基坑开挖降水引起的地面下沉计算公式
- 格式:docx
- 大小:36.78 KB
- 文档页数:2
基坑开挖降水方案一、工程概况。
咱这有个基坑要开挖啦,这个基坑大概是个啥情况呢?比如说它的长、宽、深是多少多少米(具体数值按实际情况来哈)。
它周围的环境也挺重要的,有没有啥建筑物靠着它,有没有地下管线啥的在附近溜达,这些都得心里有数,不然一挖就容易捅娄子。
二、降水目的。
为啥要降水呢?这就跟基坑里不能有水一样简单。
如果基坑里水太多,就像泡澡一样,那土就变得软趴趴的,地基就不稳了,咱们的建筑物就像在泥巴上盖房子,那可不行。
所以降水就是要把基坑里的水弄出去,让土变得干干的、结结实实的,这样才能在上面盖咱的大楼。
三、降水方法选择。
# (一)轻型井点降水。
这是个挺常用的法子。
就像在基坑周围插好多小吸管一样,不过这些“吸管”是井点管。
通过抽水设备把水从这些井点管里抽出来,这样就可以降低基坑内的水位啦。
这种方法适合在水位不是特别深,而且土的渗透系数也不是特别大的情况下用。
# (二)管井降水。
如果水位比较深,轻型井点降水搞不定的时候,管井降水就可以闪亮登场了。
它就像在基坑周围打好多小井一样,每个小井里都有抽水设备,就像一个个小水泵在不停地抽水。
管井降水对于那些渗透系数比较大的土,效果特别好。
# (三)综合考虑。
咱得根据实际情况来选。
比如说咱们这个基坑的地质情况、水位高低、周围环境啥的。
如果地质比较复杂,也许轻型井点降水和管井降水还可以一起用呢,双管齐下,把水降得死死的。
四、降水设计。
# (一)轻型井点降水设计。
1. 井点布置。
井点管的间距得好好算一算。
不能太密了,太密浪费材料;也不能太稀了,太稀了水降不下去。
一般来说,根据基坑的形状和大小,还有土的渗透系数啥的,间距大概在0.8 1.6米之间(具体数值再精确计算哈)。
井点管的深度呢,要比基坑底深个0.9 1.2米左右,这样才能保证把基坑底的水也抽干净。
2. 抽水设备选择。
要根据需要抽取的水量来选抽水设备。
就像你挑水桶一样,水多就得用大水桶。
抽水设备的功率得能满足把基坑里的水快速抽出来的要求。
基坑开挖降水引起的地面下沉计算公式地面下沉量的计算公式如下:
ΔG=ΔH×γ
其中,ΔG表示地面下沉量,ΔH表示地下水位上升量,γ表示土体
压缩系数。
地下水位上升量的计算公式如下:
ΔH=Σ(Δh)
其中,ΔH表示地下水位上升量,Δh表示每个降水期间的地下水位
上升量。
每个降水期间的地下水位上升量的计算公式如下:
Δh=A×(1-S_s)/(S_w×(1+e))
其中,Δh表示每个降水期间的地下水位上升量,A表示降水量,S_s
表示地下水位下方土层的饱和度,在无降水条件下,该土层的饱和度为1;S_w表示吸力饱和饱和度,表示地下水位上方土层的饱和度,在无降水条
件下为0;e表示地下水位下的土层的孔隙比。
土体压缩系数的计算公式如下:
γ=e/(1+e)
其中,γ表示土体压缩系数,e表示地下水位下的土层的孔隙比。
综上所述,通过以上公式可以计算出基坑开挖降水引起的地面下沉量。
然而,需要注意的是,这些公式是根据土体力学和水文地质方面的理论推
导得出的,实际应用时还需要进行现场监测和实测数据的验证,以提高计算结果的准确性和可靠性。
6.3 常用的地基沉降计算方法这里所讲的地基沉降量是指地基最终沉降量,目前常用的计算方法有:弹性力学法、分层总和法、应力面积法和考虑应力历史影响的沉降计算法。
所谓最终沉降量是地基在荷载作用下沉降完全稳定后的沉降量,要达到这一沉降量的时间取决于地基排水条件。
对于砂土,施工结束后就可以完成;对于粘性土,少则几年,多则十几年、几十年乃至更长时间。
6.3.1 计算地基最终沉降量的弹性力学方法地基最终沉降量的弹性力学计算方法是以Boussinesq 课题的位移解为依据的。
在弹性半空间表面作用着一个竖向集中力P 时,见图6-5,表面位移w (x, y, o )就是地基表面的沉降量s :E r P s 21μπ-⋅= (6-8)式中 μ—地基土的泊松比;E —地基土的弹性模量(或变形模量E 0);r —为地基表面任意点到集中力P 作用点的距离,22y x r +=。
对于局部荷载下的地基沉降,则可利用上式,根据叠加原理求得。
如图6-6所示,设荷载面积A 内N (ξ,η)点处的分布荷载为p 0(ξ,η),则该点微面积上的分布荷载可为集中力P= p 0(ξ,η)d ξd η代替。
于是,地面上与N 点距离r =22)()(ηξ-+-y x 的M (x, y )点的沉降s (x, y ),可由式(6-8)积分求得:⎰⎰-+--=Ay x d d p E y x s 22002)()(),(1),(ηξηξηξμ (6-9)从式(6-9)可以看出,如果知道了应力分布就可以求得沉降;反过来,若沉降已知又图6-5 集中力作用下地基表面的沉降曲线图6-6 局部荷载下的地面沉降(a )任意荷载面;(b )矩形荷载面可以反算出应力分布。
对均布矩形荷载p 0(ξ,η)= p 0=常数,其角点C 的沉降按上式积分的结果为:021bp E s c ωμ-= (6-10)式中 c ω—角点沉降影响系数,由下式确定:⎪⎪⎭⎫ ⎝⎛+++++=)1ln()11ln(122m m mm m c πω (6-11)式中 m=l/b 。
基坑开挖技术总结陈龙文摘要本文以广州市轨道交通十四号线支线工程监理2标施工3标康大站基坑开挖为例,介绍了基坑开挖施工工艺,和保证基坑开挖施工安全与质量所采取的各项措施,对基坑开挖过程中监理工作情况进行总结。
关键词基坑开挖监理工作控制一、工程概况1.1工程简介康大站为地下两层岛式站台标准车站,结构形式为明挖双层单柱两跨钢筋混凝土结构,全长225米,标准段宽度为19.7米,有效站台中心里程为YDK58+548.000,有效站台中心里程轨面高程为25.516米,有效站台中心里程处顶板覆土约为3.350米。
车站共设置5个出入口,2组风亭和1个冷却塔。
设置的出入口分别位于九龙大道两侧。
2组风亭均位于九龙大道西北侧。
车站主体围护结构采用800mm厚地下连续墙+内支撑的形式。
内支撑拟采用竖向3道支撑,第一道为钢筋混凝土支撑;第二、三道除两端盾构井采用钢筋混凝土支撑,其他主撑采用φ609mm、t=16mm的钢管支撑。
围护结构连续墙标准墙幅按照6m宽分幅,地下连续墙接头采用工字钢接头。
本站主体结构基坑采用明挖顺作法施工,即开挖至基坑底后顺作车站底、中、顶板及侧墙和其它结构。
本站基坑侧壁安全等级为一级,基坑监测安全等级:一级。
康大站平面布置图1.2工程地质本站站址范围地层由上而下依次为:<1>、<4N-1>、<4N-2>、<3-1>、<3-2>、<5H-2>、<6H>、<7H>。
结构底板主要位于<6H>、<7H>花岗岩风化土层。
工程地质剖面图1.3地层物理参数地层物理力学参数表1.4水文地质车站范围地下水为第四系松散岩类孔隙水和基岩缝隙水,按埋藏条件可划分上层滞水、潜水和承压水。
第四系冲积一洪积砂层、卵石层,为主要含水层,属中等~强透水层,地下水较丰富~丰富,若砂层埋藏较浅,砂层孔隙水为潜水,埋藏较深则为承压水;冲击-洪积土层、残积土层和岩石全风化带,含水较贫乏,透水性差。
CENTRAL SOUTH UNIVERSITY课外研习论文学生姓名刘振林、靳颜宁、唐雯钰学号 020*******、020*******、020******* 学院资源与安全工程学院专业城市地下空间工程1001班指导老师李江腾2012.09目录引言 (2)1.地基沉降 (2)1.1地基沉降的基本概念 (2)1.2地基沉降的原因 (2)1.3地基沉降的基本类型 (2)1.3.1按照沉降产生机理 (2)1.3.2按照沉降的表示方法 (2)1.3.3按照沉降发生的时间 (3)2.地基沉降的计算 (3)2.1地基沉降计算的目的 (3)2.2地基沉降计算的原则 (3)2.3地基沉降的计算方法 (3)2.3.1分层总和法 (3)2.3.2应力面积法 (6)2.3.3弹性力学方法 (13)2.3.4斯肯普顿—比伦法(变形发展三分法) (15)2.3.5应力历史法(e-lgp曲线法) (17)2.3.6应力路径法 (19)3.计算要点 (20)3.1分层总结法计算要点 (20)3.2应力面积法计算要点 (20)3.3弹性理论法计算要点 (20)3.4斯肯普顿—比伦法计算要点 (20)3.5应力历史法计算要点 (20)3.6应力路径法计算要点 (20)4.总结 (21)参考文献: (21)地基沉降的计算方法及计算要点城市地下空间工程专业学生刘振林,唐雯钰,靳颜宁指导教师李江腾[摘要]:本文介绍了六种地基沉降量的计算方法:分层总和法、应力面积法、弹性理论法、斯肯普顿—比伦法、应力历史法以及应力路径法,并讨论了各种方法的计算要点。
关键词:分层总和法;规范法;弹性理论;斯肯普顿—比伦;应力历史;应力路径ABSTRACT:This thesis introduces six kinds of foundation settlement calculation methods:layerwise summation method,Stress area method,elasticity-thoery method,Si Ken Compton ancient method,Stress history method,stress path method,and discusses the main points of the six methods.KEY WORD:layerwise summation method;Specification Approach;elastic theory;stress history;A.W.Skempton—L.Bjerrum;stress path引言基础沉降计算从来就是地基基础工程中三大难题之一,在进行基础设计时,不仅要满足强度要求,还要把基础的沉降和沉降差控制在一定范围内。
深基坑开挖导致地表及临近建筑物沉降的计算方法综述摘要:深基坑开挖将不可避免地引起周围地基土体的变形,在城市建(构)筑物和地下埋管(沟)设施密集区的深基坑开挖工程,除了要保障基坑自身的安全之外,有效控制基坑邻近建(构)筑物和埋管(沟)设施的变形也是决定其成败的关键。
而深基坑开挖导致临近地表沉降的分析法主要有经验简化分析法、数值模拟法等,如果能在上述方法中考虑到临近建筑物的存在将会对基坑工程产生非常大的经济效益和社会效益。
关键词:深基坑开挖;经验简化分析法;数值模拟法1引言近年来随着中国经济的高速发展,城市建设规模不断扩大,高层建筑和地下交通工程建设面临大量的深开挖问题,基坑工程向着更大、更深、更复杂的方向发展。
在软土地区(如天津、上海、福州等沿海地区)的城市建设中,由于地层的软弱复杂,进行基坑开挖往往会产生较大的变形,严重影响紧靠深基坑周围的建筑物、地下管线、交通干道和其它市政设施[1]。
2国内外研究现状对于基坑变形的估算方法主要分为经验简化分析法、数值计算法。
经验简化分析法和来自于对基坑变形机理的理论研究和多年来国内外基坑工程实测数据的统计。
经验简化分析法适合于对基坑的变形做出快速估计并为基坑设计与施工中的变形控制提供理论和实测依据。
数值模拟计算方法主要是采用平面有限元法或者空间有限元法模拟基坑工程的施工全过程。
2.1经验简化分析法的研究王建华等[2](2007)等人提出实测资料统计分析按基坑案例的来源范围可以分为两种方法,一种是大范围内的基坑,给出基坑的一般变形规律;另一种是分析小范围(区域)内的基坑,如上海软土地区的基坑变形特性研究。
通过对上海地区31个支护结构与主体地下结构相结合深基坑案例的分析了围护结构最大侧移与开挖深度之间的关系,提出基坑的最大侧移基本介于0.1%H和0.6%H之间,所有基坑的最大侧移平均值为0.25%H。
徐中华等[3](2009)提出无量纲化的概念,提出了无量纲化的最大侧移δhm/H 与开挖深度之间的关系,指出无量纲化最大侧向位移随着开挖深度的增大而减小。
基坑降水对周围建筑物的影响摘要:基坑工程降水对周围地表沉降的影响己引起广泛关注,地面沉降对环境和工程危害极大,将导致地面及建筑物的裂缝、基础下沉、房屋倾斜和地下管网无法正常使用。
本文推导的计算方法能充分反映基坑降水对周边地表下沉的影响。
关键词:不均匀沉降基坑降水自重应力引言随着城市建设的发展,高层及超高层建筑不断涌现的同时,深基坑工程逐渐成为目前城市建设和大型工程建设中的常见形式,而伴随深基坑工程的降水工程将会对导致基坑周围土体的沉降和不均匀沉降。
1、降水前后自重应力的变化对不均匀沉降影响基坑工程要伴随着降水的进行,这影响到了土体中水的渗流场,随着地下水水位的下降,土层中的含水量减小,使浮托力减小,等于增加了附加荷重,使土产生固结、压缩,土体产生变形。
这种土体的变形就表现为基坑周围地表的沉降变化。
含水或饱和含水的土层,是由固相的土和液相的孔隙水组成的两相介质。
土体所受的荷载,由土粒和孔隙水共同承担。
当土体中的孔隙水被疏干或部分疏干后,土体内孔隙水被排出,孔隙水所承担的应力减小,土粒所承担的应力增加,即土的有效应力增加,从而使土体产生固结压密。
2、抽水引起的地表沉降计算2.1抽水作用下土的应力应变本构律承压含水层是由固相的土和液相的孔隙水组成的两相介质。
土体所受的荷载,由土粒和孔隙水共同承担。
当土体中的孔隙水位由于抽水降低后,孔隙水压力的降低导致土体颗粒所承担的应力增加,即土的有效应力增加,从而使土体产生固结压密。
对于土的抽水压密过程,可分为弹性压缩变形过程与粘滞压缩变形过程。
相应地,总压缩应变也可分为弹性压缩应变和粘滞压缩应变,而且,,土的抽水压密过程的力学机制,可用图1所示的三单元粘弹性固体模型所反映的应力—应变关系进行描述。
图1抽水压密模型对于有效应力缓慢递增的加载过程,三维线性粘弹性应力-应变本构关系如下:式中:—压缩应变张量的主分量;—有效应力增量张量的主分量;—土骨架的弹性压缩系数,;—土骨架的蠕变压缩系数,;—时间变量。
地基沉降计算方法
地基沉降是指在地基承载力不足或地基土层过于松软时,地面
上建筑物或结构受到地基土层沉降的影响而产生的沉降现象。
地基
沉降对建筑物的安全性和稳定性会造成不利影响,因此对地基沉降
进行准确的计算和分析显得尤为重要。
下面将介绍地基沉降的计算
方法。
首先,对于浅基础而言,地基沉降的计算通常采用弹性理论的
方法。
根据地基土层的力学性质和地基承载力的要求,可以采用不
同的计算方法,如弹性模量法、叠加法、有限元法等。
其中,弹性
模量法是一种常用的计算方法,它通过考虑地基土层的弹性模量和
杨氏模量来计算地基沉降的大小。
叠加法则是将地基土层分层进行
分析,分别计算各层的沉降量,然后进行叠加得到总的地基沉降量。
有限元法则是通过建立地基土层的有限元模型,利用计算机进行数
值模拟,得到地基沉降的结果。
其次,对于深基础而言,地基沉降的计算方法与浅基础有所不同。
深基础通常采用桩基、承台基础等形式,地基沉降的计算需要
考虑地基土层的非线性特性和桩基与土层之间的相互作用。
在进行
深基础地基沉降计算时,需要考虑土-桩-结构相互作用的影响,采
用有限元法进行三维非线性分析,得到地基沉降的准确结果。
总之,地基沉降的计算方法在工程实践中具有重要的意义。
通过对地基沉降进行准确的计算和分析,可以为工程设计和施工提供科学依据,保障建筑物的安全性和稳定性。
因此,工程师在进行地基设计时,需要根据实际情况选择合适的计算方法,并结合工程实践进行合理的分析和计算,以确保地基沉降的准确性和可靠性。
基坑开挖降水引起的地面下沉计算公式在进行计算之前,首先需要了解以下几个参数和概念:
1.开挖深度:指基坑从地面到底座的深度,通常用H来表示。
2.地下水位高程:指基坑开挖前地下水位的高程,通常用G0来表示。
3.开挖后的地下水位高程:指基坑开挖后地下水位的高程,通常用G
来表示。
4.基坑周围水位差:指基坑周围地下水位的变化量,通常用ΔG来表示。
5.地下水的比重:指地下水的密度与水的密度之比,通常用γw来表示。
基于以上参数,可以使用以下的计算公式来计算降水引起的地面下沉:△S=(H1-H2)+(G0-G+ΔG)/γw
其中,△S表示地面下沉的程度,H1表示基坑开挖前地面的高程,H2
表示基坑开挖后地面的高程。
该公式的推导基于土体力学和水力学的基本原理,主要考虑了土体变
形和水位变化对地面下陷的影响。
通过计算可以得到降水引起的地面下沉
的数值,用以评估工程的安全性和稳定性。
需要注意的是,以上公式是基于一些简化的假设和条件进行推导的,
实际情况中可能会存在一些复杂的地质和土壤条件,因此在具体工程项目中,应该根据实际情况进行更准确的计算和评估。
此外,在实际工程中,还应该考虑到其他因素,如基坑周围土体的固结沉降、地下水的渗透和排水等,以便更全面地评估基坑开挖降水引起的地面下陷情况。
总的来说,基坑开挖降水引起的地面下沉计算公式是基于土体力学和水力学原理建立的,通过考虑土体变形和水位变化对地面下陷的影响,可以评估基坑开挖引起的地面下陷情况,进而保证工程的安全性和稳定性。