(完整版)圆柱圆锥知识点总结.docx
- 格式:docx
- 大小:73.91 KB
- 文档页数:6
完整版)圆柱体和圆锥体知识点复习整理圆柱体和圆锥体知识点复整理
本文档旨在提供关于圆柱体和圆锥体的知识点复整理。
以下是相关的知识点介绍:
圆柱体(Cylinder)
圆柱体是一个由两个平行的圆面和一个定位于两圆面之间的侧面所组成的几何体。
以下是一些圆柱体的重要特征:
底面积:圆柱体底面的面积可以通过圆的面积公式计算。
圆的面积公式为:A = πr²,其中 r 是圆的半径。
侧面积:圆柱体的侧面积可以通过将圆的周长乘以圆柱体的高度来计算。
侧面积公式为:A = 2πrh,其中 h 是圆柱体的高度,r 是圆的半径。
总表面积:圆柱体的总表面积可通过将底面积和侧面积相加来计算。
总表面积公式为:A = 2πr² + 2πrh。
圆锥体(Cone)
圆锥体是一个由一个圆形底面和一个定位于底面圆心的侧面所组成的几何体。
以下是一些圆锥体的重要特征:
底面积:圆锥体底面的面积可以通过圆的面积公式计算。
圆的面积公式为:A = πr²,其中 r 是底面圆的半径。
侧面积:圆锥体的侧面积可以通过将圆的周长乘以圆锥体的斜高来计算。
侧面积公式为:A = πrl,其中 l 是圆锥体的斜高,r 是底面圆的半径。
总表面积:圆锥体的总表面积可通过将底面积和侧面积相加来计算。
总表面积公式为:A = πr² + πrl。
以上是关于圆柱体和圆锥体的知识点复习整理。
希望对您有所帮助!。
圆柱圆锥知识点总结一、圆柱的定义和性质圆柱是由一个矩形绕着一条平行于其中一边的直线移动而得到的几何体。
圆柱的底面是一个圆,上下底面平行且相等,侧面是一个矩形。
通常情况下,我们所说的圆柱指的是直圆柱,即底面和侧面直角相交的圆柱。
圆柱的性质:1. 圆柱的侧面是一个矩形,其面积等于底面周长乘以高度。
2. 圆柱的体积等于底面积乘以高度,即V=πr^2*h。
3. 圆柱的表面积等于两个底面积之和加上侧面积,即S=2πr^2+2πrh。
二、圆锥的定义和性质圆锥是由一个直角三角形绕着它的一个直角边旋转一周而得到的几何体。
圆锥的侧面是一个由母线和母线上一点到底面的连线组成的扇形。
通常情况下,我们所说的圆锥指的是直圆锥,即底面圆和侧面直角相交的圆锥。
圆锥的性质:1. 圆锥的侧面是一个扇形,其面积等于底面周长乘以母线的一半。
2. 圆锥的体积等于1/3底面积乘以高度,即V=1/3πr^2*h。
3. 圆锥的表面积等于底面积加上底面到顶点的母线所绕成的曲面积,即S=πr^2+πrl。
三、圆柱和圆锥的应用1. 圆柱和圆锥在日常生活中有着广泛的应用,比如有些容器的外形就是圆柱或者圆锥;例如筒形创可贴盒,花瓶,饮料瓶等。
2. 圆柱和圆锥的公式和计算方法可以用来解决一些实际问题,比如计算容器的容积和表面积,计算油桶的容量,设计工程建筑结构等。
3. 圆柱和圆锥的几何图形在工程实践中也有着广泛的应用,比如圆柱形的桥墩,圆锥形的喷水池等。
四、圆柱和圆锥知识点的考点在中学数学课本和考试中,圆柱和圆锥作为基础几何图形经常出现,特别是在解题和推导中经常需要用到它们的性质和公式。
掌握好圆柱和圆锥的知识对于初中数学的学习和考试成绩至关重要。
总结通过对圆柱和圆锥的定义、性质、公式和应用等方面的了解,我们可以更好地理解这两种几何图形的特点和作用,进而提高我们的数学运算能力和解决实际问题的能力。
在学习和应用过程中,我们要注重在不断的练习和实践中巩固这些知识,才能更好地应用它们解决实际问题,提高数学素养。
长方体里削出最大的圆柱、圆锥:圆柱、圆锥底面直径等于宽(宽﹥高),圆柱、圆锥高等于长方体高。
4.浸物体积问题(排水法测不规则物体的体积):水面上升部分的体积就是浸
入水中物品的体积,等于盛水容器的底面积乘上升的高度。
也就是变化的水的体积。
主要类型:①盛满水,浸物溢水;②浸物水面上升;③取物水面下降。
5.等体积转换问题:圆锥体沙堆铺路;长方体钢材熔铸成圆柱或圆锥;橡皮泥
改变形状;圆柱中的溶液倒入圆锥……都是体积不变的问题。
解决此类问题,最好列出体积相等公式,再代入数据进行计算。
圆柱和圆锥知识点汇总
一、圆柱与圆锥的认识
(一)圆柱的认识
圆柱的两个圆面叫作底面,曲面叫作侧面。
两底面之间的距离叫作高,圆柱有无数条高,所有的高长度相等。
(二)圆锥的认识
圆锥的底面是一个圆面,圆锥的侧面是一个曲面。
从圆锥的顶点到底面圆心的距离是圆锥的高,圆锥的高只有一条。
(三)圆柱侧面积和表面积计算
将圆柱展开之后,我们可以发现:圆柱的侧面展开是一个长方形,
长方形的一条边长等于圆柱的底面周长,另一条边长等于圆柱的高,所以圆柱的侧面积=底面周长×高。
圆柱的侧面积加上两个底面积就是圆柱的表面积即表面积=2πr×h+2πr²
注意:在实际问题中,要注意判断所求的物体有几个底面,如:水池、杯子只算一个底面,水管、大树等不计算底面,具体题目,具体分析。
(四)圆柱体积计算
把圆柱体平均分成若干份,拼成近似长方体,它们的体积相等。
长方体的高就是圆柱体的高,长方体的底面积(长是圆柱底面周长的一半、宽是圆柱底面半径)就是圆柱体的底面积,因为长方体的体积=底面积×高,所以圆柱体的体积=底面积×高。
用字母“V”表示体积,“S”表示底面积,“h”表示高,那么,圆柱体体积用字母表示为V=s h=πr²h。
(五)圆锥的体积计算
这里将圆锥的体积转化为圆柱的体积,通过研究我们发现圆锥的体积等于和它等底等高的圆柱体积的三分之一。
所以圆锥的体积公式:V=1/3 sh=1/3πr²h。
完整版)六年级下册圆柱和圆锥知识点文章已经没有格式错误和明显有问题的段落了,但可以对每段话进行小幅度改写,如下:第一单元圆柱和圆锥知识点一、圆柱的特征:圆柱有两个底面、一个侧面和无数条高。
其底面为大小相同的圆形。
圆柱的侧面展开后可以得到长方形、正方形或平行四边形,与圆柱有密切关系。
例如,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,长方形的面积等于圆柱的侧面积。
当圆柱的底面周长和高相等时,其侧面展开图为正方形。
二、圆锥的特征:圆锥有一个圆形底面和一个扇形侧面,只有一条高。
圆锥的高是从圆锥顶点到底面圆心的距离。
三、基本公式:在求圆柱表面积、圆柱和圆锥的体积时,需要先复圆的半径计算公式。
已知直径求半径为r=d÷2,已知周长求半径为r=c÷π÷2.圆柱的底面积为πr²,侧面积为底面周长×高,即S侧=Ch=πdh=2πrh,圆柱的表面积为侧面积加上底面积的两倍。
圆柱的体积为底面积乘以高,即V圆柱=Sh=πr²h。
圆锥的体积为底面积乘以高再除以3,即V圆锥=1/3Sh=1/3πr²h。
四、单位换算:在长度单位换算中,相邻两个长度单位之间的进率是10,1千米等于1000米,1米等于10分米,1分米等于10厘米,1厘米等于10毫米。
在面积单位换算中,相邻两个面积单位之间的进率是100,1平方千米等于100公顷,1公顷等于平方米,1平方米等于100平方分米,1平方分米等于100平方厘米,1平方厘米等于100平方毫米。
在体积单位换算中,相邻两个体积单位之间的进率是1000,1立方米等于1000升,1升等于1立方分米,1立方分米等于1000立方厘米,1立方厘米等于1毫升。
在单位换算中,大单位化为小单位使用乘法,小单位化为大单位使用除法。
圆柱和圆锥知识点总结一、圆柱的定义和性质1.定义:圆柱是由一个圆沿着一个平行于圆所在平面的直线移动形成的,在移动过程中,圆始终垂直于移动线段。
2.元素:圆柱由两个平行的底面、两个底面之间的侧面和两个底面的圆所组成。
3.特点:(1)底面积相等:圆柱的两个底面积相等。
(2)高度:圆柱的高度是连接两个底面的垂直线段。
(3)侧面积:圆柱的侧面积等于底面周长乘以高度。
(4)体积:圆柱的体积等于底面积乘以高度。
(5)闭曲面:圆柱的底面和侧面构成闭合的曲面。
4.圆柱的投影:圆柱的投影形态为一个矩形。
二、圆锥的定义和性质1.定义:圆锥是由一个圆沿着一个平行于圆所在平面的直线移动形成的,在移动过程中,圆始终垂直于移动线段。
2.元素:圆锥由一个底面、一个尖顶和底面与尖顶之间的侧面组成。
3.特点:(1)底面:圆锥的底面是一个圆。
(2)高度:圆锥的高度是连接底面和尖顶的垂直线段。
(3)侧面:圆锥的侧面是由底面上任意一点到尖顶的直线构成。
(4)侧面积:圆锥的侧面积等于圆周长乘以半斜高。
(5)体积:圆锥的体积等于底面面积乘以高度再除以3(6)闭曲面:圆锥的底面和侧面构成闭合的曲面。
4.圆锥的投影:圆锥的投影形态为一个三角形。
三、圆柱和圆锥的应用1.圆柱的应用:圆柱广泛应用于各个领域,如:(1)建筑:柱子、立柱、柱圈等结构都是圆柱体的应用。
(2)机械:轴、销、滚筒等都是圆柱体的应用。
(3)制造:瓶子、罐子、圆筒形容器等都是圆柱体的应用。
(4)数学:柱体的几何性质是数学中的重要内容,如计算底面积、侧面积、体积等。
(5)其他:圆柱的轴对称性质也常用于解决几何问题。
2.圆锥的应用:圆锥也有广泛的应用,如:(1)建筑:塔、锥形屋顶、圆锥形尖塔等都是圆锥体的应用。
(2)环境工程:漏斗、喷泉、喷水池等都是圆锥体的应用。
(3)制造:圆锥形工件的制造是机械加工中常见的任务。
(4)数学:圆锥的几何性质也是数学中的重要内容,如计算底面积、侧面积、体积等。
第二章(完整word版)人教版六年级数学下册圆柱与圆锥知识点(word版可编辑修改)第三章第四章第五章编辑整理:第六章第七章第八章第九章第十章尊敬的读者朋友们:第十一章这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)人教版六年级数学下册圆柱与圆锥知识点(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
第十二章本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)人教版六年级数学下册圆柱与圆锥知识点(word版可编辑修改)的全部内容。
第十三章第十四章圆柱与圆锥一、圆柱的认识1、圆柱的初步认识像茶叶筒、罐头盒、木墩等物体的形状都是圆柱形。
2、圆柱各部分的名称圆柱是由两个底面和一个侧面三部分组成的。
底面:圆柱的两个圆面侧面:圆柱周围的面高:圆柱两个底面之间的距离3、圆柱的特征底面:是完全相同的两个圆侧面:是曲面高:一个圆柱有无数条高4、圆柱的侧面、底面及其之间的关系圆柱的侧面展开图是一个长方形,这个长方形的长等于圆柱的底面周长,宽等于圆柱的高二、圆柱的表面积1、圆柱侧面积的计算方法圆柱的侧面积=底面周长高。
⨯S表示侧面积,C表示底面周长,h表示高,S=Ch2、圆柱侧面积计算公式的应用π①已知圆柱的底面直径和高:S=dhπ②已知圆柱的底面半径和高:S=2rh。
圆柱与圆锥总结练习知识点一:关于圆柱展开图1、下面()图形是圆柱的展开图。
(单位:cm)2、一个圆柱体的侧面是一个正方形,直径是5dm,正方形面积是_________。
3、做一个底面直径是20厘米,高是50厘米的圆柱形通风管,至少需要_________平方厘米的铁皮。
知识点二:圆柱的侧面积,表面积以及应用侧面积C侧= 底面积S底=表面积S表=实际计算中很多时候计算表面积时,很多时候只要求计算侧面积或者底面积只算一个。
4、一个圆柱的展开图如图所示,求该圆柱的表面积。
5、旋转得到的圆柱。
如图长方形绕过中心的直线旋转一周得到一个圆柱体,已知长方形的长为20厘米,宽是10厘米,求圆柱体的表面积。
6、会议大厅里有10根底面直径0.6米,高6米的圆柱形柱子,现在要刷上油漆,每平方米用油漆0.5千克,刷这些柱子要用油漆多少千克?7、做十节长2米,直径8厘米的圆柱形铁皮烟囱,需要铁皮多少平方米?8、压路机的滚筒是圆柱体,它的长是2米,滚筒横截面的半径是0.6米。
如果每分转动5周,每分可以压多大的路面?知识点三、圆柱的体积以及应用体积V柱=圆柱的体积与容积,以及根据体积求质量等问题9、(1)直角三角形的两条边分别是6cm和7cm。
(2)长方形的长是10厘米,宽是5厘米,绕过中点的直线旋转一圈。
知识点四、圆锥的体积以及应用体积V柱=圆锥的体积与容积,以及根据体积求质量等问题10、一个圆锥体的体积是15.7立方分米,底面积是3.14平方分米,它的高有多少分米?知识点五、圆柱圆锥体积之间的关系,底面积,体积比的问题①如果圆柱与圆锥等底等高,圆柱的体积是圆锥的②如果圆柱与圆锥体积相等,高相等,则圆锥的底面积是圆柱的③如果圆柱与圆锥体积相等,底面积相等,则圆锥的高是圆柱的11、一个圆柱体橡皮泥,底面积是12平方厘米,高4厘米,把它捏成:(1)底面积不变的圆锥,圆锥的高是多少?(2)高不变的圆锥,圆锥的底面积是多少?(3)底面积是8平方厘米的圆锥,高是多少?12、一个圆柱形容器的底面半径是4分米,高6分米,里面盛满水,把水倒在棱长是8分米的正方体容器内,水深是多少分米?13、有一段钢可做一个底面直径8厘米,高9厘米的圆锥形零件.如果把它改制成高是12厘米的圆柱形零件,零件的底面积是多少平方厘米?知识点六、体积单位,表面积单位之间的互换,以及常见立体图形的体积表面积问题表面积单位:平方厘米平方分米平方米(进率是10*10=100)体积单位:立方厘米立方分米立方米(进率是10*10*10=1000)表面积是所有表面的面积的总和,算出各个面的面积求和即可长方形面积= 正方形面积= 三角形面积=平行四边形面积= 梯形面积=体积:所有立体图形的体积都可以用底面积×高求解,各个立体图形也有自己的体积公式。
圆柱圆锥单元知识点总结一、圆柱的定义和性质1. 圆柱的定义圆柱是由两个平行的圆面和连接这两个圆面的侧面组成的立体图形。
2. 圆柱的性质(1)圆柱的底面积是圆周率π与底面半径r的平方的乘积,即S=πr^2。
(2)圆柱的侧面积等于圆周率π与底面周长2πr的乘积,即S=2πrh。
(3)圆柱的总表面积等于底面积加上侧面积的总和,即S=2πr(r+h)。
3. 圆柱的公式(1)圆柱的体积公式为V=πr^2h。
(2)圆柱的侧面积公式为S=2πrh。
(3)圆柱的总表面积公式为S=2πr(r+h)。
二、圆锥的定义和性质1. 圆锥的定义圆锥是由一个圆锥面和一个侧面组成的立体图形。
2. 圆锥的性质(1)圆锥的底面积是圆周率π与底面半径r的平方的乘积,即S=πr^2。
(2)圆锥的母线是从圆锥顶点到圆锥底部中心的距离。
(3)圆锥的侧面积等于圆周率π与母线l的乘积,即S=πrl。
(4)圆锥的总表面积等于底面积加上侧面积的总和,即S=πr(r+l)。
3. 圆锥的公式(1)圆锥的体积公式为V=(1/3)πr^2h。
(2)圆锥的侧面积公式为S=πrl。
(3)圆锥的总表面积公式为S=πr(r+l)。
三、圆柱和圆锥的应用1. 圆柱和圆锥的容积应用圆柱和圆锥的容积公式V=(1/3)πr^2h和V=(1/3)πr^2h,可以用来计算圆柱和圆锥的容积。
比如,我们可以用这两个公式来计算柱形和锥形容器的容积,从而确定所需的液体或物体的数量。
2. 圆柱和圆锥的表面积应用圆柱和圆锥的表面积公式S=2πr(r+h)和S=πr(r+l)可以用来计算圆柱和圆锥的表面积。
比如,我们可以用这两个公式来计算圆柱和圆锥的表面积,从而确定所需的涂料或包装材料的数量。
3. 圆柱和圆锥的工程应用圆柱和圆锥在工程中有广泛的应用,比如建筑中的柱子和塔楼、工程中的钻孔和油井等。
了解圆柱和圆锥的性质和公式有助于工程师设计和计算相关的工程结构。
四、圆柱和圆锥的相关习题1. 如果圆柱的底面半径为5cm,高为10cm,求它的体积和表面积。
【最新整理,下载后即可编辑】圆柱圆锥知识点总结主要内容圆柱和圆锥的认识、圆柱的表面积考点分析1、圆柱上、下两个面叫做圆柱的底面,它们是完全相同的两个圆。
形成圆柱的面还有一个曲面,叫做圆柱的侧面。
圆柱两个底面之间的距离叫做圆柱的高。
2、圆锥的底面是个圆,圆锥的侧面是一个曲面。
从圆锥的顶点到底面圆心的距离是圆锥的高。
3、把圆柱的侧面展开得到一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
4、圆柱的侧面积= 底面周长×高5、圆柱的表面积= 侧面积+ 底面积×2典型例题例1、(圆柱和圆锥的特征)圆柱和圆锥分别有什么特点?分析与解:长方体和正方体的六个面都是平面图形(长方形或正方形),而圆柱和圆锥除了底面是平面图形(圆)外,都有一个曲面。
圆柱和圆锥的特征见下表。
例2周长和底面积。
圆柱:底面周长 3.14 ×3 ×2 = 18.84(厘米)底面积 3.14 ×3 ²= 28.26(平方厘米)圆锥:底面周长 3.14 ×10 = 31.4(米)底面积 3.14 ×(10÷2)²= 78.5(平方米)点评:圆柱和圆锥的底面都是圆,在计算它们的周长和面积时只要按照圆的周长和面积计算公式进行计算。
例3、判断:圆柱和圆锥都有无数条高。
错误解法:正确分析与解:圆柱有无数条高,圆锥只有一条高。
正确解答:错误点评:圆柱两个底面之间的距离叫做圆柱的高。
两个底面之间有无数个对应的点,圆柱有无数条高。
从圆锥的顶点到底面圆心的距离是圆锥的高。
顶点和底面圆心都是唯一的点,所以圆锥只有一条高。
例4、(圆柱的侧面积)体育一个圆柱,底面直径是5厘米,高是12厘米。
求它的侧面积。
高底面周长沿着圆柱侧面的一条高剪开,将侧面展开,就得到一个长方形。
这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
因此,用圆柱的底面周长乘圆柱的高就得到这个长方形的面积,即圆柱的侧面积。
圆柱圆锥知识点总结主要内容圆柱和圆锥的认识、圆柱的表面积考点分析1、圆柱上、下两个面叫做圆柱的底面,它们是完全相同的两个圆。
形成圆柱的面还有一个曲面,叫做圆柱的侧面。
圆柱两个底面之间的距离叫做圆柱的高。
2、圆锥的底面是个圆,圆锥的侧面是一个曲面。
从圆锥的顶点到底面圆心的距离是圆锥的高。
3、把圆柱的侧面展开得到一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
4、圆柱的侧面积 =底面周长× 高5、圆柱的表面积 =侧面积 + 底面积× 2典型例题例 1、(圆柱和圆锥的特征)圆柱和圆锥分别有什么特点?分析与解:长方体和正方体的六个面都是平面图形(长方形或正方形),而圆柱和圆锥除了底面是平面图形(圆)外,都有一个曲面。
圆柱和圆锥的特征见下表。
圆柱圆锥两个底面完全相同,都是圆底面一个底面,是圆形。
形。
侧曲面,沿高剪开,展开后是曲面,沿顶点到底面圆周上的一条线面长方形。
段剪开,展开后是扇形。
两个底面之间的距离,有无顶点到底面圆心的距离,只有一条。
高数条。
例 2、求下面立体图形的底面周长和底面积。
半径 3 厘米直径10米分析与解:根据圆的面积和周长计算公式计算圆柱和圆锥的底面周长和底面积。
圆柱:底面周长 3.14× 3× 2 = 18.84 (厘米)底面积 3.14× 3 2 = 28.26(平方厘米)圆锥:底面周长 3.14× 10= 31.4 (米)底面积 3.14×( 10÷ 2)2 = 78.5 (平方米)点评:圆柱和圆锥的底面都是圆,在计算它们的周长和面积时只要按照圆的周长和面积计算公式进行计算。
例3、判断:圆柱和圆锥都有无数条高。
错误解法:正确分析与解:圆柱有无数条高,圆锥只有一条高。
正确解答:错误点评:圆柱两个底面之间的距离叫做圆柱的高。
两个底面之间有无数个对应的点,圆柱有无数条高。
从圆锥的顶点到底面圆心的距离是圆锥的高。
顶点和底面圆心都是唯一的点,所以圆锥只有一条高。
例 4、(圆柱的侧面积)体育一个圆柱,底面直径是 5 厘米,高是12 厘米。
求它的侧面积。
分析与解:高底面周长沿着圆柱侧面的一条高剪开,将侧面展开,就得到一个长方形。
这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
因此,用圆柱的底面周长乘圆柱的高就得到这个长方形的面积,即圆柱的侧面积。
解答: 3.14× 5× 12 = 188.4(平方厘米)答:它的侧面积是188.4 平方厘米。
点评:圆柱的侧面是个曲面,不能直接求出它的面积。
推导出侧面积的计算公式也用到了转化的思想。
把这个曲面沿高剪开,然后平展开来,就能得到一个长方形,这个长方形的面积就是这个圆柱的侧面积。
例 5、(圆柱的表面积)做一个圆柱形油桶,底面直径是 0.6 米,高是 1 米,至少需要多少平方米铁皮?(得数保留整数)分析与解:求铁皮的面积,就是求圆柱形油桶的表面积,即两个底面积和一个侧面积的和。
解答:底面积: 3.14×(0.6÷ 2)2= 0.2826(平方米)侧面积: 3.14× 0.6× 1 = 1.884(平方米)表面积: 0.2826× 2 + 1.884 = 2.4492(平方米)≈ 3 (平方米)答:至少需要铁皮 3 平方米。
点评:这里不能用四舍五入法取近似值。
因为在实际生活中使用的材料要比计算得到的结果多一些。
因此这儿保留整数,十分位上虽然是4,但也要向个位进1。
例 6、(辨析)一个无盖的圆柱铁皮水桶,底面直径是30 厘米,高是50 厘米。
做这样一个水桶,至少需用铁皮6123 平方厘米。
分析与解:题目中是做一个无盖的圆柱铁皮水桶,只有一个底面。
在计算铁皮面积时只要用圆柱的侧面积加上一个底面的面积。
解答:底面积: 3.14×(30÷ 2)2= 706.5(平方厘米)侧面积: 3.14× 30× 50 = 4710(平方厘米)表面积: 706.5 + 4710 = 5416.5(平方厘米)答:做这样一个水桶,至少需用铁皮5416.5 平方厘米。
例 7、(考点透视)一个圆柱的侧面积展开是一个边长15.7 厘米的正方形。
这个圆柱的表面积是多少平方厘米?分析与解:圆柱的侧面积展开是一个正方形,即圆柱的高和底面周长都是15.7 厘米。
根据圆柱的底面周长可以算出底面积。
解答:底面半径: 15.7÷ 3.14÷ 2 = 2.5(厘米)底面积: 3.14× 2.5 2 = 19.625(平方厘米)侧面积: 15.7× 15.7 = 246.49(平方厘米)表面积: 19.625× 2 + 246.49 = 285.74(平方厘米)答:这个圆柱的表面积是285.74 平方厘米。
例 8、(考点透视)一个圆柱形的游泳池,底面直径是10 米,高是 4 米。
在它的四周和底部涂水泥,每千克水泥可涂 5 平方米,共需多少千克水泥?水泥的面积是一个底面积加上侧面积。
解答:侧面积: 3.14× 10× 4 = 125.6(平方米)底面积: 3.14× (10÷ 2)2= 78.5(平方米)涂水泥的面积:125.6 + 78.5 = 204.1(平方米)水泥的质量:204.1÷ 5 = 40.82(千克)答:共需 40.82 千克水泥。
例 9、(考点透视)把一个底面半径是 2 分米,长是9 分米的圆柱形木头锯成长短不同的三小段圆柱形木头,表面积增加了多少平方分米?分析与解:锯圆柱形木头,表面积增加的部分是若干个相同的底面积。
锯成三段,要锯两次,每锯一次增加两个面,锯了两次增加了四个面。
3.14× 22 ×4 = 50.24(平方分米)答:表面积增加了50.24平方分米。
点评:这是一道在实际生活中应用的题目,对于这一类题目,它的规律就是每切一次就增加两个面。
但切的方式不同,增加的面也不同。
如果是沿着底面直径把圆柱切成相同的两个部分,增加的面就是以底面直径和高为两邻边的长方形。
模拟试题下面 ()图形旋转会形成圆柱。
3、在下图中,以直线为轴旋转,可以得出圆锥的是()。
4、求下列圆柱体的侧面积( 1)底面半径是 3 厘米,高是 4 厘米。
(2)底面直径是 4 厘米,高是 5 厘米。
( 3)底面周长是12.56 厘米,高是 4 厘米。
5、求下列圆柱体的表面积( 1)底面半径是 4 厘米,高是 6 厘米。
(2)底面直径是 6 厘米,高是12 厘米。
(3)底面周长是25.12 厘米,高是8 厘米。
6、用铁皮制作一个圆柱形烟囱,要求底面直径是 3 分米,高是15 分米,制作这个烟囱至少需要铁皮多少平方分米?(接头处不计,得数保留整平方分米)7、请你制作一个无盖圆柱形水桶,有以下几种型号的铁皮可供搭配选择。
8、一个圆柱形蓄水池,底面周长是 25.12 米,高是 4 米,将这个蓄水池四周及底部抹上水泥。
如果每平方米要用水泥 20 千克,一共要用多少千克水泥?圆柱、圆锥的体积圆柱体积公式:圆锥体积公式:模拟试题一、圆柱体积1、求下面各圆柱的体积。
( 1)底面积0.6 平方米,高0.5 米( 2)底面半径是 3 厘米,高是 5 厘米。
( 3)底面直径是8 米,高是10 米。
(4)底面周长是25.12 分米,高是 2 分米。
2、有两个底面积相等的圆柱,第一个圆柱的高是第二个圆柱的4/7 。
第一个圆柱的体积是24 立方厘米,第二个圆柱的的体积比第一个圆柱多多少立方厘米?3、在直径0.8 米的水管中,水流速度是每秒 2 米,那么 1 分钟流过的水有多少立方米?4、牙膏出口处直径为 5 毫米,小红每次刷牙都挤出 1 厘米长的牙膏。
这支牙膏可用36 次。
该品牌牙膏推出的新包装只是将出口处直径改为 6 毫米,小红还是按习惯每次挤出 1 厘米长的牙膏。
这样,这一支牙膏只能用多少次?5、一根圆柱形钢材,截下 1.5 米,量得它的横截面的直径是 4 厘米。
如果每立方厘米钢重7.8 克,截下的这段钢材重多少千克?(得数保留整千克数。
)6、把一个棱长 6 分米的正方体木块,削成一个最大的一圆柱体,这个圆柱的体积是多少立方分米?7、右图是一个圆柱体,如果把它的高截短 3 厘米,它的表面积减少94.2 平方厘米。
这个圆柱体积减少多少立方厘米?二、圆锥体积1、选择题。
( 1)一个圆锥体的体积是 a 立方米,和它等底等高的圆柱体体积是()1② 3a 立方米③ 9 立方米①a 立方米3( 2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是 6 立方米,圆锥体体积是 ()立方米① 6 立方米② 3立方米③ 2立方米2、判断。
(1)柱的体相当于体的 3 倍⋯⋯⋯()( 2 )将一个柱体木料加工成最大的体,削去的部分的体和的体比是 2 :1⋯⋯⋯()(3)一个柱和等底等高,体相差21 立方厘米,的体是7 立方厘米⋯⋯⋯()3、填空( 1)一个柱体是18 立方厘米,与它等底等高的的体是()立方厘米。
( 2)一个的体是18 立方厘米,与它等底等高的柱的体是()立方厘米。
( 3)一个柱与和它等底等高的的体和是144 立方厘米。
柱的体是()立方厘米,的体是()立方厘米。
4、求下列体的体。
( 1)底面半径 4 厘米,高 6 厘米。
(2)底面直径 6 分米,高8 厘米。
( 3)底面周31.4 厘米,高12 厘米。
5、一个形沙堆,高是 1.5 米,底面半径是 2 米,每立方米沙重 1.8 吨。
堆沙重多少吨?6、一个近似形的麦堆,底面周 12.56 米,高 1.2 米,如果每立方米小麦重 750 千克,堆小麦重多少千克?7、一个方体容器, 5 厘米, 4 厘米,高 3 厘米,装水后将水全部倒入一个高 6 厘米的形的容器内好装。
个形容器的底面是多少平方厘米?。