数轴的几何意义和代数意义
- 格式:docx
- 大小:3.45 KB
- 文档页数:2
课程类型:新授课—衔接课年级:新初一学科:数学课程主题第2讲:认识数轴、绝对值与相反数【要点梳理】1、数轴:规定了原点、正方向和单位长度的直线叫做数轴.注意:(1)定义中的“规定”二字是说原点的选定、正方向的取向、单位长度大小的确定,都是根据需要“规定”的.通常,习惯取向右为正方向.(2)长度单位与单位长度是不同的,单位长度是根据需要选取的代表“1”的线段,而长度单位是为度量线段的长度而制定的单位.有km、m、dm、cm等.2、数轴的画法(1)画一条直线(通常画成水平位置);(2)在这条直线上取一点作为原点,这点表示0;(3)规定直线上向右为正方向,画上箭头;(4)再选取适当的长度,从原点向右每隔一个单位长度取一点,依次标上1,2,3,…从原点向左,每隔一个单位长度取一点,依次标上-1,-2,-3,…注意:(1)原点的位置、单位长度的大小可根据实际情况适当选取.(2)确定单位长度时根据实际情况,有时也可以每隔两个(或更多的)单位长度取一点.3、数轴与有理数的关系任何一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可以表示其他数例如无理数,比如 .注意:(1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示.(2)一般地,在数轴上表示的两个数,右边的数总比左边的数大.【典型例题】1、(2021七上·海安期末)比-4.3大的负整数有()A. 4个B. 5个C. 6个D. 无数个2、(2021七上·江阴期末)下列算式中,运算结果为负数的是()A. B. C. D.3、(2020七上·溧阳期中)已知两个有理数、,如果 0且a+b 0,那么()A. 0, 0B. 0, 0C. 、同号D. 、异号,且负数的绝对值较大4、在数轴上,位于﹣3和3之间的点有()A. 7个B. 5个C. 4个D. 无数个5、在﹣4,0,﹣1,3这四个数中,最小的数是()A. ﹣4B. 2C. -1D. 36、数轴是一条()A. 直线B. 射线C. 线段D. 不能确定7、下面画的数轴正确的是()A. B. C. D.【同步演练】1、下列一组数:1,4,0,-,﹣3在数轴上表示的点中,不在原点右边的点的个数为()A. 2个B. 3个C. 4个D. 5个2、如图所示,根据有理数a,b,c在数轴上的位置,下列关系正确的是()A. b>a>0>cB. a<b<0<cC. b<a<0<cD. a<b<c<03、如图,数轴上的点P、O、Q、R、S表示某城市一条大街上的五个公交车站点,有一辆公交车距P站点3km,距Q站点0.7km,则这辆公交车的位置在()A.P站点与O站点之间B. O站点与Q站点之间C. Q站点与R站点之间D. R站点与S站点之间4、若有理数m在数轴上对应的点为M,且满足|m|>1且m<0,则下列数轴表示正确的是()A. B.C. D.要点2:认识相反数【要点梳理】1、定义:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数.特别地,0的相反数是0.注意:(1)“只”字是说仅仅是符号不同,其它部分完全相同.(2)“0的相反数是0”是相反数定义的一部分,不能漏掉.(3)相反数是成对出现的,单独一个数不能说是相反数.(4)求一个数的相反数,只要在它的前面添上“-”号即可.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.3、多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .注意:(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5.(2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.【典型例题】1、(2021七下·苏州开学考)2021的相反数是()A. -2021B.C. 2021D.2、(2020七上·高新期中)下列各对数中,互为相反数的是()A. -(-3)与B. 与-0.25C. -(+3)与+(-3)D. +(-0.1)与-(- )3、如果a与﹣3互为相反数,那么a等于()A. B. - C. 3 D. -34、下列结论正确的有()①任何数都不等于它的相反数;②符号相反的数互为相反数;③表示互为相反数的两个数的点到原点的距离相等;④若有理数a,b互为相反数,那么a+b=0;⑤若有理数a,b互为相反数,则它们一定异号。
考点02数轴与相反数知识框架⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎨⎪⎩⎪⎪⎧⎪⎨⎪⎩⎩数轴的概念数轴的读数与画法基础知识点数轴上的点与有理数之间的关系数轴与数的大小利用数轴求两点之间的距离重点题型数轴上点的运动⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩相反数的概念基础知识点相反数的意义多重符号化简相反数的意义及求法重点题型相反数与数轴结合 基础知识点知识点2.1 数轴的概念1)数轴:用一条直线上的点表示数,这条直线叫作数轴 2)三要素:①原点—参考点,正负数分界点; ②方向—一般选取向右为正方向;③单位长度—同一条数轴上的单位长度应当一致 知识点2.2 数轴的读数与画法1)数轴的读数:在原点的左边,则为正数,在数轴的右边,则为负数。
2)画数轴步骤:a .直线b .确定原点c .选正方向(通常从原点向右或向上定位正方向)d .选取单位长度(选取适当长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3,…;从原点向左,用类似方法依次表示-1,-2,-3,…)e .标数(用实心点标数).例1.以下是四位同学画的数轴,其中正确的是() A . B . C .D .例2.下列所画数轴对不对?如果不对,指出错在哪里?①②③④⑤⑥⑦【答案】①②③④⑥画的数轴不对,⑤和⑦画的数轴正确,原因见解析.【分析】根据数轴的三要素:原点、正方向、单位长度,即可解答.【解析】解:①画的数轴不对,缺原点;②画的数轴不对,缺正方向;③画的数轴不对,数轴不是射线而是直线;④画的数轴不对,缺单位长度;⑥画的数轴不对,单位长度不统一.⑤和⑦画的数轴正确.【点睛】本题考查了数轴的识别.规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向.例3.如图,数轴上蝴蝶所在点表示的数可能为()A.3B.2C.1D.-1知识点2.3 数轴上的点与有理数之间的关系(数形结合)1)数轴上的点并不是都是有理数2)正方向可以不按照常规方向选取3)a>0,与原点的距离是a,在数轴上可以是 a(存在多解的情况)注:要确定在数轴上的具体位置,必须要距离+方向例1.下列说法:①规定了原点、正方向的直线是数轴②数轴上两个不同的点可以表示同一个有理数③有理数1100数轴上无法表示出来④任何一个有理数都可以在数轴上找到与它对应的唯一点其中正确的是()A.①②③④B.②③④C.③④D.④例2.数轴的原型来源于生活实际,数轴体现了()的数学思想,是我们学习和研究有理数的重要工具.A.整体B.方程C.转化D.数形结合【分析】因为数轴是解决数的运算的一种重要工具,所以它充分体现了数形结合的思想.【点睛】本题考查几种数学思想,解题的关键是理解数形结合的定义:根据数与形之间的一一对应关系,数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,从而起到优化解题途径的目的.例3.数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画一条15厘米的线段AB,则AB盖住的整数点的个数共有()个A.13或14个B.14或15个C.15或16个D.16或17个若在数轴上随意画线段AB,其左侧端点A的位置存在两种可能性:一种可能是点A与数轴上某一个整点重合(如图中数轴①所示;为清楚起见,图中用长方形代表线段AB),另一种可能是点A落在数轴上某两个整点之间的区域内(如图中数轴②所示). 因为线段AB的长是一个定值,所以当线段左侧端点A的位置确定时线段右侧端点B的位置也随之确定.(1) 分析图中的数轴①可知,由于数轴的单位长度为1厘米,线段AB的长为15厘米,且左侧端点A与一个整点重合,所以线段AB的两个端点各自盖住1个整点,线段的其他部分盖住了14个整点,故线段AB一共盖住了16个整点.(2) 分析图中的数轴②可知,由于数轴的单位长度为1厘米,线段AB的长为15厘米,且左侧端点A落在两个整点之间的区域内,所以线段AB的两个端点均无法盖住任何整点,线段的其他部分盖住了15个整点,故线段AB一共盖住了15个整点.综上所述,线段AB盖住的整点的个数共有15或16个.故本题应选C.点睛:本题不仅考查了数轴的相关知识,还考查了利用简单的数形结合思想解决问题的能力. 解决本题的关键在于结合图形针对可能出现的情况进行分类讨论. 在分析的过程中,线段左侧端点在数轴上可能的位置是分情况讨论问题的一个重要出发点,左侧端点是否与某一整点重合直接影响线段所能覆盖的整点数量.知识点2.4 数轴与数的大小1)正方向上,离原点越远,数越大2)负方向上,离原点越近,数越大(负数数字越大,结果反而越小)注:数轴从负方向向正方向,数值逐渐增大。
理解数轴和坐标在数学中的意义数轴和坐标是数学中常见的概念,它们在数学中有着重要的意义。
通过理解数轴和坐标,我们可以更好地理解数学中的各种概念和关系,从而提高数学的学习效果。
数轴是一条直线,用于表示数的大小和位置关系。
数轴上的每一个点都与一个实数对应,这个实数被称为该点的坐标。
数轴的中点被定义为0,正方向为右侧,负方向为左侧。
通过数轴,我们可以直观地感受到数的大小和相对位置。
比如,如果一个点的坐标为2,那么它就位于数轴上距离0点右侧2个单位的位置。
如果一个点的坐标为-3,那么它就位于数轴上距离0点左侧3个单位的位置。
数轴的概念在数学中有着广泛的应用。
在代数中,我们可以利用数轴来解决方程和不等式。
比如,对于方程x+2=5,我们可以在数轴上找到坐标为5的点,然后往左边找到坐标为2的点,这两个点之间的距离就是未知数x的解。
在几何中,数轴可以用来表示线段、角度等。
通过数轴,我们可以更好地理解几何中的各种概念和性质。
坐标是数轴上点的位置标记。
在平面直角坐标系中,我们通常用两个数,称为横坐标和纵坐标,来表示一个点的位置。
横坐标表示点在x轴上的位置,纵坐标表示点在y轴上的位置。
坐标的概念在数学中有着广泛的应用。
在代数中,我们可以利用坐标来表示二元一次方程,求解方程组等。
在几何中,坐标可以用来表示点、直线、曲线等。
通过坐标,我们可以更好地理解几何中的各种概念和性质。
数轴和坐标的理解对于数学的学习至关重要。
首先,它们可以帮助我们更好地理解数的大小和相对位置。
通过数轴,我们可以直观地感受到数的大小和相对位置,从而更好地理解数的比较和运算。
其次,它们可以帮助我们更好地理解代数中的各种概念和关系。
通过数轴和坐标,我们可以更好地理解方程、不等式、函数等代数概念,从而提高解题的能力。
最后,它们可以帮助我们更好地理解几何中的各种概念和性质。
通过数轴和坐标,我们可以更好地理解点、直线、曲线等几何概念,从而提高几何问题的解决能力。
第2节数轴与相反数知识梳理1、数轴的概念:规定了原点、正方向(向右为正)、单位长度的直线叫做数轴.任何一个有理数都可以用数轴上的点来表示.2、相反数的概念(1)(代数意义):只有符号不同的两个数叫做互为相反数.(2)(几何意义):在数轴上位于原点两旁且到原点距离相等的两个点表示的数叫做互为相反数.合作学习:数轴在一条东西向的马路上,离车站的西面3米处有一辆小汽车,车站的东面6米处有一棵柳树,小汽车的西面5米处有一棵樟树,试用图表示这一情景.我们在小学学习数学时,就能用直线上依次排列的点来表示自然数,所以我们可以画一条直线表示马路,从左到右表示由西到东的方向,任取一点O表示车站的位置,点C,点B,点A分别表示柳树、小汽车、樟树的位置,为了表达更加清晰,我们把点O左右两边的数分别用负数和正数来表示,如图所示.从以上得到一点启发:我们在一条直线上规定一个正方向,就可以用这条直线上的点表示正数、零和负数.具体做法如下:画一条直线(通常画成水平方向),在这条直线上任取一点作为原点,用这点表示O。
规定直线上从原点向右为正方向,画上箭头,那么相反方向为负方向。
再选取适当的长度作为单位长度,从原点向右每隔一个单位长度取一点,依次标上1,2,3,…;从原点向左,每隔一个单位长度取一点,依次标上-1,-2,-3,…,如图所示。
概括:像这样规定了原点、正方向和单位长度的直线叫做数轴.典例精析考点1:运用数轴表示有理数【例1】画出数轴,并在数轴上画出表示下列各数的点:5,-2,-4,+1,3.5分析:在数轴上画出表示有理数的点,可以先由这个数的符号确定它在数轴上原点的哪一侧,再在相应的一侧上确定它与原点相距几个单位长度.解:如图:点评:画数轴要注意三要素:(1)原点、(2)正方向(向右为正)、(3)单位长度跟踪训练1如图,数轴上的点A,B,C,D,E分别表示什么数?跟踪训练2A点表示-3,B点表示-1.5,C点表示0,D点表示+1.5,E点表示+3考点2:运用数轴解决实际问题【例2】小明的家(记为A)、学校(记为B)、书店(记为C)依次坐落在一条东西走向的大街上,小明家位于学校西边30米处,书店位于学校东边50米处,小明从学校沿这条大街向东走了40米,接着又向西走了30米到达D处,以B点为原点,试用数轴表示上述A、B、C、D的位置,并写出A,B,C,D四点表示的数.解:如图,A点表示的数为-30,B点表示的数为0,C点表示的数为+50,D点表示的数为+10.点评:本题利用了“数形结合”的数学思想,将实际问题转化为数学问题,数轴正是实现这一转化的桥梁.跟踪训练2邮递员骑车从邮局出发,先向南骑行2km到达A村,继续向南骑行3km到达B村,然后向北骑行9km到达C村,最后回到邮局.(1)以邮局为原点,以北为正方向,用lcm表示lkm,画出数轴,并在该数轴上表示出A,B,C三个村庄的位置;(2)C村离A村有多远?(3)邮递员一共骑了多少km?跟踪训练2(1)图略;(2)C村离A村有6km;(3)邮递员一共骑了18km合作学习:观察以下两对数中,各有什么共同特点?很明显,每对数中的两个数都只有符号不同.概括:像这样只有符号不同的两个数称互为相反数,如3和3-互为相反数。
数轴解释代数式的意义难易度:★★★关键词:有理数答案:用数轴解释代数式的实际意义应把握好数轴本身的意义并加以运用。
【举一反三】典例:大家知道,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离.又如式子,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似地,式子在数轴上的意义是.思路导引:一般来说,此类问题应考虑数轴上两点间的距离。
本题中式子中有两个数,a+5也可以写成a—(—5)所以题目中的5实际为—5.标准答案:表示a的点与表示-5的点之间的距离.尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be someunsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。
第二讲数轴和绝对值知识点包括:数轴、相反数以及绝对值。
知识点一、数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。
原点、正方向和单位长度是数轴的三要素,原点位置的选定、正方向的取向、单位长度大小的确定,都是根据需要认为规定的。
例题1:判断下图中所画的数轴是否正确?如不正确,指出错在哪里?分析:原点、正方向、单位长度这数轴的三要素缺一不可。
例题2:下列结论正确的有()个:①规定了原点,正方向和单位长度的直线叫数轴②最小的整数是0 ③正数,负数和零统称有理数④数轴上的点都表示有理数A.0B.1C.2D.3例题3:在数轴上,表示-5的数在原点的侧,它到原点的距离是个单位长度。
课堂小结:1.数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数与形之间的内在联系;所有的有理数都可以用数轴上的点表示,但反过来并不是数轴上的所有点都表示有理数;2.画数轴时,原点的位置以及单位长度的大小可根据实际情况适当选取,注意不要漏画正方向、不要漏画原点,单位长度一定要统一,数轴上数的排列顺序(尤其是负数)要正确。
课堂练习一:1、把下面各小题的数分别表示在三条数轴上:(1) 2, -1, 0, 3,+3.5 (2) ―5, 0, +5, 15, 20;(3) ―1500,―500, 0, 500, 1000。
2、在数轴上,表示+2的点在原点的侧,距原点个单位;表示-7的点在原点的侧,距原点个单位;两点之间的距离为个单位长度。
知识点二、相反数代数定义:只有符号不同的两个数互为相反数。
0的相反数是0。
几何定义:在数轴上原点两旁,离开原点距离相等的两个点所表示的两个数互为相反数。
0的相反数是0。
例1:判断下列说法是否正确:①―5是5的相反数; ( ) ②5是―5的相反数; ( )③5与―5互为相反数; ( ) ④―5是相反数; ( )⑤正数的相反数是负数,负数的相反数是正数。
( )例2:.如果a 的相反数是-2,且2x+3a=4.求x的值.课堂小结:1.只有符号不同的两个数互为相反数,其中一个是另一个的相反数,0的相反数是0,从数轴上看,求一个数的相反数就是找一个点关于原点的对称点;2.相反数是表示具有特定关系(只有符号不同)的两个数,单独一个数不能被称为相反数,相反数是成对出现的;课堂练习二:1.如果2(x+3) 与3(1-x)互为相反数,那么x的值是 ( )A -8 B 8 C -9 D 92.若2a与1-a互为相反数,则a等于()11 A.1 B.-1 C. D. 233.如果a 的相反数是最大的负整数,b的相反数是最小的正整数,则a+b= .4.若果 a 和 b是符号相反的两个数,在数轴上a所对应的数和 b所对应的点相距6个单位长度,如果a=-2,则b的值为 .5.若a=6,b=-2,c=-4,并且a-b+(-c)-(-d)=1,则d的值是_________。
【专题3】数轴教学目标1.数轴的定义.2.理解有理数与数轴上的点的对应关系.3.会根据数轴上两点的位置比较其所对应的有理数的大小.4.相反数的意义. 课前练习1、将下列各数按要求分别填入相应的集合中: -10, 4.5, -631, 0, -50, +241, -2.03, 0.002, +63, -73, 1034, 8 (1)正整数集合 { } (2)负整数集合 { } (3)正分数集合 { } (4)负分数集合 { } (5)整数集合 { } (6)分数集合 { } (7)非正数集合 { } (8)有理数集合 { } 【知识点1 数轴】同学们都会读温度计吧?同温度计类似,可以在一条直线上画出刻度标上数,用直线上的点表示有理数.定义:画一条水平直线,在直线上取一点,表示0(叫做原点)选取某一长度为单位长度,规定直线上向右的方向为正方向,就得到一条数轴,画数轴的具体方法:1.画直线(一般水平方向),标出一点为原点0.2.规定从原点向右的方向为正方向,那么向左方为负方向.3.选择适当的长度单位为单位长度.思考:1.原点表示的数是______.2.原点右边的数是_____,左边的数是_____.3.4.指出数轴上A 、B 、C 、D 、E 各点分别表示什么数:解:A 点表示______,B 点表示______,C 点表示______,D 点表示______,E 点表示______. 总结:一条正确的数轴,必须要有______,______,______. 【随堂练习】一、填空题1.在数轴上,-0.01表示A 点,-0.1表示B 点,则离原点较近的是_______.2.在所有大于负数的数中最小的数是_______.3.在所有小于正数的数中最大的数是_______.4.在数轴上有一个点,已知离原点的距离是3个单位长度,这个点表示的数为_______.5.已知数轴上的一个点表示的数为3,这个点离开原点的距离一定是_______个单位长度. 二、判断题1. 规定了正方向的直线叫数轴. ( )2. 数轴上表示数0的点叫做原点.( )3. 如果A 、B 两点表示两个相邻的整数,那么这两点之间的距离是一个单位长度.( )判断下列哪个数轴画的正确 -2-1021(E ) -2-1021(F )(D ) -2-12112-1-2(A ) 12-1-20(C ) (B )E D C B A54321-1-2-3-4-5三、选择题1.每个有理数都可以用数轴上的以下哪项来表示( ) A.一个点B.线C.单位D.长度2.下列图形中不是数轴的是( )3.下列各式中正确的是( ) A.-3.14<-πB.-121>-1 C.3.5>-3.4 D.-21<-2 4.下列说法错误的是( )A.零是最小的整数B.有最大的负整数,没有最大的正整数C.数轴上两点表示的数分别是-231与-2,那么-2在-231右边 D.所有的有理数都可以用数轴上的点表示出来四、解答题1、分别指出数轴上点A 、B 、C 、D 、E 所表示的数:2、在数轴上画出表示下列各点的数:-5.5,-2.5,-4,-33、在数轴上画出表示下列个数的点,并指出这些点之间的关系: -6,6,-3,3,-1.5,1.5【知识点2 相反数】(1)代数意义是:只有符号不同的两个数,我们说其中一个是另一个的相反数。
龙文教育学科教师辅导讲义知识点一:数轴的概念及画法1、2、BCD2、3……从23例1知识点2例24、-2、方法总结:用数轴上的点表示数时,通常把要表示的数写在数轴上锁对应点的上方,有理数都可以用数轴上的点来表示命题角度2:根据数轴上表示的点写出这个数例3:如图:数轴上A、B、C、D分别表示什么数知识点3:相反数1、相反数的代数定义:如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数,特别的,零的相反数是零2、相反数的几何意义:在数轴上,表示互为相反数(零除外)的两个点,位于原点的两侧,并且到原点的距离相等命题角度:求一个数的相反数例4:-8的相反数是;-1.3是()的相反数-1与( )互为相反数 ( )5互为相反数 ( )的相反数时0题型全面拓展1:根据点在数轴上的位置确定数例1:数轴上与表示+1的点距离3个单位长度的点表示的数是( )2:借助数轴进行点的移动例2:点P 从数轴(向右为正方向)的原点开始,分别按下列条件移动两次后到达终点,说出点P 在终点时所表示的数A 、 先向右移动3个单位长度,再向右移动4个单位长度B 、 先向左移动2个单位长度,再向左移动2个单位长度C 、 先向右移动2个单位长度,再向左移动3个单位长度D 、 先向左移动3个单位长度,再向右移动3个单位长度3、 相反数与数轴的综合运用 例3:在数轴上点A 表示7,点B 、C 表示的数互为相反数,且点C 与点A 之间的距离为2,求点B 与点C 各对应的是什么数 4:应用数轴解决实际问题 例4:文具店、书店和玩具店依次坐落在一条笔直的东西走向的大街上,文具店位于书店西边20m 处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了60米,你知道此时小明的位置在哪里吗? 例5:某城市早上测得当时的温度是3℃,中午测量时发现温度上升了5℃,晚上测量时比中午下降了6℃,那么晚上的气温是多少?晚上的气温比早上的气温变化了多少?试借助数轴进行分析同步训练:基础训练一、填空1数轴的三要素是 ,_ 和2、4的相反数是 ,-6的相反数是 ,0的相反数是 .3、在数轴上,A 、B 两点在原点的两侧,但到原点的距离相等,,如果点A 表示73,那么点B 表示 二、选择:4、在已知的数轴上,表示-2.75的点是 ( )A 、E 点B 、F 点C 、G 点D 、H 点5、以下四个数,分别是数轴上四个点可表示的数,其中数写错的是 ( )6、下列各语句中,错误的是 ( )A.、数轴上,原点位置的确定是任意的;B.、数轴上,正方向可以是从原点向右,也可以是从原点向左;C.、数轴上,单位长度1的长度的确定, 可根据需要任意选取;D.、数轴上,与原点的距离等于36.8的点有两个.7、数轴上,对原点性质表述正确的是( )A 、表示0的点B 、开始的一个点C 、数轴上中间的一个点D 、它是数轴上的一个端点8、下列说法错误的是( )A 、5是-5的相反数B 、-5是5的相反数C 、-5和5是互为相反数D 、-5是相反数三、解答9、在数轴上表示出-2,1,-0.2,0,0.5 .10、写出下列各数的相反数:5,-32,-5.8,0,59 综合提高一、填空题1 若一个数的相反数是最大的负整数,则这个数是 ,相反数是它本身的数的是 2、如果将点A 向右移动3个单位长度,再向左移动5个单位长度,终点表示的数是0,那么点A 表示的数是3、如果数轴上点A 到原点的距离为3,点B 到原点的距离为5,那么A 、B 两点的距离为二、选择4、在数轴上,原点及原点右边的点表示的数是( )A 、正数B 、整数C 、非负数D 、非正数5、数轴是( )A 、一条直线B 、有原点、正方向的一条直线C 、有长度单位的一条直线D 、规定了原点、正方向、单位长度的一条直线.6、通过画数轴,下列说法正确的是( )A 、有理数集合中没有最小数,也没有最大数;B 、有理数集合中有最小数,也有最大数;C 、有理数集合中有最小数,没有最大数;D 、有理数集合中有最大数,没有最小数;7、四位同学画数轴如图所示,其中正确( )A BC D8、互为相反数是指( )A 、意义相反的两个量B 、一个负数前面添上“+”所得的数与原数C 、数轴上原点两旁的两个点所表示的两个数D 、只有符号不同的两个数(零的相反数是零)三、解答9、大于-4而不大于4的整数有多少个?并利用数轴把它们表示出来.10、小明的家(记为A )与他上学的学校(记为B )、书店(记为C )依次坐落再一条东西走向的大街上,小明家位于学校西边30米处,书店位于学校东边100米处,小明从学校沿这条大街向东走了40米,接着又向西走了 70米达到D 处.试用数轴表示上述A ,B ,C ,D 的位置.探究创新1、在数轴上A 点和B 点所表示得数分别为-2和1,若使A 点表示的数是B 点表示的数的3倍,应将点( )A 、向左移动5个单位B 、向右移动5个单位C 、向右移动4个单位D 、向左移动1个单位或向右移动5个单位2、数轴上的单位长度是指选取某一个长度的长作为单位长度,你能理解吗?试在数轴上表示出100001,-100003这两个数.1、 观察图,数轴上A 、B 、C 、D 四点对应的数都是整数.若A 点对应的数为a ,B 点对应的数为b ,点对应的数c ,且2c -3a=11,问数轴上的原点是A 点呢?还是B 点?还是C 点?还是D 点呢?2、。
数轴的几何意义和代数意义
数轴是数学中常用的工具,它在几何意义和代数意义上都有重要的应用。
本文将分别从几何意义和代数意义两个方面探讨数轴的含义和用途。
一、数轴的几何意义
数轴是一条直线,上面的点与实数一一对应。
我们可以将数轴理解为一个均匀刻度的直尺,其中0点位于中心位置。
数轴的两侧是正半轴和负半轴,分别表示正数和负数。
通过数轴,我们可以直观地理解数与位置之间的关系,从而更好地理解数的大小和相对关系。
在几何意义上,数轴可以用来表示点、线段和区间。
例如,我们可以将数轴的某个点与一个实数一一对应,表示该点的位置。
两个不同的点可以通过线段连接起来,线段的长度即为两个实数之间的差值。
而一个区间则可以表示数轴上的一段连续的实数集合。
数轴的几何意义在几何图形的运动、形状和相似性等问题中有广泛应用。
例如,在平面几何中,我们可以通过数轴来表示线段的长度,从而比较不同线段的大小。
在解决几何问题时,我们可以利用数轴的刻度和坐标系来确定几何图形的位置和长度。
二、数轴的代数意义
数轴在代数意义上是一个有序的实数集合。
我们可以通过数轴上的
点与实数之间的对应关系,在代数运算中进行数值计算和推理。
在代数意义上,数轴可以用来表示数值的相对大小和关系。
通过数轴,我们可以比较不同实数的大小,并进行加减乘除等运算。
例如,当我们要计算两个实数的和时,可以通过数轴上的刻度和坐标系来确定两个实数的位置,然后将它们相加得到结果。
数轴还可以用来表示不等式和方程的解集。
例如,当我们解决一个线性不等式时,可以将不等式表示在数轴上,然后确定不等式的解集。
同样地,当我们解决一个一元一次方程时,可以将方程的解表示在数轴上,从而更好地理解方程的解集。
数轴的代数意义在代数学习和实际问题求解中有重要作用。
通过数轴,我们可以直观地理解实数的大小和相对关系,从而更好地理解和运用数学知识。
数轴在几何意义和代数意义上都有重要的应用。
在几何意义上,数轴可以用来表示点、线段和区间,帮助我们理解几何图形的位置和长度。
在代数意义上,数轴可以用来表示实数的大小和关系,帮助我们进行数值计算和推理。
通过数轴,我们可以更好地理解数学知识,解决实际问题。
数轴是数学中不可或缺的工具,它在数学学习和实际应用中起着重要的作用。