机械制图-曲面体的三视图及表面点的投影
- 格式:ppt
- 大小:3.32 MB
- 文档页数:16
简述机械制图中的三视图的投影规律
机械制图中的三视图是指制图中的仰视图、俯视图和侧视图,结合在一起能够
囊括几何图形的完整信息,是机械工程制图的重要基础。
根据图形造型大小及图形相对关系制图的过程,空间平面图形可以投射到水平面、垂直面以及斜面,将各视图投影在三个不相干的平面上,从而得到仰视图、俯视图和侧视图三种投影视图。
仰视图,它将模型统一地投射到水平面垂直于水平面的上方的一个新面。
仰视
图投影,把造型中的垂直元件变成线段,水平元件变成点,水平面变成直线,物体在此面上看起来像是从上方望下看一样,所以称作仰视图。
俯视图,它将模型统一地投射到水平面墙面相对面上,俯视图投影后,所有垂
直元件变成点,水平元件变成线段,斜面变成点和线段的集合,物体在此面上看起来像是从下方望上看一样,所以称俯视图。
侧视图,它将模型统一地投射到水平面的左右,侧视图投影后,水平面变成点,斜面变成直线,物体在此面上看起来像是从侧面望去的一样,所以称作侧视图。
因此,机械制图中的三视图的投影规律是:仰视图投影将垂直元件变成线段,
水平元件变成点,水平面变成直线;俯视图投影将垂直元件变成点,水平元件变成线段,斜面变成点和线段的集合;侧视图投影将水平面变成点,斜面变成直线。
三视图是机械工程制图的核心技术,需要把握投影规律。
理解三视图的投影规律,便能根据投影原理对对象的造型参数准确的表达出来。
正确的三视图投影可以使得工程师更准确地表达产品外观造型,关键是需要准确地把握投影中的规律和要点。
第3章立体的投影一、本章重点:1.平面立体和曲面立体投影的画法,及立体表面点的投影。
2.立体与平面相交其交线的画法,既求截交线。
3.两回转体轴线垂直相交其交线的画法。
4.立体的尺寸标注。
二、本章难点:1.圆球和圆环的投影及表面上点的投影。
2.圆锥、圆球被平面截切后,截交线的画法。
3.求作相贯线。
三、本章要求:通过本章的学习,要掌握基本体的三面投影画法,基本体表面点的投影,能够分析和绘制常见的截交线和两回转体轴线相交时的相贯线,掌握立体的尺寸标注的方法。
四、本章内容:§3-1 平面立体的投影一、棱柱棱柱体由若干个棱面及顶面和底面组成,它的棱线相互平行。
顶面和底面为正多边形的直棱柱,称为正棱柱。
常见的棱柱有三棱柱、四棱柱、六棱柱等。
1.棱柱的三视图2.棱柱表面上的点二、棱锥棱锥的底面为多边形,各侧面为若干具有公共顶点的三角形。
从棱锥顶点到底面的距离叫做锥高。
当棱锥底面为正多边形,各侧面是全等的等腰三角形时,称为正棱锥。
常见的棱锥有三棱锥、四棱锥、六棱锥。
1. 棱锥的三视图2.棱锥表面上的点§3-2曲面立体的投影曲面立体的表面是由一母线绕定轴旋转而成的,故称曲面立体,也称为回转体。
常见的回转体有圆柱、圆锥、圆球和圆环等。
一、圆柱1.圆柱面的形成圆柱面可看作一条直线AB围绕与它平行的轴线OO回转而成。
OO称为回转轴,直线AB称为母线,母线转至任一位置时称为素线。
这种由一条母线绕轴回转而形成的表面称为回转面,由回转面构成的立体称为回转体。
2.圆柱的三视图3.圆柱表面上的点二、圆锥1.圆锥面的形成圆锥面可看作由一条直母线围绕和它相交的轴线回转而成。
2.圆锥的三视图3.圆锥表面上的点三、圆球1.圆球面的形成圆球面可看作一圆(母线),围绕它的直径回转而成。
2.圆球的三视图3.圆球表面上的点四、圆环1.圆环的形成圆环面可看作由一圆母线,绕一与圆平面共面但不通过圆心的轴线回转而成。
图中的回转轴是铅垂线。
曲面立体表面点的投影(总9页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除《机械制图》课程教案《第三章立体表面交线的投影作图§3-1 立体表面上点的投影》教案授课教师:杨秋颖班级:机加14-1 时间:课题:曲面立体的投影及表面取点教学方法:讲授法教学目的:1、讲解曲面立体的种类及其三视图画法2、讲解在圆柱和圆锥体表面取点、取线的作图方法目的要求:1、能够熟练掌握圆柱和圆锥体的三视图画法2、能够熟练运用利用点所在的面的积聚性法和辅助线法在曲面立体表面取点、取线教学重点:1、曲面立体的种类及其三视图画法。
2、在曲面立体表面取点、取线的作图方法教学难点:在圆柱和圆锥体表面取点、取线的作图方法【教学媒体和资源利用】多媒体课件【教学过程设计】组织教学—引入—新授—小结—学生练习—作业(a )立体图 (b )投影图 图3-4 圆柱的投影及表面上的点 边画图边讲解作图方法与步骤。
总结圆柱的投影特征:当圆柱的轴线垂直某一个投影面时,必有一个投影为圆形,另外两个投影为全等的矩形。
(2)圆柱面上点的投影 方法:利用点所在的面的积聚性法。
(因为圆柱的圆柱面和两底面均至少有一个投影具有积聚性。
)举例:如图3-4(b )所示,已知圆柱面上点M 的正面投影m ′,求作点M 的其余两个投影。
因为圆柱面的投影具有积聚性,圆柱面上点的侧面投影一定重影在圆周上。
又因为m ′ 可见,所以点M 必在前半圆柱面的上边,由m ′ 求得m ″,再由m ′ 和m ″ 求得m 。
第二课时(二)曲面立体的投影及表面取点1、圆锥圆锥表面由圆锥面和底面所围成。
如图3-5(a )所示,圆锥面可看作是一条直母线SA 围绕与它平行的轴线SO 回转而成。
在圆锥面上通过锥顶的任一直线称为圆锥面的素线。
(1)圆锥的投影画圆锥面的投影时,也常使它的轴线垂直于某一投影面。
举例:如图3-5(b )所示圆锥的轴线是铅垂线,底面是水课件展示平面,图3-5(c)是它的投影图。