公开课:角平分线性质
- 格式:ppt
- 大小:1.25 MB
- 文档页数:45
12.3 角的平分线的性质第1课时 角平分线的性质1.经历角的平分线性质的发现过程,初步掌握角的平分线的性质定理.(重点) 2.能运用角的平分线性质定理解决简单的几何问题.(难点)一、情境导入问题:在S 区有一个集贸市场P ,它建在公路与铁路所成角的平分线上,要从P 点建两条路,一条到公路,一条到铁路.问题1:怎样修建道路最短? 问题2:往哪条路走更近呢?二、合作探究探究点一:角平分线的作法如图,AB ∥CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以E 、F 为圆心,大于12EF 的长为半径画弧,两弧交于点P ,作射线AP ,交CD于点M .若∠ACD =120°,求∠MAB 的度数.解析:根据AB ∥CD ,∠ACD =120°,得出∠CAB =60°,再根据AM 是∠CAB 的平分线,即可得出∠MAB 的度数.解:∵AB ∥CD ,∴∠ACD +∠CAB =180°,又∵∠ACD =120°,∴∠CAB =60°,由作法知,AM 是∠CAB 的平分线,∴∠MAB =12∠CAB =30°.方法总结:通过本题要掌握角平分线的作图步骤,根据作图明确AM 是∠BAC 的角平分线是解题的关键.探究点二:角平分线的性质【类型一】 利用角平分线的性质证明线段相等如图:在△ABC 中,∠C =90°,AD 是∠BAC 的平分线,DE ⊥AB 于E ,F 在AC 上,BD =DF .求证:(1)CF =EB ;(2)AB =AF +2EB .解析:(1)根据角平分线的性质,可得点D 到AB 的距离等于点D 到AC 的距离,即CD =DE .再根据Rt △CDF ≌Rt △EDB ,得CF =EB ;(2)利用角平分线的性质证明△ADC 和△ADE 全等得到AC =AE ,然后通过线段之间的相互转化进行证明.证明:(1)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴DE =DC .∵在Rt △DCF 和Rt △DEB 中,∵⎩⎪⎨⎪⎧DF =BD ,DC =DE ,∴Rt △CDF ≌Rt △EDB (HL).∴CF =EB ;(2)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴CD =DE .在△ADC 与△ADE 中,∵⎩⎪⎨⎪⎧CD =DE ,AD =AD ,∴△ADC ≌△ADE (HL),∴AC =AE ,∴AB =AE +BE =AC +EB =AF +CF +EB =AF +2EB . 方法总结:角平分线的性质是判定线段相等的一个重要依据,在运用时一定要注意是两条“垂线段”相等.【类型二】 角平分线的性质与三角形面积的综合运用如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,S △ABC =7,DE =2,AB =4,则AC 的长是( )A .6B .5C .4D .3解析:过点D 作DF ⊥AC 于F ,∵AD 是△ABC 的角平分线,DE ⊥AB ,∴DF =DE =2,∴S △ABC=12×4×2+12AC ×2=7,解得AC =3.故选D. 方法总结:利用角平分线的性质作辅助线构造三角形的高,再利用三角形面积公式求出线段的长度是常用的方法.【类型三】 角平分线的性质与全等三角形综合如图所示,D 是△ABC 外角∠ACG 的平分线上的一点.DE ⊥AC ,DF ⊥CG ,垂足分别为E ,F .求证:CE =CF .解析:由角平分线的性质可得DE =DF ,再利用“HL ”证明Rt △CDE 和Rt △CDF 全等,根据全等三角形对应边相等证明即可.证明:∵CD 是∠ACG 的平分线,DE ⊥AC ,DF ⊥CG ,∴DE =DF .在Rt △CDE 和Rt △CDF 中,∵⎩⎪⎨⎪⎧CD =CD ,DE =DF ,∴Rt △CDE ≌Rt △CDF (HL),∴CE =CF . 方法总结:全等三角形的判定离不开边,而角平分线的性质是判定线段相等的主要依据,可作为判定三角形全等的条件.三、板书设计角平分线的性质1.角平分线的作法; 2.角平分线的性质; 3.角平分线性质的应用.本节课由于采用了动手操作以及讨论交流等教学方法,从而有效地增强了学生对角以及角平分线的性质的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生在性质的运用上还存在问题,需要在今后的教学与作业中进一步的加强巩固和训练.第2课时 含30°角的直角三角形的性质1.理解并掌握含30°角的直角三角形的性质定理.(重点)2.能灵活运用含30°角的直角三角形的性质定理解决有关问题.(难点)一、情境导入 问题:1.我们学习过直角三角形,直角三角形的角之间都有什么数量关系? 2.用你的30°角的直角三角尺,把斜边和30°角所对的直角边量一量,你有什么发现? 今天,我们先来看一个特殊的直角三角形,看它的边角具有什么性质.二、合作探究探究点:含30°角的直角三角形的性质【类型一】 利用含30°角的直角三角形的性质求线段长如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,CD 是斜边AB 上的高,AD =3cm ,则AB 的长度是( )A .3cmB .6cmC .9cmD .12cm解析:在Rt △ABC 中,∵CD 是斜边AB 上的高,∴∠ADC =90°,∴∠ACD =∠B =30°.在Rt △ACD 中,AC =2AD =6cm ,在Rt △ABC 中,AB =2AC =12cm.∴AB 的长度是12cm.故选D.方法总结:运用含30°角的直角三角形的性质求线段长时,要分清线段所在的直角三角形.【类型二】 与角平分线或垂直平分线性质的综合运用如图,∠AOP =∠BOP =15°,PC ∥OA 交OB 于C ,PD ⊥OA 于D ,若PC =3,则PD等于( )A .3B .2C .1.5D .1解析:如图,过点P 作PE ⊥OB 于E ,∵PC ∥OA ,∴∠AOP =∠CPO ,∴∠PCE =∠BOP +∠CPO =∠BOP +∠AOP =∠AOB =30°.又∵PC =3,∴PE =12PC =12×3=1.5.∵∠AOP =∠BOP ,PD ⊥OA ,∴PD =PE =1.5.故选C.方法总结:含30°角的直角三角形与角平分线、垂直平分线的综合运用时,关键是寻找或作辅助线构造含30°角的直角三角形.【类型三】 利用含30°角的直角三角形的性质探究线段之间的倍、分关系如图,在△ABC 中,∠C =90°,AD 是∠BAC 的平分线,过点D 作DE ⊥AB .DE 恰好是∠ADB 的平分线.CD 与DB 有怎样的数量关系?请说明理由.解析:由条件先证△AED ≌△BED ,得出∠BAD =∠CAD =∠B ,求得∠B =30°,即可得到CD =12DB .解:CD =12DB .理由如下:∵DE ⊥AB ,∴∠AED =∠BED =90°.∵DE 是∠ADB 的平分线,∴∠ADE =∠BDE .又∵DE =DE ,∴△AED ≌△BED (ASA),∴AD =BD ,∠DAE =∠B .∵∠BAD =∠CAD =12∠BAC ,∴∠BAD =∠CAD =∠B .∵∠BAD +∠CAD +∠B =90°,∴∠B =∠BAD =∠CAD=30°.在Rt △ACD 中,∵∠CAD =30°,∴CD =12AD =12BD ,即CD =12DB .方法总结:含30°角的直角三角形的性质是表示线段倍分关系的一个重要的依据,如果问题中出现探究线段倍分关系的结论时,要联想此性质.【类型四】 利用含30°角的直角三角形解决实际问题某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知AC =50m ,AB =40m ,∠BAC =150°,这种草皮每平方米的售价是a 元,求购买这种草皮至少需要多少元?解析:作BD ⊥CA 交CA 的延长线于点D .在Rt △ABD 中,利用30°角所对的直角边是斜边的一半求BD ,即△ABC 的高.运用三角形面积公式计算面积求解.解:如图所示,作BD ⊥CA 于D 点.∵∠BAC =150°,∴∠DAB =30°.∵AB =40m ,∴BD =12AB =20m ,∴S △ABC =12×50×20=500(m 2).已知这种草皮每平方米a 元,所以一共需要500a 元.方法总结:解此题的关键在于作出CA 边上的高,根据相关的性质推出高BD 的长度,正确的计算出△ABC 的面积.三、板书设计含30°角的直角三角形的性质性质:在直角三角形中,如果一个锐角是30°,那么它所对的直角边等于斜边的一半.本节课借助于教学活动的开展,有效地激发了学生的探究热情和学习兴趣,从而引导学生通过自主探究以及合作交流等活动探究并归纳出本节课所学的新知识,促进了学生思维能力的提高.不足之处是部分学生的综合运用知识解决问题的能力还有待于在今后的教学和作业中进行进一步的训练和提高.六、词语点将(据意写词)。
角平分线的性质的教案一、教学目标:1. 知识与技能:了解角平分线的定义和性质,学会运用角平分线的性质解题。
2. 过程与方法:通过教师讲解和实例演示相结合的方式,提高学生的理解和运用能力。
3. 情感态度价值观:培养学生严谨的数学思维,注重观察与推理,提高学生的自学、合作学习和解决问题的能力。
二、教学重点与难点:1. 重点:掌握角平分线的定义和性质。
2. 难点:运用角平分线的性质解决实际问题。
三、教学过程:Step 1 引入新知(1)教师通过提问,引导学生回顾角的定义和性质,复习相关知识。
(2)教师出示一张图纸,上面有两条射线,从一个点出发,交于一点,并各自形成两个角。
教师问学生:如何判断这两个角是否相等?请从几何性质的角度进行推理。
Step 2 角平分线的定义(1)教师解释角平分线的含义:角平分线是指从角的顶点出发,把角分成两个相等的角的射线或线段。
(2)教师出示角平分线的实例图,并要求学生观察并总结出角平分线的特点。
Step 3 角平分线的性质(1)教师提供一些角平分线的性质,如:a. 角平分线把一个角分成两个相等的角。
b. 一个角的两个相等角的角平分线相交于同一点,且这个点在角的内部。
(2)教师通过具体例子进行演示,让学生观察并找出角平分线的性质,引导学生进行类比和推理。
Step 4 角平分线的运用(1)教师提供一些具体问题,要求学生利用角平分线的性质解决问题。
a. 已知一个角的两个角平分线相交于点O,求证这两个角相等。
b. 在△ABC中,AD是∠BAC的角平分线,且∠ADB = 30°,求证∠ACB = 60°。
(2)学生独立思考并进行解答,然后进行讨论,通过合作学习的方式互相交流和纠正错误。
Step 5 拓展练习(1)教师布置一些拓展练习题,要求学生独立完成。
(2)教师进行答疑解惑,引导学生进行错误分析和订正,提高学生的解题能力和思维能力。
四、教学反思:本节课通过引导学生观察、思考和推理,使学生在实际操作中领会到角平分线的定义和性质,并能灵活运用角平分线的性质解决实际问题。
人教版初中公开课一等奖教案《角平分线的性质》(一)创设情境导入新课不利用工具,请你将一张用纸片做的角分成两个相等的角。
你有什么办法?如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?设计目的:能聚拢学生的思维为新课的开展创造了良好的教学氛围。
(二)合作交流探究新知(活动一)探究角平分仪的原理。
具体过程如下:播放奥巴马访问我国的录像资料------引出雨伞-----观察它的截面图,使学生认清其中的边角关系-----引出角平分线;并且运用几何画板对伞的开合进行动态演示,让学生直观感受伞面形成的角与主杆的关系-----让学生设计制作角平分仪;并利用以前所学的知识寻找理论上的依据,说明这个仪器的制作原理。
设计目的:用生活中的实例感知。
以最近大事作引入点,以最常见的事物为载体,让学生感受到生活中处处都有数学,认识到数学的价值。
其中设计制作角平分仪,可培养学生的创造力和成就感以及学习数学的兴趣。
使学生很轻松的完成活动二。
(活动二)通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性。
讨论结果展示:教师根据学生的叙述,利用多媒体课件演示作已知角的平分线的方法:已知:∠AO B.求作:∠AOB的平分线.作法:(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.(2)分别以M、N为圆心,大于1/2MN的长为半径作弧.两弧在∠AOB内部交叉点C.(3)作射线OC,射线OC即为所求.设计目的:使学生能更直观地理解画法,提高学习数学的兴趣。
议一议:1.在上面作法的第二步中,去掉“大于MN的长”这个条件行吗?2.第二步中所作的两弧交点一定在∠AOB的内部吗?设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯。
学生讨论结果总结:1.去掉“大于MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.2.若分别以M、N为圆心,大于MN的长为半径画两弧,两弧的交点可能在∠AOB•的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,•否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.3.角的平分线是一条射线.它不是线段,也不是直线,•所以第二步中的两个限制缺一不可.4.这种作法的可行性可以通过全等三角形来证明.(活动三)探究角平分线的性质思考:已知一角及其角平分线添加辅助线构成全等三角形;构成全等的直角三角形。
角平分线性质教案一、教学目标1. 知识与技能:- 理解什么是角平分线及其性质;- 掌握角平分线的性质及其应用。
2. 过程与方法:- 通过示例,引导学生发现并理解角平分线的性质;- 教师讲解和学生独立思考相结合,培养学生分析问题的能力;- 通过练习题,巩固对角平分线性质的理解和应用。
3. 情感态度与价值观:- 培养学生善于观察和思考的习惯;- 培养学生对几何问题的兴趣,提高学生的几何思维能力;- 培养学生合作学习的能力。
二、教学重点与难点1. 教学重点:- 角平分线的定义及其性质;- 使用角平分线解决实际问题。
2. 教学难点:- 掌握角平分线的性质及其推理过程;- 理解并灵活运用角平分线的性质解决实际问题。
三、教学过程1. 导入(5分钟)- 教师出示一张图纸,图纸中画有一个三角形ABC,并标出角A、角B和角C。
- 请学生观察图纸,思考如何将角A平分。
2. 观察与总结(10分钟)- 学生应用直尺或者量角器研究平分角A的方法,并就此和同学们讨论交流。
- 教师引导学生将总结写在黑板上。
3. 角平分线的定义与性质(15分钟)- 教师向学生介绍角平分线定义:在一个角的内部,从顶点引一条射线,使得这条射线把该角分成两个相等的角,这条射线就是角的平分线。
- 教师讲解角平分线的性质,并与学生一起探讨证明过程。
4. 角平分线练习(15分钟)- 教师将一些角的平分线问题写在黑板上,要求学生独立思考并解答。
- 学生完成后,教师与学生分享思路和解答过程。
5. 角平分线的应用(10分钟)- 教师给出一些实际问题,并引导学生运用角平分线的性质进行解答。
- 学生独立思考和解答,然后与同学讨论答案。
6. 总结与拓展(10分钟)- 教师对本节课的内容进行小结,并强调角平分线的定义和性质。
- 学生可以自由提问有关角平分线的问题,并与同学一起探讨。
7. 作业布置(5分钟)- 布置相关练习题,要求学生独立完成,并明天交作业。
四、教学反思本节课采用了多种教学方法,如观察与总结、讨论解题等。