教案精选:初中数学《线段的垂直平分线》教学设计
- 格式:doc
- 大小:28.00 KB
- 文档页数:8
线段的垂直平分线教案一、教学目标1. 让学生理解线段的垂直平分线的概念,掌握线段的垂直平分线的性质。
2. 培养学生运用线段的垂直平分线解决实际问题的能力。
3. 培养学生的观察能力、动手操作能力和团队协作能力。
二、教学重点与难点1. 教学重点:线段的垂直平分线的性质。
2. 教学难点:线段的垂直平分线的证明和应用。
三、教学准备1. 教师准备:教学课件、尺子、圆规、直尺、三角板等教学用具。
2. 学生准备:笔记本、铅笔、橡皮、三角板、直尺等学习用具。
四、教学过程1. 导入新课:通过回顾上一节课的内容,引导学生思考线段的垂直平分线的概念。
2. 讲解新课:(1)介绍线段的垂直平分线的定义;(2)讲解线段的垂直平分线的性质;(3)举例说明线段的垂直平分线在实际问题中的应用。
3. 课堂练习:让学生独立完成教材上的练习题,巩固所学知识。
4. 课堂小结:总结本节课的主要内容,强调线段的垂直平分线的性质和应用。
五、课后作业1. 请学生完成教材上的课后习题。
2. 请学生结合所学知识,运用线段的垂直平分线解决实际问题。
3. 教师对学生的作业进行批改,及时了解学生的学习情况,并进行反馈。
六、教学拓展1. 引导学生思考:线段的垂直平分线与线段的关系是什么?2. 讲解线段的垂直平分线的性质:垂直平分线上的点到线段的两个端点的距离相等。
3. 举例说明线段的垂直平分线在几何图形中的应用,如等腰三角形的性质。
七、实践操作1. 让学生用尺子和直尺画出一条线段的垂直平分线。
2. 让学生观察并解释线段的垂直平分线如何将线段分成两个相等的部分。
3. 引导学生思考:如何找到一个线段的垂直平分线?八、课堂讨论1. 提问:线段的垂直平分线在实际生活中有哪些应用?2. 让学生分组讨论,分享各自的想法和例子。
3. 教师总结并强调线段的垂直平分线在日常生活中的重要性。
九、复习巩固1. 通过PPT或黑板,回顾本节课的主要内容和知识点。
2. 进行课堂提问,检查学生对线段的垂直平分线的理解和掌握程度。
《线段的垂直平分线》教案一、教学目标:知识与技能:1. 学生能理解线段的垂直平分线的概念。
2. 学生能运用线段的垂直平分线性质解决实际问题。
过程与方法:1. 学生通过观察、思考、交流,掌握线段的垂直平分线的判定方法。
2. 学生能运用几何画图软件或手工绘制线段的垂直平分线。
情感态度价值观:1. 学生培养对数学几何图形的美感,提高对几何学习的兴趣。
2. 学生在解决实际问题中,培养合作、交流、解决问题的能力。
二、教学重点与难点:重点:1. 线段的垂直平分线的概念及性质。
2. 线段的垂直平分线的判定方法。
难点:1. 线段的垂直平分线的证明。
2. 运用线段的垂直平分线解决实际问题。
三、教学方法与手段:教学方法:1. 采用问题驱动法,引导学生探索线段的垂直平分线性质。
2. 运用合作学习法,让学生在小组内讨论、交流、分享学习心得。
教学手段:1. 利用几何画图软件,动态展示线段的垂直平分线。
2. 采用实物模型,直观演示线段的垂直平分线特点。
四、教学过程:环节一:导入新课1. 利用生活中的实例,引出线段的垂直平分线概念。
环节二:探究线段的垂直平分线性质1. 学生分组讨论,探究线段的垂直平分线性质。
2. 各小组汇报讨论成果,教师点评并补充。
环节三:判定线段的垂直平分线1. 学生根据线段的垂直平分线性质,尝试判定线段的垂直平分线。
环节四:运用线段的垂直平分线解决实际问题1. 学生分组解决实际问题,运用线段的垂直平分线性质。
2. 各小组汇报解题过程,教师点评并指导。
环节五:课堂小结2. 教师点评学生表现,布置课后作业。
五、课后作业:1. 绘制本节课学习的线段垂直平分线图形,并标注性质。
3. 预习下一节课内容,了解线段垂直平分线的拓展应用。
六、教学评价:1. 知识与技能:学生能熟练掌握线段的垂直平分线的概念和性质,并能运用其解决几何问题。
2. 过程与方法:学生在探究和解决实际问题的过程中,培养了观察、思考、交流和合作的能力。
初三课堂线段的垂直平分线数学教案
标题:初三课堂线段垂直平分线数学教案
一、教学目标
(这部分应详细描述学生在本节课中需要达到的学习目标)
二、教学重点与难点
(列出本节课的重点内容和可能存在的难点)
三、教学过程
1. 导入新课(约300字)
- 创设情境,引导学生思考并引出本节课的主题——线段的垂直平分线。
2. 新知探索(约600字)
- 定义讲解:什么是线段的垂直平分线?
- 性质讲解:线段的垂直平分线有什么性质?
- 举例说明:通过具体例子来加深理解。
3. 实践应用(约400字)
- 做一些相关的练习题,让学生运用所学知识解决实际问题。
4. 巩固提高(约200字)
- 设计一些进阶题目,帮助学生进一步巩固和提升。
四、教学评价
(如何对学生的学习效果进行评估)
五、教学反思
(教师对本次教学活动的自我评价和改进意见)
以下是一个简单的示例:
在"新知探索"部分:
定义讲解:
线段AB的垂直平分线是一条直线l,使得l经过线段AB的中点,并且直线l与线段AB互相垂直。
性质讲解:
1. 线段垂直平分线上的点到这条线段两个端点的距离相等。
2. 到一条线段两端距离相等的点在这条线段的垂直平分线上。
举例说明:
如图所示,直线DE是线段AC的垂直平分线,那么我们可以看到,点B和点D 到线段AC的两个端点A和C的距离都是相等的。
这就是线段垂直平分线的一个重要性质。
线段的垂直平分线数学教案
标题:线段的垂直平分线
一、教学目标
1. 知识与技能目标:理解并掌握线段的垂直平分线的概念,能够通过作图找出线段的垂直平分线。
2. 过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的空间观念和几何直觉,提高学生的问题解决能力。
3. 情感态度价值观目标:激发学生对几何学习的兴趣,培养学生的合作精神和探索精神。
二、教学重点难点
1. 教学重点:线段垂直平分线的概念及性质。
2. 教学难点:如何准确地找出线段的垂直平分线。
三、教学过程
1. 导入新课:
通过回顾旧知识(如线段、直线、垂线等)引出新课主题——线段的垂直平分线。
2. 新知讲解:
(1) 定义:通过一个图形的所有点都到线段两端距离相等的直线叫做这条线段的垂直平分线。
(2) 性质:线段垂直平分线上的点到线段两端的距离相等。
3. 实践操作:
(1) 学生自己动手画图,找出给定线段的垂直平分线。
(2) 讨论并分享各自的方法和步骤,老师点评和总结。
4. 应用练习:
设计一些练习题,让学生运用所学知识解决问题,巩固知识点。
5. 小结:
回顾本节课的主要内容,强调重点和难点,解答学生的疑问。
四、作业布置
设计一些相关习题,包括基础题和提升题,供学生课后练习。
五、教学反思
根据课堂情况和学生反馈,反思本次教学的优点和不足,为下次教学改进提供参考。
线段的垂直平分线教学设计一.教学目标:1.知识与技能:(1)掌握线段的垂直平分线的定义(2)经历线段的对称性、线段的中垂线的性质定理及其逆定理的探索过程,在探究中总结归纳并理解各定理。
(3)会利用线段的中垂线的性质定理及其逆定理进行简单的计算与推理。
(4)在探究中发现线段的中垂线的尺规作图方法。
2.情感态度价值观:通过利用应用性质定理及逆定理解决实际问题,体验数学与生活的联系。
3.过程方法:通过学生动手折纸、画图等活动,引导学生观察、发现、分析、归纳、总结,锻炼学生的学习能力。
二.教学重点:1.数学知识:掌握线段的中垂线的定义,理解线段的中垂线的性质定理及其逆定理,并能利用定理进行简单计算与合情推理,熟练进行尺规作图。
2.能力:通过观察操作和归纳推理培养学生提出问题、解决问题的意识,锻炼学生的逻辑推理能力。
三.教学难点:两个性质的归纳与理解。
四.课前准备:多媒体课件、三角形纸片、矩形纸片、三角板、量角器五.教学过程:环节一:创设情境,导入新课问题1:在小河的同旁有两个村庄,为了过河方便,两村人准备共同出资修建一座小桥,小桥修在小河的哪个位置才能到两个村庄的距离相等呢?你的根据是什么预设1:把小河看成两个点,连接这两点,找出它的中点,就是了。
预设2:不对,所找的这点一定在小河上,而连接两点的线段的中点一定不在小河上。
教师引导:这个问题不好解决,不要灰心,学完本节课,我们再来解决它。
设计目的:通过实际问题引入,激发学生兴趣,体会数学在生活的用处。
环节二:复习回顾,以旧引新。
问题2:什么样的图形是轴对称图形? 怎样判断一个图形是不是轴对称图形?我们学过的图形中哪些是轴对称图形?预设1:通过折叠,看折线两边是否重合预设2:找对应点,看对应点的连线是否被同一条直线垂直平分问题3:猜想:线段是轴对称图形吗?如果是,它的对称轴是什么呢?验证:画线段AB ,并根据刚才所说的识别方法验证线段AB 的对称性。
预设1:折痕为线段的垂直平分线预设2:折痕为线段本身若出现预设1 ,可直接总结归纳线段的对称性。
《线段垂直平分线的性质》教案
一、教学目标
1.理解线段垂直平分线的性质及其逆定理,并能用其进行相关命题的判断。
2.能掌握尺规作图法作线段垂直平分线的基本步骤。
3.培养学生对几何问题的推理论证和探究能力。
4.培养学生良好的学习习惯和合作意识。
二、教学重点
线段垂直平分线的性质及其逆定理的理解与应用。
三、教学难点
对线段垂直平分线性质的理解以及应用其进行尺规作图。
四、教学准备
1.教师准备:教学PPT,黑板,直尺,圆规。
2.学生准备:直尺,圆规,铅笔,纸。
五、教学过程
1.导入新课:复习上节课所学的线段垂直平分线的定义和性质。
2.新课学习:
(1)给出线段垂直平分线的性质及其逆定理,让学生通过小组讨论理解并掌握。
(2)通过实例让学生掌握如何用尺规作图法作线段垂直平分线。
(3)让学生自主完成课本上的例题和练习题,并小组讨论解答。
3.课堂小结:让学生总结本节课所学内容,教师进行补充和总结。
4.布置作业:课后练习题及补充题。
5.教学反思:根据学生的掌握情况,对教学方法和进度进行调整。
教案精选:初中数学《线段的垂直平分线》
教学设计
教案精选:初中数学《线段的垂直平分线》教学设计
1、教材分析
(1)知识结构
(2)重点、难点分析
本节内容的重点是线段垂直平分线定理及其逆定理. 定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.
本节内容的难点是定理及逆定理的关系. 垂直平分线定理和其逆定理,题设与结论正好相反. 学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.
2、教法建议
本节课教学模式主要采用“学生主体性学习”的教学模式. 提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳. 教师的作用在于组织、点
拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人. 具体说明如下:
(1)参与探索发现,领略知识形成过程
学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点P,它到线段两端的距离有何关系?学生会很容易得出“相等”. 然后学生完成证明,找一名学生的证明过程,进行投影总结. 最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理. 这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.
(2)采用“类比”的学习方法,获取逆定理
线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.
(3) 通过问题的解决,让学生学会从不同角度分析问题、解决问题;让学生学会引申、变更问题,以培养学生发现问题、提出问题的创造性能力.
教学目标:
1、知识目标:
(1)掌握线段的垂直平分线的性质定理及其逆定理;
(2)能运用它们证明两条线段相等或两条直线互相垂直;
2、能力目标:
(1)通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;
(2)提高综合运用知识的能力.
3、情感目标:
(1)通过自主学习的发展体验获取数学知识的感受;;
(2)通过知识的纵横迁移感受数学的辩证特征.
教学重点:线段垂直平分线定理及其逆定理
教学难点:定理及逆定理的关系
教学用具:直尺,微机
教学方法:以学生为主体的讨论探索法
教学过程:
1、新课背景知识复习
(1)线段垂直平分线的概念
(2)问题:(投影显示)
如图,CD是线段AB的垂直平分线,P为CD上任意一点,PA、PB有何关系?为什么?
整个过程,由学生完成. 找一名学生代表回答上述问题并
投影显示学生的证明过程.
2、定理的获得
让学生用文字语言将上述问题表述出来.
定理:线段垂直平分线上的点和这条线段两个端点的距离相等.
强调说明:线段垂直平分线性质定理是证明线段相等的一条依据,在计算、作图中也有重要作用.
学生根据上述学习,提出自己的问题(待定)
学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论.
3、逆定理的获得
类比角平分线逆定理获得的过程,让学生讲解下一环节所要学习研究的内容.
这一过程,完全由学生自己通过小组的形式,代表到台前讲解.
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.
强调说明:定理与逆定理的联系与区别
相同点:结构相同、证明方法相同
不同点:用途不同,定理是用来证线段相等
4、定理与逆定理的应用
(1)讲解例1(投影例1)
例1如图,△ABC中,∠C=,∠A=,AB的在垂线交AC于D,交AB于E
求证:AC=3CD
证明:∵DE垂直平分AB
∴AD=BD
∴∠1=∠A=
∵
∴∠2=
∴CD=BD
∴CD=AD
∴AD=2CD
即AC=3CD
讲解例2(投影例2)
例2:在△ABC中,AB=AC,AB的中垂直线与AC所在直线相交所得的锐角为,求底角B的大小.
(学生思考、分析、讨论,教师巡视,适当参与讨论)
解:(1)当AB的中垂线MN与AC相交时,如图
(1),
∵∠ADE=,∠AED=
∴∠A=-∠AED=-=
∵AB=AC∴∠B=∠C
∴∠B=
(2)当的中垂线与的延长线相交时,如图(2)∵∠ADE=,∠AED=
∴∠BAE=-∠AED=-=
∵AB=AC∴∠B=∠C
∴∠B=
例3 (1)在△ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,∠A=,求∠NMB 的大小
(2)如果将(1)中∠A的度数改为,其余条件不变,再求∠NMB的大小
(3)你发现有什么样的规律性?试证明之.
(4)将(1)中的∠A改为钝角,对这个问题规律性的认识是否需要加以修改
解:(1)∵AB=AC
∴∠B=∠ACB
∴∠B=
∵∠BNM=
∴
(2)如图,同(1)同理求得
(3)如图,∠NMB的大小为∠A的一半
5、课堂小结:
(1)线段垂直平分线性质定理和逆定理
(2)在应用时,易忽略直接应用,往往又重新证三角形的全等,使计算或证明复杂化.
6、布置作业:
书面作业P119#2、3
思考题:已知:如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高
求证:AD垂直平分EF
证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC
∴DE=DF
∴D在线段EF的垂直平分线上
在Rt△ADE和Rt△ADF中
∴Rt△ADE≌Rt△ADF
∴AE=AF
∴A点也在线段EF的垂直平分线上
∵两点确定一条直线
∴直线AD就是线段EF的垂直平分线。