一枚质地均匀的硬币,一定正面向上是随机事件,故选:A.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.(2分)(2017•沈阳)在平面直角坐标系中,一次函数y=x﹣1的图象是()A.B.C.D.【考点】F3:一次函数的图象.【分析】观察一次函数解析式,确定出k与b的符号,利用一次函数图象及性质判断即可.【解答】解:一次函数y=x﹣1,其中k=1,b=﹣1,其图象为,故选B【点评】此题考查了一次函数的图象,熟练掌握一次函数的图象与性质是解本题的关键.10.(2分)(2017•沈阳)正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是()A.√3B.2 C.2√2 D.2√3【考点】MM:正多边形和圆.【分析】连接OA,OB,根据等边三角形的性质可得⊙O的半径,进而可得出结论.【解答】解:连接OB,OC,∵多边形ABCDEF是正六边形,∴∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴OB=BC,∵正六边形的周长是12,∴BC=2,∴⊙O的半径是2,故选B.【点评】本题考查的是正多边形和圆,熟知正六边形的性质是解答此题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)(2017•沈阳)因式分解3a 2+a= a (3a +1) .【考点】53:因式分解﹣提公因式法.【分析】直接提公因式a 即可.【解答】解:3a 2+a=a (3a +1),故答案为:a (3a +1).【点评】此题主要考查了提公因式法进行因式分解,关键是正确确定公因式.12.(3分)(2017•沈阳)一组数2,3,5,5,6,7的中位数是 5 .【考点】W4:中位数.【分析】根据中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:2,3,5,5,6,7,则中位数为:5+52=5. 故答案是:5.【点评】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.(3分)(2017•沈阳)x+1x •x x 2+2x+1= 1x+1. 【考点】6A :分式的乘除法.【分析】原式约分即可得到结果.【解答】解:原式=x+1x •x (x+1)2=1x+1,故答案为:1x+1【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.14.(3分)(2017•沈阳)甲、乙、丙三人进行射击测试,每人10次射击成绩的平均值都是8.9环,方差分别是S甲2=0.53,S乙2=0.51,S丙2=0.43,则三人中成绩最稳定的是丙(填“甲”或“乙”或“丙”)【考点】W7:方差;W1:算术平均数.【分析】根据方差的定义,方差越小数据越稳定,即可得出答案.【解答】解:∵S甲2=0.53,S乙2=0.51,S丙2=0.43,∴S甲2>S乙2>S丙2,∴三人中成绩最稳定的是丙;故答案为:丙.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.(3分)(2017•沈阳)某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售量单价是35元/时,才能在半月内获得最大利润.【考点】HE:二次函数的应用.【分析】设销售单价为x元,销售利润为y元,求得函数关系式,利用二次函数的性质即可解决问题.【解答】解:设销售单价为x元,销售利润为y元.根据题意,得:y=(x﹣20)[400﹣20(x﹣30)]=(x﹣20)(1000﹣20x)=﹣20x2+1400x﹣20000=﹣20(x ﹣35)2+4500,∵﹣20<0,∴x=35时,y 有最大值,故答案为35.【点评】本题考查了二次函数的应用,解题的关键是学会构建二次函数解决最值问题16.(3分)(2017•沈阳)如图,在矩形ABCD 中,AB=5,BC=3,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 3√105.【考点】R2:旋转的性质;LB :矩形的性质.【分析】连接AG ,根据旋转变换的性质得到,∠ABG=∠CBE ,BA=BG ,根据勾股定理求出CG 、AD ,根据相似三角形的性质列出比例式,计算即可.【解答】解:连接AG ,由旋转变换的性质可知,∠ABG=∠CBE ,BA=BG=5,BC=BE ,由勾股定理得,CG=√BG 2−BC 2=4,∴DG=DC ﹣CG=1,则AG=√AD 2+DG 2=√10,∵BA BC =BG BE,∠ABG=∠CBE , ∴△ABG ∽△CBE ,∴CE AG =BC AB =35,解得,CE=3√105, 故答案为:3√105.【点评】本题考查的是翻转变换的性质、相似三角形的判定和性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键.三、解答题(本大题共22分)17.(6分)(2017•沈阳)计算|√2﹣1|+3﹣2﹣2sin45°+(3﹣π)0.【考点】2C :实数的运算;6E :零指数幂;6F :负整数指数幂;T5:特殊角的三角函数值.【分析】首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:|√2﹣1|+3﹣2﹣2sin45°+(3﹣π)0=√2﹣1+19﹣2×√22+1 =19【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(8分)(2017•沈阳)如图,在菱形ABCD 中,过点D 作DE ⊥AB 于点E ,作DF ⊥BC 于点F ,连接EF .求证:(1)△ADE ≌△CDF ;(2)∠BEF=∠BFE.【考点】L8:菱形的性质;KD:全等三角形的判定与性质.【分析】(1)利用菱形的性质得到AD=CD,∠A=∠C,进而利用AAS证明两三角形全等;(2)根据△ADE≌△CDF得到AE=CF,结合菱形的四条边相等即可得到结论.【解答】证明:(1)∵四边形ABCD是菱形,∴AD=CD,∠A=∠C,∵DE⊥BA,DF⊥CB,∴∠AED=∠CFD=90°,在△ADE和△CDE,∵{AD=CD∠A=∠C∠AED=∠CFD=90°,∴△ADE≌△CDE;(2)∵四边形ABCD是菱形,∴AB=CB,∵△ADE≌△CDF,∴AE=CF,∴BE=BF,∴∠BEF=∠BFE.【点评】本题主要考查了菱形的性质以及全等三角形的判定与性质,解题的关键是掌握菱形的性质以及AAS证明两三角形全等,此题难度一般.19.(8分)(2017•沈阳)把3,5,6三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下卡片上的数字,放回后洗匀,再从中抽取一张卡片,记录下数字,请用列表法或树状图法求两次抽取的卡片上的数字都是奇数的概率.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好都是奇数的情况,再利用概率公式即可求得答案.【解答】解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次抽取的卡片上的数字都是奇数的有4种结果,∴两次抽取的卡片上的数字都是奇数的概率为4 9.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.四、解答题(每题8分,共16分)20.(8分)(2017•沈阳)某校为了开展读书月活动,对学生最喜欢的图书种类进行了一次抽样调查,所有图书分成四类:艺术、文学、科普、其他.随机调查了该校m名学生(每名学生必选且只能选择一类图书),并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)m=50,n=30;(2)扇形统计图中,“艺术”所对应的扇形的圆心角度数是72度;(3)请根据以上信息直接在答题卡中补全条形统计图;(4)根据抽样调查的结果,请你估计该校600名学生中有多少学生最喜欢科普类图书.【考点】VC :条形统计图;V5:用样本估计总体;VB :扇形统计图.【分析】(1)根据其他的人数和所占的百分比即可求得m 的值,从而可以求得n 的值;(2)根据扇形统计图中的数据可以求得“艺术”所对应的扇形的圆心角度数;(3)根据题意可以求得喜爱文学的人数,从而可以将条形统计图补充完整;(4)根据统计图中的数据可以估计该校600名学生中有多少学生最喜欢科普类图书.【解答】解:(1)m=5÷10%=50,n%=15÷50=30%,故答案为:50,30;(2)由题意可得,“艺术”所对应的扇形的圆心角度数是:360°×1050=72°, 故答案为:72;(3)文学有:50﹣10﹣15﹣5=20,补全的条形统计图如右图所示;(4)由题意可得,600×1550=180, 即该校600名学生中有180名学生最喜欢科普类图书.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.(8分)(2017•沈阳)小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品?【考点】C9:一元一次不等式的应用.【分析】在这次竞赛中,小明获得优秀(90分以上),即小明的得分>90分,设小明答对了x ,就可以列出不等式,求出x 的值即可.【解答】解:设小明答对了x 题,根据题意可得:(25﹣x )×(﹣2)+6x >90,解得:x >1712, ∵x 为非负整数,∴x 至少为18,答:小明至少答对18道题才能获得奖品.【点评】此题主要考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,正确利用代数式表示出小明的得分.五、解答题(共10分)22.(10分)(2017•沈阳)如图,在△ABC 中,以BC 为直径的⊙O 交AC 于点E ,过点E 作EF ⊥AB 于点F ,延长EF 交CB 的延长线于点G ,且∠ABG=2∠C .(1)求证:EF 是⊙O 的切线;(2)若sin ∠EGC=35,⊙O 的半径是3,求AF 的长.【考点】ME :切线的判定与性质;T7:解直角三角形.【分析】(1)连接EO ,由∠EOG=2∠C 、∠ABG=2∠C 知∠EOG=∠ABG ,从而得AB ∥EO ,根据EF ⊥AB 得EF ⊥OE ,即可得证;(2)由∠ABG=2∠C、∠ABG=∠C+∠A知∠A=∠C,即BA=BC=6,在Rt△OEG中求得OG=OEsin∠EGO=5、BG=OG﹣OB=2,在Rt△FGB中求得BF=BGsin∠EGO,根据AF=AB﹣BF可得答案.【解答】解:(1)如图,连接EO,则OE=OC,∴∠EOG=2∠C,∵∠ABG=2∠C,∴∠EOG=∠ABG,∴AB∥EO,∵EF⊥AB,∴EF⊥OE,又∵OE是⊙O的半径,∴EF是⊙O的切线;(2)∵∠ABG=2∠C,∠ABG=∠C+∠A,∴∠A=∠C,∴BA=BC=6,在Rt△OEG中,∵sin∠EGO=OE OG,∴OG=OEsin∠EGO=335=5,∴BG=OG﹣OB=2,在Rt△FGB中,∵sin∠EGO=BF BG,∴BF=BGsin∠EGO=2×35=6 5,则AF=AB ﹣BF=6﹣65=245. 【点评】本题主要考查切线的判定与性质及解直角三角形的应用,熟练掌握切线的判定与性质及三角函数的定义是解题的关键.六、解答题(共10分)23.(10分)(2017•沈阳)如图,在平面直角坐标系中,四边形OABC 的顶点O 是坐标原点,点A 的坐标为(6,0),点B 的坐标为(0,8),点C 的坐标为(﹣2√5,4),点M ,N 分别为四边形OABC 边上的动点,动点M 从点O 开始,以每秒1个单位长度的速度沿O→A→B 路线向中点B 匀速运动,动点N 从O 点开始,以每秒两个单位长度的速度沿O→C→B→A 路线向终点A 匀速运动,点M ,N 同时从O 点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间t 秒(t >0),△OMN 的面积为S .(1)填空:AB 的长是 10 ,BC 的长是 6 ;(2)当t=3时,求S 的值;(3)当3<t <6时,设点N 的纵坐标为y ,求y 与t 的函数关系式;(4)若S=485,请直接写出此时t 的值.【考点】LO :四边形综合题.【分析】(1)利用勾股定理即可解决问题;(2)如图1中,作CE ⊥x 轴于E .连接CM .当t=3时,点N 与C 重合,OM=3,易求△OMN 的面积;(3)如图2中,当3<t <6时,点N 在线段BC 上,BN=12﹣2t ,作NG ⊥OB 于G ,CF ⊥OB 于F .则F (0,4).由GN ∥CF ,推出BN BC =BG BF ,即12−2t 6=BG 4,可得BG=8﹣43t ,由此即可解决问题; (4)分三种情形①当点N 在边长上,点M 在OA 上时.②如图3中,当M 、N在线段AB 上,相遇之前.作OE ⊥AB 于E ,则OE=OB⋅OA AB =245,列出方程即可解决问题.③同法当M 、N 在线段AB 上,相遇之后,列出方程即可;【解答】解:(1)在Rt △AOB 中,∵∠AOB=90°,OA=6,OB=8,∴AB=√OA 2+OB 2=√62+82=10.BC=√(2√5)2+42=6,故答案为10,6.(2)如图1中,作CE ⊥x 轴于E .连接CM .∵C (﹣2√5,4),∴CE=4OE=2√5,在Rt △COE 中,OC=√OE 2+CE 2=√(2√5)2+42=6,当t=3时,点N 与C 重合,OM=3,∴S △ONM =12•OM•CE=12×3×4=6, 即S=6.(3)如图2中,当3<t <6时,点N 在线段BC 上,BN=12﹣2t ,作NG ⊥OB 于G ,CF ⊥OB 于F .则F (0,4).∵OF=4,OB=8,∴BF=8﹣4=4,∵GN ∥CF ,∴BN BC =BG BF ,即12−2t 6=BG 4, ∴BG=8﹣43t , ∴y=OB ﹣BG=8﹣(8﹣43t )=43t .(4)①当点N 在边长上,点M 在OA 上时,12•43t•t=485, 解得t=6√105(负根已经舍弃). ②如图3中,当M 、N 在线段AB 上,相遇之前.作OE ⊥AB 于E ,则OE=OB⋅OA AB =245, 由题意12[10﹣(2t ﹣12)﹣(t ﹣6)]•245=485, 解得t=8,同法当M 、N 在线段AB 上,相遇之后.由题意12•[(2t ﹣12)+(t ﹣6)﹣10]•245=485,解得t=323, 综上所述,若S=485,此时t 的值8s 或323s 或6√105s . 【点评】本题考查四边形综合题、平行线分线段吧成比例定理、勾股定理、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.七、解答题(共12分)24.(12分)(2017•沈阳)四边形ABCD 是边长为4的正方形,点E 在边AD 所在直线上,连接CE ,以CE 为边,作正方形CEFG (点D ,点F 在直线CE 的同侧),连接BF .(1)如图1,当点E 与点A 重合时,请直接写出BF 的长;(2)如图2,当点E 在线段AD 上时,AE=1;①求点F 到AD 的距离;②求BF 的长;(3)若BF=3√10,请直接写出此时AE 的长.【考点】LO :四边形综合题.【分析】(1)作FH ⊥AB 于H ,由AAS 证明△EFH ≌△CED ,得出FH=CD=4,AH=AD=4,求出BH=AB +AH=8,由勾股定理即可得出答案;(2)过F 作FH ⊥AD 交AD 的延长线于点H ,作FM ⊥AB 于M ,则FM=AH ,AM=FH ,①同(1)得:△EFH ≌△CED ,得出FH=DE=3,EH=CD=4即可;②求出BM=AB +AM=7,FM=AE +EH=5,由勾股定理即可得出答案;(3)分两种情况:①当点E 在边AD 的左侧时,过F 作FH ⊥AD 交AD 的延长线于点H ,交BC 延长线于K ,同(1)得::△EFH ≌△CED ,得出FH=DE=4+AE ,EH=CD=4,得出FK=8+AE ,在Rt △BFK 中,BK=AH=EH ﹣AE=4﹣AE ,由勾股定理得出方程,解方程即可;②当点E 在边AD 的右侧时,过F 作FH ⊥AD 交AD 的延长线于点H ,交BC 延长线于K ,同理得:AE=2+√41.【解答】解:(1)作FH ⊥AB 于H ,如图1所示:则∠FHE=90°,∵四边形ABCD 和四边形CEFG 是正方形,∴AD=CD=4,EF=CE ,∠ADC=∠DAH=∠BAD=∠CEF=90°,∴∠FEH=∠CED ,在△EFH 和△CED 中,{∠FHE =∠EDC =90°∠FEH =∠CED EF =CE,∴△EFH ≌△CED (AAS ),∴FH=CD=4,AH=AD=4,∴BH=AB +AH=8,∴BF=√BH 2+FH 2=√82+42=4√5;(2)过F 作FH ⊥AD 交AD 的延长线于点H ,作FM ⊥AB 于M ,如图2所示: 则FM=AH ,AM=FH ,①∵AD=4,AE=1,∴DE=3,同(1)得:△EFH ≌△CED (AAS ),∴FH=DE=3,EH=CD=4,即点F 到AD 的距离为3;②∴BM=AB +AM=4+3=7,FM=AE +EH=5,∴BF=√BM 2+FM 2=√72+52=√74;(3)分两种情况:①当点E 在边AD 的左侧时,过F 作FH ⊥AD 交AD 的延长线于点H ,交BC 延长线于K ,如图3所示:同(1)得::△EFH ≌△CED ,∴FH=DE=4+AE ,EH=CD=4,∴FK=8+AE,在Rt△BFK中,BK=AH=EH﹣AE=4﹣AE,由勾股定理得:(4﹣AE)2+(8+AE)2=(3√10)2,解得:AE=1或AE=﹣5(舍去),∴AE=1;②当点E在边AD的右侧时,过F作FH⊥AD交AD的延长线于点H,交BC延长线于K,如图4所示:同理得:AE=2+√41;综上所述:AE的长为1或2+√41.【点评】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、勾股定理等知识,本题综合性强,有一定难度,证明三角形全等是解决问题的关键.八、解答题(共12分)25.(12分)(2017•沈阳)如图1,在平面直角坐标系中,O是坐标原点,抛物线y=﹣√312x2﹣√33x+8√3与x轴正半轴交于点A,与y轴交于点B,连接AB,点M,N分别是OA,AB的中点,Rt△CDE≌Rt△ABO,且△CDE始终保持边ED经过点M,边CD经过点N,边DE与y轴交于点H,边CD与y轴交于点G.(1)填空:OA的长是8,∠ABO的度数是30度;(2)如图2,当DE∥AB,连接HN.①求证:四边形AMHN是平行四边形;②判断点D是否在该抛物线的对称轴上,并说明理由;(3)如图3,当边CD经过点O时,(此时点O与点G重合),过点D作DQ∥OB,交AB延长线上于点Q,延长ED到点K,使DK=DN,过点K作KI∥OB,在KI上取一点P,使得∠PDK=45°(点P,Q在直线ED的同侧),连接PQ,请直接写出PQ的长.【考点】HF:二次函数综合题.【分析】(1)先求抛物线与两坐标轴的交点坐标,表示OA和OB的长,利用正切值可得∠ABO=30°;(2)①根据三角形的中位线定理证明HN∥AM,由两组对边分别平行的四边形是平行四边形得结论;②如图1,作垂线段DR,根据直角三角形30度角的性质求DR=2,可知:点D的横坐标为﹣2,由抛物线的解析式可计算对称轴是直线:x=﹣b2a=﹣2,所以点D在该抛物线的对称轴上;(3)想办法求出P、Q的坐标即可解决问题;【解答】解:(1)当x=0时,y=8√3,∴B(0,8√3),∴OB=8√3,当y=0时,y=﹣√312x2﹣√33x+8√3=0,x2+4x﹣96=0,(x﹣8)(x+12)=0,x1=8,x2=﹣12,∴A(8,0),∴OA=8,在Rt△AOB中,tan∠ABO=OAOB=8√3=√33,∴∠ABO=30°,故答案为:8,30;(2)①证明:∵DE ∥AB ,∴OM AM =OH BH, ∵OM=AM ,∴OH=BH ,∵BN=AN ,∴HN ∥AM ,∴四边形AMHN 是平行四边形;②点D 在该抛物线的对称轴上,理由是:如图1,过点D 作DR ⊥y 轴于R ,∵HN ∥OA ,∴∠NHB=∠AOB=90°,∵DE ∥AB ,∴∠DHB=∠OBA=30°,∵Rt △CDE ≌Rt △ABO ,∴∠HDG=∠OBA=30°,∴∠HGN=2∠HDG=60°,∴∠HNG=90°﹣∠HGN=90°﹣60°=30°,∴∠HDN=∠HND ,∴DH=HN=12OA=4, ∴Rt △DHR 中,DR=12DH=12×4=2,∴点D的横坐标为﹣2,∵抛物线的对称轴是直线:x=﹣b2a=﹣−√332×(−√312)=﹣2,∴点D在该抛物线的对称轴上;(3)如图3中,连接PQ,作DR⊥PK于R,在DR上取一点T,使得PT=DT.设PR=a.∵NA=NB,∴HO=NA=NB,∵∠ABO=30°,∴∠BAO=60°,∴△AON是等边三角形,∴∠NOA=60°=∠ODM+∠OMD,∵∠ODM=30°,∴∠OMD=∠ODM=30°,∴OM=OD=4,易知D(﹣2,﹣2√3),Q(﹣2,10√3),∵N(4,4√3),∴DK=DN=√62+(6√3)2=12,∵DR∥x轴,,∴∠KDR=∠OMD=30°∴RK=12DK=6,DR=6√3,∵∠PDK=45°,∴∠TDP=∠TPD=15°,∴∠PTR=∠TDP+∠TPD=30°,∴TP=TD=2a,TR=√3a,∴√3a+2a=6√3,∴a=12√3﹣18,可得P(﹣2﹣6√3,10√3﹣18),∴PQ=√(6√3)2+182=12√3.【点评】本题考查二次函数综合题、平行四边形的判定和性质、锐角三角函数、30度角的直角三角形的性质、等边三角形的判定和性质、勾股定理、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。
2017年江西省中考数学试卷一、选择题(本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)﹣6的相反数是( )A .16B .﹣16C .6D .﹣62.(3分)在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途经城市和国家最多的一趟专列全程长13000km ,将13000用科学记数法表示应为( )A .0.13×105B .1.3×104C .1.3×105D .13×1033.(3分)下列图形中,是轴对称图形的是( )A .B .C .D .4.(3分)下列运算正确的是( )A .(﹣a 5)2=a 10B .2a•3a 2=6a 2C .﹣2a +a=﹣3aD .﹣6a 6÷2a 2=﹣3a 35.(3分)已知一元二次方程2x 2﹣5x +1=0的两个根为x 1,x 2,下列结论正确的是( )A .x 1+x 2=﹣52B .x 1•x 2=1C .x 1,x 2都是有理数D .x 1,x 2都是正数6.(3分)如图,任意四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,对于四边形EFGH 的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是( )A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形二、填空题(本大题共6小题,每小题3分,满分18分,将答案填在答题纸上)7.(3分)函数y=√x−2中,自变量x的取值范围是.8.(3分)如图1是一把园林剪刀,把它抽象为图2,其中OA=OB.若剪刀张开的角为30°,则∠A=度.9.(3分)中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为.10.(3分)如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是.11.(3分)已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是.12.(3分)已知点A(0,4),B(7,0),C(7,4),连接AC,BC得到矩形AOBC,点D的边AC上,将边OA沿OD折叠,点A的对应边为A'.若点A'到矩形较长两对边的距离之比为1:3,则点A'的坐标为.三、解答题(本大题共5小题,每小题6分,共30分.解答应写出文字说明、证明过程或演算步骤.)13.(6分)(1)计算:x+1x2−1÷2x−1;(2)如图,正方形ABCD中,点E,F,G分别在AB,BC,CD上,且∠EFG=90°.求证:△EBF∽△FCG.14.(6分)解不等式组:{−2x<63(x−2)≤x−4,并把解集在数轴上表示出来.15.(6分)端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.16.(6分)如图,已知正七边形ABCDEFG,请仅用无刻度的直尺,分别按下列要求画图.(1)在图1中,画出一个以AB为边的平行四边形;(2)在图2中,画出一个以AF为边的菱形.17.(6分)如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”α约为20°,而当手指接触键盘时,肘部形成的“手肘角”β约为100°.图2是其侧面简化示意图,其中视线AB水平,且与屏幕BC垂直.(1)若屏幕上下宽BC=20cm,科学使用电脑时,求眼睛与屏幕的最短距离AB 的长;(2)若肩膀到水平地面的距离DG=100cm,上臂DE=30cm,下臂EF水平放置在键盘上,其到地面的距离FH=72cm.请判断此时β是否符合科学要求的100°?(参考数据:sin69°≈1415,cos21°≈1415,tan20°≈411,tan43°≈1415,所有结果精确到个位)四、(本大题共3小题,每小题8分,共24分).18.(8分)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.19.(8分)如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为xcm,双层部分的长度为ycm,经测量,得到如下数据:单层部分的长度x(cm)...46810 (150)双层部分的长度y(cm)…737271…(1)根据表中数据的规律,完成以下表格,并直接写出y关于x的函数解析式;(2)根据小敏的身高和习惯,挎带的长度为120cm时,背起来正合适,请求出此时单层部分的长度;(3)设挎带的长度为lcm,求l的取值范围.20.(8分)如图,直线y=k1x(x≥0)与双曲线y=k2x(x>0)相交于点P(2,4).已知点A(4,0),B(0,3),连接AB,将Rt△AOB沿OP方向平移,使点O移动到点P,得到△A'PB'.过点A'作A'C∥y轴交双曲线于点C.(1)求k1与k2的值;(2)求直线PC的表达式;(3)直接写出线段AB扫过的面积.五、(本大题共2小题,每小题9分,共18分).21.(9分)如图1,⊙O 的直径AB=12,P 是弦BC 上一动点(与点B ,C 不重合),∠ABC=30°,过点P 作PD ⊥OP 交⊙O 于点D .(1)如图2,当PD ∥AB 时,求PD 的长;(2)如图3,当DC ̂=AC ̂时,延长AB 至点E ,使BE=12AB ,连接DE . ①求证:DE 是⊙O 的切线;②求PC 的长.22.(9分)已知抛物线C1:y=ax2﹣4ax﹣5(a>0).(1)当a=1时,求抛物线与x轴的交点坐标及对称轴;(2)①试说明无论a为何值,抛物线C1一定经过两个定点,并求出这两个定点的坐标;②将抛物线C1沿这两个定点所在直线翻折,得到抛物线C2,直接写出C2的表达式;(3)若(2)中抛物线C2的顶点到x轴的距离为2,求a的值.六、(本大题共12分)23.(12分)我们定义:如图1,在△ABC中,把AB点绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠D=150°,BC=12,CD=2√3,DA=6.在四边形内部是否存在点P,使△PDC是△PAB的“旋补三角形”?若存在,给予证明,并求△PAB的“旋补中线”长;若不存在,说明理由.2017年江西省中考数学试卷参考答案与试题解析一、选择题(本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)(2017•江西)﹣6的相反数是( )A .16B .﹣16C .6D .﹣6【考点】14:相反数.【分析】求一个数的相反数,即在这个数的前面加负号.【解答】解:﹣6的相反数是6,故选C【点评】此题考查了相反数的定义,互为相反数的两个数分别在原点两旁且到原点的距离相等.2.(3分)(2017•江西)在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途经城市和国家最多的一趟专列全程长13000km ,将13000用科学记数法表示应为( )A .0.13×105B .1.3×104C .1.3×105D .13×103【考点】1I :科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将13000用科学记数法表示为:1.3×104.故选B .【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.(3分)(2017•江西)下列图形中,是轴对称图形的是( )A.B.C. D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、是轴对称图形,故C符合题意;D、不是轴对称图形,故D不符合题意;故选:C.【点评】本题考查了轴对称图形,掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.(3分)(2017•江西)下列运算正确的是()A.(﹣a5)2=a10 B.2a•3a2=6a2C.﹣2a+a=﹣3a D.﹣6a6÷2a2=﹣3a3【考点】4I:整式的混合运算.【分析】根据整式的运算法则即可求出答案.【解答】解:(B)原式=6a3,故B错误;(C)原式=a,故C错误;(D)原式=﹣3a4,故D错误;故选(A)【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.5.(3分)(2017•江西)已知一元二次方程2x2﹣5x+1=0的两个根为x1,x2,下列结论正确的是()A.x1+x2=﹣52B.x1•x2=1C.x1,x2都是有理数D.x1,x2都是正数【考点】AB:根与系数的关系.【分析】先利用根与系数的关系得到x1+x2=52>0,x1x2=12>0,然后利用有理数的性质可判定两根的符号.【解答】解:根据题意得x1+x2=52>0,x1x2=12>0,所以x1>0,x2>0.故选D.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣ba,x1x2=ca.6.(3分)(2017•江西)如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形【考点】LN:中点四边形.【分析】连接四边形各边中点所得的四边形必为平行四边形,根据中点四边形的性质进行判断即可.【解答】解:A.当E,F,G,H是各边中点,且AC=BD时,EF=FG=GH=HE,故四边形EFGH为菱形,故A正确;B.当E,F,G,H是各边中点,且AC⊥BD时,∠EFG=∠FGH=∠GHE=90°,故四边形EFGH为矩形,故B正确;C.当E,F,G,H不是各边中点时,EF∥HG,EF=HG,故四边形EFGH为平行四边形,故C正确;D.当E,F,G,H不是各边中点时,四边形EFGH可能为菱形,故D错误;故选:D.【点评】本题主要考查了中点四边形的运用,解题时注意:中点四边形的形状与原四边形的对角线有关.二、填空题(本大题共6小题,每小题3分,满分18分,将答案填在答题纸上)7.(3分)(2017•江西)函数y=√x−2中,自变量x的取值范围是x≥2.【考点】E4:函数自变量的取值范围.【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.【点评】本题主要考查函数自变量的取值范围,考查的知识点为:二次根式的被开方数是非负数.8.(3分)(2017•江西)如图1是一把园林剪刀,把它抽象为图2,其中OA=OB.若剪刀张开的角为30°,则∠A=75度.【考点】KH:等腰三角形的性质.【分析】根据等腰三角形的性质和三角形的内角和即可得到结论.【解答】解:∵OA=OB,∠AOB=30°,∴∠A=12(180°﹣30°)=75°,故答案为:75.【点评】本题考查了等腰三角形的性质,三角形的内角和,熟练掌握等腰三角形的性质是解题的关键.9.(3分)(2017•江西)中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为﹣3.【考点】11:正数和负数.【分析】根据有理数的加法,可得答案.【解答】解:图②中表示(+2)+(﹣5)=﹣3,故答案为:﹣3.【点评】本题考查了有理数的运算,利用有理数的加法运算是解题关键.10.(3分)(2017•江西)如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是8.【考点】U2:简单组合体的三视图;I9:截一个几何体.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个梯形:上底是1,下底是3,两腰是2,周长是1+2+2+3=8,故答案为:8.【点评】本题考查了简单组合体的三视图,从上边看是一个等腰梯形是解题关键.11.(3分)(2017•江西)已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是 5 .【考点】W5:众数;W1:算术平均数;W4:中位数.【分析】根据平均数与中位数的定义可以先求出x ,y 的值,进而就可以确定这组数据的众数.【解答】解:∵一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,∴16(2+5+x +y +2x +11)=12(x +y )=7, 解得y=9,x=5,∴这组数据的众数是5.故答案为5.【点评】本题主要考查平均数、众数与中位数的定义,平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.一组数据中出现次数最多的数据叫做众数.12.(3分)(2017•江西)已知点A (0,4),B (7,0),C (7,4),连接AC ,BC 得到矩形AOBC ,点D 的边AC 上,将边OA 沿OD 折叠,点A 的对应边为A'.若点A'到矩形较长两对边的距离之比为1:3,则点A'的坐标为 :(√7,3)或(√15,1)或(2√3,﹣2) .【考点】PB :翻折变换(折叠问题);D5:坐标与图形性质;LB :矩形的性质.【分析】由已知得出∠A=90°,BC=OA=4,OB=AC=7,分两种情况:(1)当点A'在矩形AOBC 的内部时,过A'作OB 的垂线交OB 于F ,交AC 于E ,当A'E :A'F=1:3时,求出A'E=1,A'F=3,由折叠的性质得:OA'=OA=4,∠OA'D=∠A=90°,在Rt △OA'F 中,由勾股定理求出OF=√42−32=√7,即可得出答案;②当A'E :A'F=3:1时,同理得:A'(√15,1);(2)当点A'在矩形AOBC 的外部时,此时点A'在第四象限,过A'作OB 的垂线交OB 于F ,交AC 于E ,由A'F :A'E=1:3,则A'F :EF=1:2,求出A'F=12EF=12BC=2,在Rt △OA'F 中,由勾股定理求出OF=2√3,即可得出答案.【解答】解:∵点A (0,4),B (7,0),C (7,4),∴BC=OA=4,OB=AC=7,分两种情况:(1)当点A'在矩形AOBC 的内部时,过A'作OB 的垂线交OB 于F ,交AC 于E ,如图1所示:①当A'E :A'F=1:3时,∵A'E +A'F=BC=4,∴A'E=1,A'F=3,由折叠的性质得:OA'=OA=4,在Rt △OA'F 中,由勾股定理得:OF=√42−32=√7,∴A'(√7,3);②当A'E :A'F=3:1时,同理得:A'(√15,1);(2)当点A'在矩形AOBC 的外部时,此时点A'在第四象限,过A'作OB 的垂线交OB 于F ,交AC 于E ,如图2所示:∵A'F :A'E=1:3,则A'F :EF=1:2,∴A'F=12EF=12BC=2, 由折叠的性质得:OA'=OA=4,在Rt △OA'F 中,由勾股定理得:OF=√42−22=2√3,∴A'(2√3,﹣2);故答案为:(√7,3)或(√15,1)或(2√3,﹣2).【点评】本题考查了折叠的性质、矩形的性质、坐标与图形性质、勾股定理等知识;熟练掌握折叠的性质和勾股定理是解决问题的关键.三、解答题(本大题共5小题,每小题6分,共30分.解答应写出文字说明、证明过程或演算步骤.)13.(6分)(2017•江西)(1)计算:x+1x2−1÷2x−1;(2)如图,正方形ABCD中,点E,F,G分别在AB,BC,CD上,且∠EFG=90°.求证:△EBF∽△FCG.【考点】S8:相似三角形的判定;6A:分式的乘除法;LE:正方形的性质.【分析】(1)先把分母因式分解,再把除法运算化为乘法运算,然后约分即可;(2)先根据正方形的性质得∠B=∠C=90°,再利用等角的余角相等得∠BEF=∠CFG,然后根据有两组角对应相等的两个三角形相似可判定△EBF∽△FCG.【解答】(1)解:原式=x+1(x+1)(x−1)•x−12 =12; (2)证明:∵四边形ABCD 为正方形,∴∠B=∠C=90°,∴∠BEF +∠BFE=90°,∵∠EFG=90°,∴∠BFE +∠CFG=90°,∴∠BEF=∠CFG ,∴△EBF ∽△FCG .【点评】本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.也考查了分式的乘除法和正方形的性质.14.(6分)(2017•江西)解不等式组:{−2x <63(x −2)≤x −4,并把解集在数轴上表示出来.【考点】CB :解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据解集在数轴上的表示即可确定不等式组的解集.【解答】解:解不等式﹣2x <6,得:x >﹣3,解不等式3(x ﹣2)≤x ﹣4,得:x ≤1,将不等式解集表示在数轴如下:则不等式组的解集为﹣3<x ≤1【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(6分)(2017•江西)端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.【考点】X6:列表法与树状图法;X4:概率公式.【分析】(1)直接利用概率公式求出取出的是肉粽的概率;(2)直接列举出所有的可能,进而利用概率公式求出答案.【解答】解:(1)∵有豆沙粽、肉粽各1个,蜜枣粽2个,∴随机地从盘中取出一个粽子,取出的是肉粽的概率是:1 4;(2)如图所示:,一共有12种可能,取出的两个都是蜜枣粽的有2种,故取出的两个都是蜜枣粽的概率为:212=16.【点评】此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.16.(6分)(2017•江西)如图,已知正七边形ABCDEFG,请仅用无刻度的直尺,分别按下列要求画图.(1)在图1中,画出一个以AB为边的平行四边形;(2)在图2中,画出一个以AF为边的菱形.【考点】N3:作图—复杂作图;L5:平行四边形的性质;L8:菱形的性质.【分析】(1)连接AF、BE、CG,CG交AF于M,交BE于N.四边形ABNM是平行四边形.(2)连接AF、DF,延长DC交AB的延长线于M,四边形AFDM是菱形.【解答】解:(1)连接AF、BE、CG,CG交AF于M,交BE于N.四边形ABNM 是平行四边形.(2)连接AF、DF,∠延长DC交AB的延长线于M,四边形AFDM是菱形.【点评】本题考查复杂作图、平行四边形的性质、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.(6分)(2017•江西)如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”α约为20°,而当手指接触键盘时,肘部形成的“手肘角”β约为100°.图2是其侧面简化示意图,其中视线AB水平,且与屏幕BC垂直.(1)若屏幕上下宽BC=20cm,科学使用电脑时,求眼睛与屏幕的最短距离AB 的长;(2)若肩膀到水平地面的距离DG=100cm,上臂DE=30cm,下臂EF水平放置在键盘上,其到地面的距离FH=72cm.请判断此时β是否符合科学要求的100°?(参考数据:sin69°≈1415,cos21°≈1415,tan20°≈411,tan43°≈1415,所有结果精确到个位)【考点】T8:解直角三角形的应用.【分析】(1)Rt△ABC中利用三角函数即可直接求解;(2)延长FE交DG于点I,利用三角函数求得∠DEI即可求得β的值,从而作出判断.【解答】解:(1)∵Rt△ABC中,tanA=BCAB,∴AB=BCtanA=BCtan20°=20411=55(cm);(2)延长FE交DG于点I.则DI=DG﹣FH=100﹣72=28(cm).在Rt△DEI中,sin∠DEI=DIDE=2830=1415,∴∠DEI=69°,∴∠β=180°﹣69°=111°≠100°,∴此时β不是符合科学要求的100°.【点评】此题综合性比较强,解此题的关键是把实际问题转化为数学问题,本题只要把实际问题抽象到几何图形中来考虑,就能迎刃而解.四、(本大题共3小题,每小题8分,共24分).18.(8分)(2017•江西)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有800人,其中选择B类的人数有240人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.【考点】VC:条形统计图;V5:用样本估计总体;VA:统计表;VB:扇形统计图.【分析】(1)由C类别人数及其百分比可得总人数,总人数乘以B类别百分比即可得;(2)根据百分比之和为1求得A类别百分比,再乘以360°和总人数可分别求得;(3)总人数乘以样本中A、B、C三类别百分比之和可得答案.【解答】解:(1)本次调查的市民有200÷25%=800(人),∴B类别的人数为800×30%=240(人),故答案为:800,240;(2)∵A类人数所占百分比为1﹣(30%+25%+14%+6%)=25%,∴A类对应扇形圆心角α的度数为360°×25%=90°,A类的人数为800×25%=200(人),补全条形图如下:(3)12×(25%+30%+25%)=9.6(万人),答:估计该市“绿色出行”方式的人数约为9.6万人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.19.(8分)(2017•江西)如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为xcm,双层部分的长度为ycm,经测量,得到如下数据:单层部分的长度x (cm ) (4)68 10 (150)双层部分的长度y (cm ) … 73 72 71…(1)根据表中数据的规律,完成以下表格,并直接写出y 关于x 的函数解析式; (2)根据小敏的身高和习惯,挎带的长度为120cm 时,背起来正合适,请求出此时单层部分的长度;(3)设挎带的长度为lcm ,求l 的取值范围.【考点】FH :一次函数的应用.【分析】(1)观察表格可知,y 是x 的一次函数,设y=kx +b ,利用待定系数法即可解决问题;(2)列出方程组即可解决问题;(3)由题意当y=0,x=150,当x=0时,y=75,可得75≤l ≤150. 【解答】解:(1)观察表格可知,y 是x 的一次函数,设y=kx +b ,则有{4k +b =736k +b =72,解得{k =−12b =75, ∴y=﹣12x +75.(2)由题意{x +y =120y =−12x +75,解得{x =90y =30, ∴单层部分的长度为90cm .(3)由题意当y=0,x=150,当x=0时,y=75, ∴75≤l ≤150.【点评】本题考查一次函数的应用、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(8分)(2017•江西)如图,直线y=k1x(x≥0)与双曲线y=k2x(x>0)相交于点P(2,4).已知点A(4,0),B(0,3),连接AB,将Rt△AOB沿OP方向平移,使点O移动到点P,得到△A'PB'.过点A'作A'C∥y轴交双曲线于点C.(1)求k1与k2的值;(2)求直线PC的表达式;(3)直接写出线段AB扫过的面积.【考点】G8:反比例函数与一次函数的交点问题;FA:待定系数法求一次函数解析式;Q3:坐标与图形变化﹣平移.【分析】(1)把点P(2,4)代入直线y=k1x,把点P(2,4)代入双曲线y=k2 x,可得k1与k2的值;(2)根据平移的性质,求得C(6,43),再运用待定系数法,即可得到直线PC的表达式;(3)延长A'C交x轴于D,过B'作B'E⊥y轴于E,根据△AOB≌△A'PB',可得线段AB扫过的面积=平行四边形POBB'的面积+平行四边形AOPA'的面积,据此可得线段AB扫过的面积.【解答】解:(1)把点P(2,4)代入直线y=k1x,可得4=2k1,∴k1=2,把点P(2,4)代入双曲线y=k2x,可得k2=2×4=8;(2)∵A (4,0),B (0,3), ∴AO=4,BO=3,如图,延长A'C 交x 轴于D , 由平移可得,A'P=AO=4, 又∵A'C ∥y 轴,P (2,4), ∴点C 的横坐标为2+4=6,当x=6时,y=86=43,即C (6,43),设直线PC 的解析式为y=kx +b ,把P (2,4),C (6,43)代入可得{4=2k +b 43=6k +b ,解得{k =−23b =163,∴直线PC 的表达式为y=﹣23x +163;(3)如图,延长A'C 交x 轴于D , 由平移可得,A'P ∥AO , 又∵A'C ∥y 轴,P (2,4), ∴点A'的纵坐标为4,即A'D=4, 如图,过B'作B'E ⊥y 轴于E , ∵PB'∥y 轴,P (2,4), ∴点B'的横坐标为2,即B'E=2, 又∵△AOB ≌△A'PB',∴线段AB 扫过的面积=平行四边形POBB'的面积+平行四边形AOPA'的面积=BO ×B'E +AO ×A'D=3×2+4×4=22.【点评】本题主要考查了反比例函数与一次函数交点问题,待定系数法的运用以及平移的性质的运用,解决问题的关键是将线段AB 扫过的面积转化为平行四边形POBB'的面积+平行四边形AOPA'的面积.五、(本大题共2小题,每小题9分,共18分).21.(9分)(2017•江西)如图1,⊙O 的直径AB=12,P 是弦BC 上一动点(与点B ,C 不重合),∠ABC=30°,过点P 作PD ⊥OP 交⊙O 于点D .(1)如图2,当PD ∥AB 时,求PD 的长;(2)如图3,当DĈ=AC ̂时,延长AB 至点E ,使BE=12AB ,连接DE . ①求证:DE 是⊙O 的切线; ②求PC 的长.【考点】MR :圆的综合题.【分析】(1)根据题意首先得出半径长,再利用锐角三角函数关系得出OP ,PD 的长;(2)①首先得出△OBD 是等边三角形,进而得出∠ODE=∠OFB=90°,求出答案即可;②首先求出CF 的长,进而利用直角三角形的性质得出PF 的长,进而得出答案.【解答】解:(1)如图2,连接OD , ∵OP ⊥PD ,PD ∥AB , ∴∠POB=90°, ∵⊙O 的直径AB=12, ∴OB=OD=6,在Rt △POB 中,∠ABC=30°,∴OP=OB•tan30°=6×√33=2√3,在Rt △POD 中,PD=√OD 2−OP 2=√62−(2√3)2=2√6;(2)①证明:如图3,连接OD ,交CB 于点F ,连接BD ,∵DĈ=AC ̂, ∴∠DBC=∠ABC=30°, ∴∠ABD=60°, ∵OB=OD ,∴△OBD 是等边三角形, ∴OD ⊥FB ,∵BE=12AB ,∴OB=BE , ∴BF ∥ED ,∴∠ODE=∠OFB=90°, ∴DE 是⊙O 的切线;②由①知,OD ⊥BC ,∴CF=FB=OB•cos30°=6×√32=3√3, 在Rt △POD 中,OF=DF ,∴PF=12DO=3(直角三角形斜边上的中线,等于斜边的一半),∴CP=CF ﹣PF=3√3﹣3.【点评】此题主要考查了圆的综合以及直角三角形的性质和锐角三角三角函数关系,正确得出△OBD是等边三角形是解题关键.22.(9分)(2017•江西)已知抛物线C1:y=ax2﹣4ax﹣5(a>0).(1)当a=1时,求抛物线与x轴的交点坐标及对称轴;(2)①试说明无论a为何值,抛物线C1一定经过两个定点,并求出这两个定点的坐标;②将抛物线C1沿这两个定点所在直线翻折,得到抛物线C2,直接写出C2的表达式;(3)若(2)中抛物线C2的顶点到x轴的距离为2,求a的值.【考点】HA:抛物线与x轴的交点;H6:二次函数图象与几何变换.【分析】(1)将a=1代入解析式,即可求得抛物线与x轴交点;(2)①化简抛物线解析式,即可求得两个定点的横坐标,即可解题;②根据抛物线翻折理论即可解题;(3)根据(2)中抛物线C2解析式,分类讨论y=2或﹣2,即可解题;【解答】解:(1)当a=1时,抛物线解析式为y=x2﹣4x﹣5=(x﹣2)2﹣9,。
内江市2017年初中学业水平考试高中阶段学校招生考试试卷数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下面四个数中比5-小的数是( ) A .1 B .0 C .4- D .6-2. 2.5PM 是指大气中直径小于或定于2.5(10.000001)um um m =的颗粒物,也称为可入肺颗粒物,它们含有一定量的有毒、有害物质,对人体健康和大气环境质量有恒大的影响,2.3um 用科学计数法可表示为( ) A .52310-⨯m B .52.310-⨯m C .62.310-⨯m D .70.2310m -⨯3. 为了解某市老人的身体健康状况,需要抽取部分老人进行调查,下列抽取老人的方法最合适的是( ) A .随机抽取100为女性老人 B .随机抽取100为男性老人C .随机抽取公园内100为老人D .在城市和乡镇选10个点,每个任选5为老人4. 如图,直线//m n ,直角三角形ABC 的顶点A 在直线m 上,则α∠的余角等于( ) A .019 B .038 C .042 D .0525.由一些大小相同的小正方体搭成的几何体的俯视图如下图所示,其中正方形总的数字表示该位置上的小正方体的个数,那么该几何体的主视图是 ( )6. 下列图形中:平行四边形、矩形、菱形、圆、等腰三角形,这些图形总只是轴对称图形的有( )A .1个B .2个C .3个D .4个7. 某中学对该校九年级45名女学生进行一次立定跳远测试,成绩如下表:这些立定跳远成绩的中位数和众数分别是( ) A .9,9 B .15,9 C .190,200 D .185,200 8.下列计算正确的是 ( )A .232358x y xy x y +=B .222()x y x y +=+C .2(2)4x x x -÷=D .1y x x y y x+=-- 9. 端午节前夕,某超市用1680元购进,A B 两种共60件,其中A 型商品每件24元,B 型商品每件36元,设购买A 型商品x 件,B 型商品y 件,依题意列出方程组正确的是( )A .6036241680x y x y +=⎧⎨+=⎩ B .6024361680x y x y +=⎧⎨+=⎩ C .1680362460x y x y +=⎧⎨+=⎩ D .1680243660x y x y +=⎧⎨+=⎩10. 不等式组372291x x +≥⎧⎨-<⎩的非负整数解的个数是( )A .4B .5C .6D .711.如图,在矩形AOBC 中,O 为坐标原点,分别在x 轴、y 轴上,点B 的坐标为,030ABO ∠= 将ABC ∆沿AB 所在直线对折后,点C 落在D 处,则点D 的坐标为 ( )A .3(2B .C .3)2D .12.如图,过点0(2,0)A 作直线:l y x =的垂线,垂足为点1A ,过点1A 作12A A x ⊥轴,垂足为点2A ,过点2A 作23A A x ⊥,垂足为3A , ,这样依次下去,得到一组线段011223,,,A A A A A A ,则线段20162017A A 的长为 ( )A .2015B .2016C .2017D .2018第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.分解因式:231827x x -+= .14.在函数13y x =-中,自变量x 的取值范围是 .15.如图,AB 是O 的直径,弦CD AB ⊥于点,E O ,弦CD 的长为3cm ,则图中阴影部分的面积为 .16.如图,正方形ABCD 中,2BC =,点M 是边AB 的中点,连接,DM DM 与AC 交于点P ,点E 在DC上,点F 在DP 上,且045DFE ∠=,若6PF =,则CE = .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 计算:2017020111tan 60()(2017)2π---+- 18. 如图,AD 平分,BAC AD BC ∠⊥,垂足为点,//D DE AC ,求证:BDE ∆是等腰三角形.19.小明随机调查了若干市民租用共享单车的骑车时间t (单位:分),将获得的数据分成四组,绘制了如下统计图(:010,:1020,:2030,:30A t B t C t D t <≤<≤<≤>),根据图总信息,解答下列问题:(1)这项被调查的总人数是多少人?(2)使求表示A 组的扇形统计图的圆心角的度数,补全条形统计图;(3)如果小明向从D 组的甲乙丙丁死人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.20.如图,某人为了测量小山顶的塔ED 的高,他在山下的点A 处测得塔尖点D 的仰角为045,在沿AC 方向前进60m 到达山脚点B ,测得塔尖点D 的仰角为060,塔底点E 的仰角为030,求塔ED 的高度(结果保留根号)21. 已知两点(4,2),(,4)A B n --是一次函数y kx b =+和反比例函数my x=图象的两个交点. (1)求一次函数和反比例函数的解析式; (2)求AOB ∆的面积;(3)观察图象,直接写出不等式0mkx b x+->的解集.B 卷(共60分)22.若实数x 满足2210x x --=,则322742017x x x -+-=23.如图,四边形ABCD 中,//AD BC ,CM 是BCD ∠的平分线,且,CM AB M ⊥为垂足,13AM AB =,若四边形ABCD 的面积为157,则四边形AMCD 的面积是24. 设,αβ是方程(1)(4)5x x +-=-的两实数根,则22βααβ+=25.如图,已知直线1212//,,l l l l 之间的距离为8,点P 到直线1l 的距离为6,点Q 到直线2l 点距离为4,PQ =1l 上有一动点A ,直线2l 上有一动点B ,满足2AB l ⊥,且PA AB BQ ++最小,此时PA BQ +=五、解答题(本大题共3小题,每小题12分,共36分) 26.观察下列等式: 第一个等式:122211132222121a ==-+⨯+⨯++; 第二个等式:2222232111322(2)2121a ==-+⨯+⨯++;第三个等式:3332342111322(2)2121a ==-+⨯+⨯++; 第四个等式:4442452111322(2)2121a ==-+⨯+⨯++,按上述规律,回答下列问题: (1)请写出第六个等式:6a =(2)用含n 的代数式表示第n 个等式na = (3)123456a a a a a a +++++= (得出最简结果) (4)计算:12n a a a +++=27.如图,在O 中,直径CD 垂直于不过圆心O 的弦AB ,垂足为点N ,连接AC ,点E 在AB 上,且AE CE =.(1)求证:2AC AE AB =⋅(2)过点B 作O 的切线交EC 的延长线于点P ,试判断PB 与PE 是否相等,并说明理由; (3)设O 半径为4,N 点OC 为中点,点Q 在O 上,求线段PQ 的最小值.28.如图,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠与y 轴交于点(0,3)C ,与x 轴交于两点,A B ,点B 坐标为(4,0),抛物线的对称轴方程为1x =.(1)求抛物线的解析式;(2)点从M 点A 出发,在线段AB 上以每秒3个单位长度的速度项点运动,同时点N 从点B 出发,在线段BC 上以每秒1个单位长度的速度向C 点运动,其中一个点到到终点时,另一个点也停止运动,设MBN ∆的面积为S ,点M 运动时间为t ,试求S 与t 的函数关系,并求S 的最大值;(3)在点M 运动过程中,是否存在某一时刻t ,使MBN ∆为直角三角形?若存在,求出t 值;若不存在,请说明理由.四川省内江市2017年中考数学试题答案1-5 DCDBA 6-10ACCBB 11-12AC 13.()233x - 14.2x ≥且3x ≠15.π 16.76分析:以点A 为原点,直线、AB AD 分别为、x y 轴,建立直角坐标系,可分别求出直线、AC DM 的方程,求得交点2233,P ⎛⎫ ⎪⎝⎭.利用两点间的距离公式得到3PD =2DF PD PF =-=.再证明APM ∆与FED ∆相似,所以根据AM PM DF DE =,得到56DE =,故求出726EC DE =-=. 17.818.证明:依题可知:AD 为A ∠的平分线,故BAD CAD ∠=∠,又因为//ED AC ,所以EDA CAD ∠=∠,因为90oB BAD ∠+∠=,且90oADE BDE ∠+∠=,故有B EDB ∠=∠,因此BDE ∆是等腰三角形. 19.(1)190.3850÷=(人);(2)1550360108oo÷⨯=;(3)0.5P =20.分析:令BC x =,因此60DC AC x ==+,借助三角函数可得:tan 60o DC x ==,可得到60x =+,解出30x =,所以tan3030EC x o ==+90DC ==+以塔高60DE DC EC =-=+ 21.(1)反比例函数:8y x=-; 一次函数:2y x =--; (2)求出()2,0C -,112224622ABO ACO OCB S S S ∆∆∆=+=⨯⨯+⨯⨯=;(3)取值范围:4x <-或者02x <<;22.2020-;分析:由式子知:32224x x x =+,则有:()322222742017424720173220172020x x x x x x x x x -+-=++--=---=-23. 分析:延长直线、BA CD 交于点E ,因为CM 垂直且平分C ∠,所以EBC ∆为等腰三角形.由于2BM AM =,故A 为EM 中点,所以根据面积比等于相似比的平方,有:2116AED EBC S EA S EB ∆∆⎛⎫== ⎪⎝⎭,所以17AED S ∆=,令AD CM S M =,则11577M M ++=,解出1M =,故本题面积是1.24. 5 分析:先通分,再使用公式法和韦达定理即可.25.分析:如图所示:BQ BH HQ +≥,且AP AH HP +≥,所以满足:PA AH HB QB PA AB QB PQ +++=++≥=故有8PA BQ +=. 26.(1)()6626766211212113222a ==-+++⨯+⨯; (2)()21211212113222+nn n n nn a ==-+++⨯+⨯; (3)1443; (4)1222311111111121212121212111112121321+++n n n n n a a a ⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭=-=-+++27. 分析:(1)连接BC ,因为AE AC =,所以A ACE ∠=∠,由于CD 垂直且平分AB ,所以ABC ∆是等腰三角形,即A CBA ∠=∠,因此ACE CBA ∠=∠,故AC E A B C ∆∆.根据相似三角形的性质可得:AC ABAE AC=,所以:2AC AB AE =⨯. (2)连接BO ,则90o PBO ∠=,又因为2PEB A ACE A ∠=∠+∠=∠,且2PBE PBC CBE A A A ∠=∠+∠=∠+∠=∠,所以PEB PBE ∠=∠,故PB PE =;(3)连接PO ,交圆于点Q ,此时PQ 最小.因为N 是CO 中点,可得出CBO ∆是等边三角形,所以30o PBC ∠=,且60o P ∠=,根据三角函数知cos303oBC PB ==,借助勾股定理可得PO ==,因此4PQ PO OQ =-=,28.(1)根据二次函数的对称性得到()2,0A -,设方程为()()24y a x x =+-,代入点()0,3C ,求得方程为()()3248y x x =-+-; (2)设运动时间为t ,那么可以得到63MB t =-,又因为3tan 4CO CBO OB ∠==,则有434,55N t t ⎛⎫- ⎪⎝⎭,故()()21399102251010MNB S BM t t t ∆=⨯⨯=--+≤≤,所以当1t =时,三角形的面积最大为910; (3)①若90oNMB ∠=时:有4635t t =-,解出3019t =; ②若90oNBM ∠=时:不满足条件,应该舍去; ③若90oMNB ∠=时:有cos 63t CBO t =∠-,且由(2)知道4cos 5CBO ∠=,解出2417t =;。