干涉的分类和薄膜干涉的分类
- 格式:doc
- 大小:266.00 KB
- 文档页数:7
光学中的光的干涉与薄膜干涉光的干涉和薄膜干涉是光学中重要的现象,它们揭示了光波的波动性质和光的干涉效应。
本文将详细介绍光的干涉和薄膜干涉的基本原理、现象以及应用。
一、光的干涉1. 光的干涉原理光的干涉是指两列或多列光波在空间某一点叠加形成明暗相间的干涉条纹的现象。
这是由于光波的波动性质引起的。
根据波动理论,光波是一种横波,能够在空间中传播。
当两列相干光波在某一点相遇时,它们叠加产生干涉现象。
2. 干涉的种类光的干涉可分为两种基本类型,即相干光源的干涉和单色光源的干涉。
相干光源的干涉是指两列来自同一光源的光波相遇产生的干涉现象。
单色光源的干涉是指来自不同光源但具有相同频率和相位的光波相遇产生的干涉现象。
3. 干涉的应用光的干涉在实际生活和科学研究中有广泛的应用。
最常见的干涉应用是干涉仪,例如迈克尔逊干涉仪和杨氏双缝干涉仪,用于测量长度、波长和折射率等物理量。
此外,干涉技术还应用于光学显微镜、光学测量、光路校正等领域。
二、薄膜干涉1. 薄膜干涉原理薄膜干涉是指光波在薄膜表面发生反射和透射时产生的干涉现象。
薄膜是指具有相对较小厚度的透明介质层,例如空气中的水膜、油膜等。
当光波射入薄膜时,一部分光发生反射,一部分光发生透射,这两部分光波相遇后发生干涉。
2. 薄膜干涉现象薄膜干涉会产生明暗相间的干涉条纹,这是由于反射光和透射光在传播过程中发生相位差而引起的。
相位差的大小决定了干涉条纹的明暗程度。
根据入射光的波长、薄膜的厚度和介质的折射率等因素,干涉条纹的间距和亮暗程度不同。
3. 薄膜干涉的应用薄膜干涉在光学领域有重要的应用价值。
例如,薄膜干涉技术可用于制备光学滤波器、反射镜和透射镜等光学元件。
此外,薄膜干涉还被广泛应用于光学涂层、抗反射涂层和光学薄膜的制备等领域。
结论光学中的光的干涉和薄膜干涉是光学波动性质的重要表现,揭示了光波的干涉现象和薄膜干涉特性。
光的干涉通过相遇和叠加产生明暗相间的干涉条纹,而薄膜干涉则是由于反射和透射光在薄膜中的干涉效应。
什么是光的干涉光的干涉是一种光学现象,指的是两个或多个光波相互作用而产生的干涉效应。
当两束光波相遇时,它们会相互干涉并形成干涉图样,这是由于光的波动性质所致。
光的干涉现象在自然界和科学研究中有着广泛的应用。
1. 光的波动性质光既具有粒子性也具有波动性,光的波动性是光的干涉现象的基础。
光波的传播速度是有限的,它会沿着直线传播,并在传播过程中产生交迭、叠加和干涉。
2. 干涉的条件光的干涉需要满足两个基本条件:一是光源必须是相干光源,即光源发出的光波具有相同的频率、相位和振幅;二是光波必须在空间中交迭或叠加。
3. 干涉的类型光的干涉可以分为两类:一是光的干涉分为建设性干涉和破坏性干涉,二是光的干涉又可以分为薄膜干涉、杨氏双缝干涉、杨氏双缝干涉、菲涅尔双棱镜干涉等多种类型。
4. 建设性干涉和破坏性干涉当两束光波相遇且波峰与波峰相重叠(或波谷与波谷相重叠)时,它们会产生建设性干涉,此时干涉图样中会出现明亮的干涉条纹,光强增强;相反,当波峰与波谷相重叠时,它们会产生破坏性干涉,此时干涉图样中会出现暗淡的干涉条纹,光强减弱或消失。
5. 薄膜干涉薄膜干涉是指光在由两个介质分界面分离的薄膜上反射和透射产生的干涉现象。
当光波从一个介质射入到另一个介质时,会发生反射和透射。
光的反射和透射在介质的界面上发生相位差,不同相位差会导致干涉效应。
薄膜干涉常用于衬底上的光学薄膜和光学元件的设计。
6. 杨氏双缝干涉杨氏双缝干涉是一种经典的干涉实验,由英国科学家杨恩斯提出。
它通过将光通过两个狭缝,让光波以波前偏斜的方式形成干涉条纹。
杨氏双缝干涉实验证明了光的波动性和光的干涉现象,为光的本质提供了重要的证据。
7. 菲涅尔双棱镜干涉菲涅尔双棱镜干涉是将平行光通过两个类似楔形棱镜所形成的干涉图样。
这种干涉实验是由法国科学家菲涅尔提出的,可以用来测量光的波长和探测光的相位差。
菲涅尔双棱镜干涉被广泛应用于光学检测、波长测量和多种光学仪器的设计中。
《光的干涉》知识清单一、光的干涉的基本概念光的干涉是指两束或多束光在相遇时,其光强在空间上形成稳定的明暗相间的条纹分布的现象。
这是光的波动性的重要表现之一。
光是一种电磁波,具有波的特性,包括波长、频率和振幅等。
当两束光满足一定的条件时,它们会相互叠加,从而产生干涉现象。
二、产生光的干涉的条件要产生明显的光的干涉现象,需要满足以下几个条件:1、两束光的频率必须相同。
只有频率相同的光,在相遇时才能保持稳定的相位差,从而形成稳定的干涉条纹。
2、两束光的振动方向必须相同或相近。
如果振动方向相互垂直,就无法产生有效的干涉。
3、两束光的相位差必须保持恒定。
这意味着光源的相位在传播过程中不能发生随机的变化。
三、光的干涉的分类1、双缝干涉托马斯·杨通过双缝干涉实验,有力地证明了光的波动性。
在双缝干涉实验中,一束光通过两条平行的狭缝,在屏幕上形成明暗相间的条纹。
相邻明条纹或暗条纹之间的距离可以通过公式计算:Δx =λL/d,其中Δx 是条纹间距,λ 是光的波长,L 是双缝到屏幕的距离,d 是双缝之间的间距。
2、薄膜干涉当一束光照射到薄膜上时,在薄膜的上、下表面反射的两束光会发生干涉。
例如,日常生活中看到的肥皂泡表面的彩色条纹、油膜表面的彩色花纹等,都是薄膜干涉的现象。
薄膜干涉可以分为等厚干涉和等倾干涉两种情况。
等厚干涉是指薄膜厚度相同的地方形成同一级条纹。
比如,用一个楔形的薄膜,在其表面就能观察到等厚干涉条纹。
等倾干涉则是指入射角相同的光经薄膜反射后形成同一级条纹。
四、光的干涉的应用1、测量微小长度和厚度利用光的干涉原理,可以精确地测量微小的长度和厚度变化。
例如,在精密加工中,通过干涉测量可以确保零件的尺寸精度达到极高的水平。
2、检测光学表面的平整度将待测的光学平面与一个标准平面贴合,在上面照射相干光。
通过观察干涉条纹的形状和分布,可以判断待测平面的平整度。
如果条纹是均匀的直线,说明平面平整;如果条纹弯曲或疏密不均,说明平面存在缺陷。
光的干涉现象及其应用解析光的干涉现象是指当光通过不同的光程到达某一点时,由于相位的差异而产生的干涉效应。
干涉现象是光波性质的重要体现,不仅能揭示光的波动性质,还能应用于科学研究、技术革新以及各种测量中。
本文将对光的干涉现象及其应用进行解析。
一、光的干涉现象的基本原理光的干涉现象的基本原理可以概括为两束相干光的叠加。
当两束相干光以一定的角度汇聚或相交时,会在交叉区域产生明暗相间的干涉条纹。
这是由于光的相位差引起光强的叠加干涉所形成的。
二、光的干涉现象的分类及特点1. 单色光干涉:指由单一波长的光线所引起的干涉现象。
其特点是形成的干涉条纹清晰明确,颜色纯净。
2. 白光干涉:指由多种波长的光线所引起的干涉现象。
其特点是形成的干涉条纹带有彩色,颜色会随观察角度的变化而改变。
3. 平行光干涉:指两束光线平行地入射在平面上的干涉现象。
常见的平行光干涉装置有杨氏双缝干涉仪和劳埃德镜。
4. 斜光干涉:指两束光线斜着入射在平面上的干涉现象。
常见的斜光干涉装置有米氏干涉仪等。
三、光的干涉现象的应用1. 干涉仪:光的干涉现象在干涉仪中得到了广泛应用。
例如,杨氏双缝干涉仪可以通过干涉条纹的形成来测量光的波长,进而实现对光的性质的研究;劳埃德镜则可以用于测量物体的形状、厚度等。
2. 薄膜干涉:基于光的干涉现象,利用薄膜对光的反射和透射进行调控,可以实现光的增透、减透等功能。
这在光学镀膜、光学仪器制造等领域有着广泛的应用。
3. 光谱分析:通过光的干涉现象,可以将光分解成不同的波长,从而实现对光谱的分析。
利用光的干涉现象结合像差补偿技术,还可以实现高分辨率、高灵敏度的光谱测量。
4. 空间干涉:光的干涉可以应用于干涉测量领域,如干涉测量技术、干涉计量技术等,用于精密测量目标的位移、形状等参数。
四、光的干涉现象的研究进展随着科学技术的不断发展,对光的干涉现象的研究也在不断深入。
目前,已经提出了许多新的干涉技术,如数字全息术、斑图测量技术等。
《薄膜干涉》讲义一、什么是薄膜干涉在日常生活中,我们可能会观察到一些有趣的光学现象,比如肥皂泡表面呈现出五彩斑斓的颜色,或者油膜在水面上形成的彩色条纹。
这些现象的背后,其实都隐藏着薄膜干涉的原理。
薄膜干涉,简单来说,就是当一束光照射到薄膜上时,一部分光在薄膜的上表面反射,另一部分光穿过薄膜在其下表面反射,这两束反射光相互叠加,从而产生干涉现象。
要理解薄膜干涉,首先我们需要知道光的波动性。
光具有波的特性,就像水波一样,当两列波相遇时,如果它们的振动频率相同、相位差恒定,就会发生干涉现象。
在薄膜干涉中,这两束反射光就相当于两列光波。
二、薄膜干涉的条件并不是所有的薄膜都能产生明显的干涉现象,要发生薄膜干涉,需要满足一定的条件。
首先,薄膜的厚度要足够薄。
通常来说,薄膜的厚度要与光的波长相当或者更薄。
这是因为如果薄膜太厚,两束反射光的光程差太大,干涉效果就不明显。
其次,薄膜的折射率要不均匀。
薄膜的上下表面的折射率不同,这样才能导致光在上下表面反射时产生相位差。
此外,入射光的相干性要好。
相干性是指光的振动频率和相位在时间和空间上的一致性。
只有相干性好的光,才能产生明显的干涉条纹。
三、薄膜干涉的类型薄膜干涉主要有两种类型:等厚干涉和等倾干涉。
等厚干涉是指薄膜的厚度相同的地方,干涉条纹相同。
比如劈尖干涉和牛顿环就是典型的等厚干涉。
劈尖干涉可以通过将两块玻璃板叠在一起,在一端插入薄片形成劈尖状来实现。
当平行光垂直入射时,在劈尖的上表面和下表面反射的两束光会发生干涉,形成明暗相间的平行条纹。
条纹间距与劈尖的夹角以及光的波长有关。
牛顿环则是将一个曲率半径很大的平凸透镜放在一块平面玻璃上,在两者之间形成一个空气薄膜。
当光垂直入射时,在空气薄膜的上表面和下表面反射的光发生干涉,形成同心圆环状的干涉条纹。
等倾干涉是指薄膜的厚度均匀,但入射角不同时,干涉条纹不同。
当一束平行光以不同的入射角入射到薄膜上时,不同入射角对应的光程差不同,从而形成不同的干涉条纹。
《大学物理》光的干涉知识点在大学物理的学习中,光的干涉是一个非常重要的知识点。
它不仅帮助我们深入理解光的波动性,还在众多领域有着广泛的应用。
首先,我们来了解一下光的干涉的基本概念。
光的干涉指的是两列或多列光波在空间相遇时,在某些区域始终加强,在另一些区域则始终减弱,形成稳定的强弱分布的现象。
这种现象的产生是由于光波具有波动性。
产生光的干涉现象需要满足几个条件。
一是两束光的频率必须相同。
这是因为只有频率相同的光,在相遇时才能产生稳定的干涉现象。
二是两束光的振动方向必须相同。
如果振动方向不同,它们之间的叠加效果就会变得复杂,难以形成清晰的干涉条纹。
三是两束光的相位差必须保持恒定。
相位差的恒定是形成稳定干涉条纹的关键。
接下来,我们看看光的干涉的分类。
常见的有双缝干涉和薄膜干涉。
双缝干涉是托马斯·杨最早进行的实验。
在这个实验中,一束光通过两个相距很近的狭缝,在屏幕上形成了明暗相间的条纹。
条纹的间距与光的波长、双缝间距以及双缝到屏幕的距离有关。
通过双缝干涉实验,我们可以定量地验证光的波动性。
薄膜干涉则在日常生活中有很多常见的例子。
比如,肥皂泡表面的彩色条纹、雨天路面上油膜的彩色花纹等,都是薄膜干涉的现象。
当一束光照射到薄膜上时,在薄膜的上表面和下表面会分别反射出两束光,这两束光相互叠加就产生了干涉现象。
薄膜干涉的条纹特点与薄膜的厚度、折射率以及入射光的波长有关。
在理解光的干涉时,我们还需要知道相干长度和相干时间的概念。
相干长度是指能够发生干涉的两束光之间的最大光程差。
相干时间则是光通过相干长度所需的时间。
相干长度和相干时间的大小反映了光源的相干性。
光的干涉在实际中有很多应用。
在光学检测中,利用干涉条纹可以精确测量物体的表面平整度、微小位移等。
在激光技术中,通过干涉可以实现激光的稳频和锁模,提高激光的性能。
在光谱学中,干涉仪可以用于高分辨率的光谱分析。
对于光的干涉的计算,我们通常会用到一些公式。
比如双缝干涉中,条纹间距的公式为:Δx =λD/d,其中Δx 是条纹间距,λ 是光的波长,D 是双缝到屏幕的距离,d 是双缝间距。
高中物理光的干涉知识点光的干涉一课教材篇幅少,现象观察不易,教学难度较大。
为了加深学生对光的干涉现象与本质的理解,下面是店铺给大家带来的高中物理光的干涉知识点,希望对你有帮助。
高中物理光的干涉知识点归纳1.双缝干涉(1)两列光波在空间相遇时发生叠加,在某些区域总加强,在另外一些区域总减弱,从而出现亮暗相间的条纹的现象叫光的干涉现象.(2)产生干涉的条件两个振动情况总是相同的波源叫相干波源,只有相干波源发出的光互相叠加,才能产生干涉现象,在屏上出现稳定的亮暗相间的条纹.(3)双缝干涉实验规律①双缝干涉实验中,光屏上某点到相干光源、的路程之差为光程差,记为 .若光程差是波长λ的整倍数,即(n=0,1,2,3…)P点将出现亮条纹;若光程差是半波长的奇数倍(n=0,1,2,3…),P点将出现暗条纹.②屏上和双缝、距离相等的点,若用单色光实验该点是亮条纹(中央条纹),若用白光实验该点是白色的亮条纹。
③若用单色光实验,在屏上得到明暗相间的条纹;若用白光实验,中央是白色条纹,两侧是彩色条纹。
④屏上明暗条纹之间的距离总是相等的,其距离大小与双缝之间距离d.双缝到屏的距离及光的波长λ有关,即 .在和d不变的情况下,和波长λ成正比,应用该式可测光波的波长λ.⑤用同一实验装置做干涉实验,红光干涉条纹的间距最大,紫光干涉条纹间距最小。
2.薄膜干涉(1)薄膜干涉的成因:由薄膜的前、后表面反射的两列光波叠加而成,劈形薄膜干涉可产生平行相间的条纹。
(2)薄膜干涉的应用①增透膜:透镜和棱镜表面的增透膜的厚度是入射光在薄膜中波长的.②检查平整程度:待检平面和标准平面之间的楔形空气薄膜,用单色光进行照射,入射光从空气膜的上、下表面反射出两列光波,形成干涉条纹,待检平面若是平的,空气膜厚度相同的各点就位于一条直线上,干涉条纹是平行的;反之,干涉条纹有弯曲现象。
光的干涉与薄膜实验光的干涉和薄膜实验是物理学中重要的实验现象和研究对象。
通过对光的干涉和薄膜的实验研究,可以深入理解光的波动性和粒子性,探索光的特性和应用。
本文将重点介绍光的干涉现象的原理和薄膜实验的应用。
一、光的干涉原理光的干涉是指两束或多束光波在空间中相互叠加和干涉产生的现象。
干涉分为构成干涉的两束光波之间的相位差确定的相干干涉和相位随机变化的非相干干涉。
1. 相干干涉相干干涉是指两束光波之间的相位差确定的干涉。
相干干涉的最典型案例是杨氏双缝干涉实验。
在杨氏双缝干涉实验中,当一束光通过两个相距较小的狭缝时,两束光波会在屏幕上产生干涉条纹,表现出明暗相间的条纹图案。
相干干涉的实现需要满足一定的条件,如光源的相干性、波长的一致性以及光程差的稳定性等。
2. 非相干干涉非相干干涉是指光波相位随机变化的干涉。
非相干干涉的实现一般需要使用干涉滤光器或偏振器等。
非相干干涉的实验有许多应用,例如透射光的费涅尔双镜干涉实验和反射光的迈克尔逊干涉实验等。
这些实验利用光的干涉现象,可以测量波长、折射率、膜层厚度等物理量。
二、薄膜实验的应用薄膜实验是一种重要的实验手段,可以通过光的干涉现象研究薄膜的性质和应用。
薄膜实验包括常见的牛顿环干涉实验、薄膜干涉色彩实验等。
1. 牛顿环干涉实验牛顿环干涉实验是一种利用透明介质中光传播速度和光程差的变化产生干涉的实验。
实验中,将凸透镜放置在平板玻璃上,当透射光通过凸透镜和玻璃之间的空气薄膜时,会在两个接触面之间产生干涉现象。
牛顿环干涉实验可用于测量薄膜厚度、介质折射率以及材料的光学性质等。
该实验在工业上也有广泛应用,如测量膜层厚度、表面平整度等。
2. 薄膜干涉色彩实验薄膜干涉色彩实验是一种利用薄膜的干涉现象产生彩色条纹和色彩变化的实验。
在该实验中,通过改变薄膜的厚度和光源的波长,可以观察到不同颜色的干涉色彩。
薄膜干涉色彩实验在美术、纺织、电脑显示器等领域中有着广泛的应用。
例如,通过研究和控制薄膜的干涉色彩特性,可以制作出高级的彩色贴纸、拍摄特殊效果的电影等。
实验十五用牛顿环测量球面的曲率半径一、干涉的分类和薄膜干涉的分类干涉:是指满足一定条件的两列相干光波相遇叠加,在叠加区域某些点的光振动始终加强,某些点的光振动始终减弱,即在干涉区域内振动强度有稳定的空间分布.干涉的种类:1、相长干涉(constructive interference):两波重叠时,合成波的振幅大于成分波的振幅者,称为相长干涉或建设性干涉。
若两波刚好同相干涉,会产生最大的振幅,称为完全相长干涉或完全建设性干涉(fully constructive interference)。
2、相消干涉(destructive interference):两波重叠时,合成波的振幅小于成分波的振幅者,称为相消干涉或破坏性干涉。
若两波刚好反相干涉,会产生最小的振幅,称为完全相消干涉或完全破坏性干涉(fully destructive interference)。
薄膜干涉的分类:等倾干涉和等厚干涉是薄膜干涉的两种典型形式等倾干涉:由薄膜上、下表面反射(或折射)光束相遇而产生的干涉.薄膜通常由厚度很小的透明介质形成.如肥皂泡膜、水面上的油膜、两片玻璃间所夹的空气膜、照相机镜头上所镀的介质膜等.比较简单的薄膜干涉有两种,一种称做等厚干涉,这是由平行光入射到厚度变化均匀、折射率均匀的薄膜上、下表面而形成的干涉条纹.薄膜厚度相同的地方形成同条干涉条纹,故称等厚干涉.牛顿环和楔形平板干涉都属等厚干涉.另一种称做等倾干涉.当不同倾角的光入射到折射率均匀,上、下表面平行的薄膜上时,同一倾角的光经上、下表面反射(或折射)后相遇形成同一条干涉条纹,不同的干涉明纹或暗纹对应不同的倾角,这种干涉称做等倾干涉.等倾干涉一般采用扩展光源,并通过透镜观察.等厚干涉:把两块干净的玻璃片紧紧压叠,两玻璃片间的空气层就形成空气薄膜.用水银灯或纳灯作为光源,就可以观察到薄膜干涉现象.如果玻璃内表面不很平,所夹空气层厚度不均匀,观察到的将是一些不规则的等厚干涉条纹,通常是一些不规则的同心环.若用很平的玻璃片(如显微镜的承物片)则会出现一些平行条纹.手指用力压紧玻璃片时,空气膜厚度变化,条纹也随之改变.根据这个道理,可以测定平面的平直度.测定的精度很高,甚至几分之一波长那么小的隆起或下陷都可以从条纹的弯曲上检测出来.若使两个很平的玻璃板间有一个很小的角度,就构成一个楔形空气薄膜,用已知波长的单色光入射产生的干涉条纹,可用来测很小的长度.二、等厚干涉的特点明暗相间的同心圆环;级次中心低、边缘高;中心疏,边缘密的同心圆环.三、牛顿环的历史1665年胡克(Robert Hooke)在他的著作中就描述了薄云母片、肥皂泡、吹制玻璃和两块压在一起的平板玻璃所产生的彩色, 可惜未深入探讨,然而牛顿却精细周密地研究了这种由两玻璃元件间不同厚度的空气层产生的彩色圆环, 进行了精密测量, 找出了环的直径与透镜曲率半径间的关系, 因而后人都称之为牛顿环 在其著作《Opticks》中, 牛顿曾描述了他的实验装置:“我拿两个物镜, 一个是14英尺长的望远镜上的平凸透镜, 另一个是约50 英尺望远镜用的大双凸透镜, 把前一个透镜的平面朝下放在后一透镜上, 我慢慢地压拢它们, 使得各种颜色相继地从环的中间涌现⋯⋯ , 然后慢慢地拿起上面的透镜, 使得各种颜色相继消失. ”他用的望远镜都相当长, 透镜的曲率半径相当大, 观察到的圆环的直径当然也相当大 当时的望远镜为什么做得这样长呢?这是因为单透镜所成的像有明显的色差, 使像周围伴随出现彩色花纹 同时球差也很显著, 使得光线不能在一个准确位置会聚,当时只能用增大透镜曲率半径的方法加以改善.这无疑会使透镜焦距增大, 因而制成长的望远镜,当时天文学家开始建造100英尺(30米)长的望远镜, 巴黎观测站甚至考虑建造一千英尺长的望远镜,因此牛顿当时使用这样的透镜就是很自然的事了,后来牛顿研制成功反射望远镜牛顿不但数出并测量了这些环的直径, 发现了各级暗环直径平方之比成2,4,6,8,10,12 这样的算术级数排列,还利用棱镜分光得到单色光, 看到单色光下的圆环具有单一颜色的亮暗分布。
物理光学的干涉现象干涉现象是物理光学中一个重要的现象,它揭示了光波的波动性质,并为我们理解光的传播和性质提供了深入的见解。
本文将介绍干涉现象的基本概念、原理和应用。
一. 干涉现象的基本概念干涉是指两个或多个光波相互叠加而产生的现象。
当两个光波相遇时,它们的振幅和相位会相互影响,进而改变光波的强度和方向。
干涉现象的关键在于光的波动性,只有当光波以波动的形式传播时,才能发生干涉现象。
二. 干涉现象的原理干涉现象的原理可以用两个光波的叠加原理来解释。
当两个光波相遇时,它们的电场强度会相加并形成新的光波,其振幅和相位取决于原始光波的振幅和相位。
根据叠加原理,当两个光波的相位一致时,它们的振幅叠加会增强光强,称为构成干涉的两个光波为相干光波;当两个光波的相位相差半个波长时,它们的振幅叠加会减弱光强,称为相消干涉。
三. 干涉现象的分类干涉现象可以根据光波的来源和干涉的性质来进行分类。
根据光波的来源,干涉可以分为自行干涉和外行干涉。
自行干涉是指来自同一光源的两束光波相互干涉,例如杨氏干涉的实验;外行干涉是指来自不同光源的光波相互干涉,例如望远镜的干涉。
根据干涉的性质,干涉可以分为等厚干涉和非等厚干涉。
等厚干涉是指光波通过具有等厚度的介质产生的干涉现象,例如牛顿环;非等厚干涉是指光波通过具有不同厚度的介质产生的干涉现象,例如楞次干涉。
四. 干涉现象的应用干涉现象在许多实际应用中发挥着重要作用。
以下列举了几个常见的应用:1. 干涉仪:干涉仪是一种利用干涉现象测量光的波长、厚度和折射率等物理量的仪器。
它可以利用干涉现象来实现高精度的测量和检测。
2. Michelle干涉光谱仪:Michelle干涉光谱仪是一种基于干涉现象测量光谱的仪器。
它通过光的干涉来分析光的频谱成分,广泛应用于光谱学和光学研究领域。
3. 光学薄膜:光学薄膜是一种利用干涉现象精确控制光的传播和反射的薄膜。
它在光学器件和光学成像等领域具有重要的应用价值。
光的干涉与干涉仪知识点总结光的干涉是光波的相干性质所表现出的现象,它是光的波动性质的重要体现。
干涉现象广泛应用于光学领域,并被用于研究物质的性质以及其他相关领域。
本文将对光的干涉及干涉仪的知识点进行总结,并探讨其应用和特点。
一、光的干涉1. 干涉的概念干涉是指两个或多个光波相遇的现象。
当光波的路径差满足一定条件时,会出现干涉现象。
光波的相位差和路径差是干涉现象产生的重要因素。
2. 干涉的类型根据光波的相干性质和光程差的特点,干涉可分为两类:相干光的干涉和非相干光的干涉。
相干光干涉主要包括薄膜干涉、双缝干涉、马赫-曾德尔干涉等。
非相干光干涉主要包括自发辐射干涉、多普勒光干涉等。
3. 干涉的条件产生干涉现象的条件有两个:一是光源必须是相干光,即波长相同、相位一致;二是光波的路径差必须满足波长对应的相位差。
二、干涉仪1. 干涉仪的定义与组成干涉仪是用于观察和测量干涉现象的仪器。
它主要由光源、分波器、光学路径调节装置以及干涉图样的接收和观察装置等组成。
2. 干涉仪的分类常见的干涉仪有迈克尔逊干涉仪、杨氏干涉仪、马赫-曾德尔干涉仪等。
它们的原理和设计各不相同,适用于不同的干涉实验和测量。
3. 干涉仪的应用干涉仪广泛应用于光学测量、光程测量、干涉条纹的观察和分析以及物体表面形貌的测量等领域。
例如,利用干涉仪可以测量光的波长、物体的薄膜厚度、材料的折射率等。
三、光的干涉应用案例1. 干涉仪在光学显微镜中的应用在光学显微镜中,安装干涉仪可以通过观察和分析干涉条纹,获得更精确的显微图像。
这样可以提高显微镜的分辨率和观察的清晰度,扩大显微镜的应用范围。
2. 干涉仪在激光干涉测量中的应用激光干涉测量是一种高精度的测量方法,广泛应用于工程领域。
通过干涉仪观察和分析干涉条纹,可以测量物体的微小位移、形变和震动等信息。
3. 光的干涉在光学元件制造中的应用光的干涉还可以应用于光学元件的制造和检测过程中。
例如,在透镜和平面镜的检测中,可以通过观察干涉条纹确定透镜表面的形状和质量。
薄膜干涉基本原理
薄膜干涉是一种光学现象,基本原理是当光线通过透明薄膜时,由于光线在薄膜表面和内部的反射和折射,导致光的干涉现象。
这种干涉现象通常发生在薄膜厚度与入射光波长相近的情况下。
薄膜干涉的基本原理包括两种类型:
1.反射型薄膜干涉:当光线垂直入射到薄膜表面时,一部分光线被
薄膜表面反射,另一部分光线穿透薄膜后在薄膜内部发生反射,然后再次穿透薄膜表面,这两部分光线会产生干涉现象。
这种干涉又分为等厚干涉和不等厚干涉两种情况,其中等厚干涉是指薄膜厚度处处相等,而不等厚干涉是指薄膜厚度不均匀导致的干涉。
2.透射型薄膜干涉:当光线斜入射到薄膜表面时,一部分光线被薄
膜表面反射,另一部分光线穿透薄膜后在薄膜内部发生多次反射和折射,然后再次穿透薄膜表面,这两部分光线会产生干涉现象。
透射型薄膜干涉也包括等厚干涉和不等厚干涉两种情况。
在薄膜干涉中,光线的干涉导致某些波长的光被增强(构成干涉条纹的亮纹),而某些波长的光被减弱(构成干涉条纹的暗纹)。
这种现象在光谱学、光学涂层、薄膜技术等领域有广泛的应用。
一、干涉的分类当满足相干条件——振动方向相同,振动频率相同,有恒定位相差的两束相干光相遇时,将在它们的相遇区域内产生明暗相间的干涉条纹,这个现象叫做光的干涉现象。
光的干涉可以分为薄膜干涉和杨氏双缝干涉。
1、薄膜干涉由薄膜产生的干涉。
薄膜可以是透明固体、液体或由两块玻璃所夹的气体薄层。
入射光经薄膜上表面反射后得第一束光,折射光经薄膜下表面反射,又经上表面折射后得第二束光,这两束光在薄膜的同侧,由同一入射振动分出,是相干光,属分振幅干涉。
若光源为扩展光源(面光源),则只能在两相干光束的特定重叠区才能观察到干涉,故属定域干涉。
对两表面互相平行的平面薄膜,干涉条纹定域在无穷远,通常借助于会聚透镜在其像方焦面内观察;对楔形薄膜,干涉条纹定域在薄膜附近。
薄膜干涉又可以分为等倾干涉和等厚干涉:等厚干涉 这是由平行光入射到厚度变化均匀、折射率均匀的薄膜上、下表面而形成的干涉条纹.薄膜厚度相同的地方形成同条干涉条纹,故称等厚干涉。
牛顿环和楔形平板干涉都属等厚干涉等倾干涉 当不同倾角的光入射到折射率均匀,上、下表面平行的薄膜上时,同一倾角的光经上、下表面反射(或折射)后相遇形成同一条干涉条纹,不同的干涉明纹或暗纹对应不同的倾角,这种干涉称做等倾干涉。
当光程差为波长整数倍时,形成亮条纹,为半波长奇数倍时是暗条纹。
等倾条纹是内疏外密的同心圆环。
2、杨氏双缝干涉1801年,英国物理学家托马斯·杨用杨氏双缝干涉实验证明了干涉现象。
他让太阳光通过一个小针孔S ,然后在距离针孔S 相当远的距离处,。
通过这再让光通过2个针孔S 1及S 2。
通过这2个针孔S 1及S 2的球面光波发生干涉,从而在观察屏上形成变化的对称状图样。
因为光源太阳非常远,所以入射于S 孔的光波波前是平面波前。
在这个实验中,一个波前被分为两个波前,从而得到两束干涉光束。
如图1,在垂直于纸平面的方向置一小孔S ,由一定距离处的单色光源(通常采用钠光灯)照明通过针孔S 后的光再通过两针孔S 1和S 2。
实验十五用牛顿环测量球面的曲率半径一、干涉的分类和薄膜干涉的分类干涉:是指满足一定条件的两列相干光波相遇叠加,在叠加区域某些点的光振动始终加强,某些点的光振动始终减弱,即在干涉区域内振动强度有稳定的空间分布.干涉的种类:1、相长干涉(constructive interference):两波重叠时,合成波的振幅大于成分波的振幅者,称为相长干涉或建设性干涉。
若两波刚好同相干涉,会产生最大的振幅,称为完全相长干涉或完全建设性干涉(fully constructive interference)。
2、相消干涉(destructive interference):两波重叠时,合成波的振幅小于成分波的振幅者,称为相消干涉或破坏性干涉。
若两波刚好反相干涉,会产生最小的振幅,称为完全相消干涉或完全破坏性干涉(fully destructive interference)。
薄膜干涉的分类:等倾干涉和等厚干涉是薄膜干涉的两种典型形式等倾干涉:由薄膜上、下表面反射(或折射)光束相遇而产生的干涉.薄膜通常由厚度很小的透明介质形成.如肥皂泡膜、水面上的油膜、两片玻璃间所夹的空气膜、照相机镜头上所镀的介质膜等.比较简单的薄膜干涉有两种,一种称做等厚干涉,这是由平行光入射到厚度变化均匀、折射率均匀的薄膜上、下表面而形成的干涉条纹.薄膜厚度相同的地方形成同条干涉条纹,故称等厚干涉.牛顿环和楔形平板干涉都属等厚干涉.另一种称做等倾干涉.当不同倾角的光入射到折射率均匀,上、下表面平行的薄膜上时,同一倾角的光经上、下表面反射(或折射)后相遇形成同一条干涉条纹,不同的干涉明纹或暗纹对应不同的倾角,这种干涉称做等倾干涉.等倾干涉一般采用扩展光源,并通过透镜观察.等厚干涉:把两块干净的玻璃片紧紧压叠,两玻璃片间的空气层就形成空气薄膜.用水银灯或纳灯作为光源,就可以观察到薄膜干涉现象.如果玻璃内表面不很平,所夹空气层厚度不均匀,观察到的将是一些不规则的等厚干涉条纹,通常是一些不规则的同心环.若用很平的玻璃片(如显微镜的承物片)则会出现一些平行条纹.手指用力压紧玻璃片时,空气膜厚度变化,条纹也随之改变.根据这个道理,可以测定平面的平直度.测定的精度很高,甚至几分之一波长那么小的隆起或下陷都可以从条纹的弯曲上检测出来.若使两个很平的玻璃板间有一个很小的角度,就构成一个楔形空气薄膜,用已知波长的单色光入射产生的干涉条纹,可用来测很小的长度.二、等厚干涉的特点明暗相间的同心圆环;级次中心低、边缘高;中心疏,边缘密的同心圆环.三、牛顿环的历史1665年胡克(Robert Hooke)在他的著作中就描述了薄云母片、肥皂泡、吹制玻璃和两块压在一起的平板玻璃所产生的彩色, 可惜未深入探讨,然而牛顿却精细周密地研究了这种由两玻璃元件间不同厚度的空气层产生的彩色圆环, 进行了精密测量, 找出了环的直径与透镜曲率半径间的关系, 因而后人都称之为牛顿环 在其著作《Opticks》中, 牛顿曾描述了他的实验装置:“我拿两个物镜, 一个是14英尺长的望远镜上的平凸透镜, 另一个是约50 英尺望远镜用的大双凸透镜, 把前一个透镜的平面朝下放在后一透镜上, 我慢慢地压拢它们, 使得各种颜色相继地从环的中间涌现⋯⋯ , 然后慢慢地拿起上面的透镜, 使得各种颜色相继消失. ”他用的望远镜都相当长, 透镜的曲率半径相当大, 观察到的圆环的直径当然也相当大 当时的望远镜为什么做得这样长呢?这是因为单透镜所成的像有明显的色差, 使像周围伴随出现彩色花纹 同时球差也很显著, 使得光线不能在一个准确位置会聚,当时只能用增大透镜曲率半径的方法加以改善.这无疑会使透镜焦距增大, 因而制成长的望远镜,当时天文学家开始建造100英尺(30米)长的望远镜, 巴黎观测站甚至考虑建造一千英尺长的望远镜,因此牛顿当时使用这样的透镜就是很自然的事了,后来牛顿研制成功反射望远镜牛顿不但数出并测量了这些环的直径, 发现了各级暗环直径平方之比成2,4,6,8,10,12 这样的算术级数排列,还利用棱镜分光得到单色光, 看到单色光下的圆环具有单一颜色的亮暗分布。
牛顿对这一现象做了大量研究, 进行了精确测量, 其测量误差甚至小于百分之一英寸(合0.254mm)但由于过分偏爱他的微粒说, 因而他始终无法正确解释这个实验现象.四、5-10种测波长的方法:1) .双缝干涉测波长实验原理 1.光通过双缝干涉仪上的单缝和双缝后,得到振动情况完全相同的光,它们在双缝后面的空间互相叠加会发生干涉现象。
如果用单色光照射,在屏上会得到明暗相间的条纹;如果用白光射,可在屏上观察到彩色条纹。
2.本实验要测单色光的波长,单色光通过双缝干涉后产生明暗相同的等间距直条纹,条纹的间距与相干光源的波长有关。
设双缝宽d,双缝到屏的距离为L,相干光源的波长为λ,则产生干涉图样中相邻两条亮(或暗)条纹之间的距离△x,由此得;λ=L△x /d,因此只要测得d,L,△x即可测得波长。
相干光源的产生用“一分为二”的方法,用单缝取单色光,再通过双缝,单色光由滤光片获得。
△x的测量可用测量头完成,测量头由目镜,划板,手轮等构成,通过测量头可清晰看到干涉条纹,分划板上中间有刻线,以此为标准,并根据手轮的读数可求得△x,由于△x较小,可测出几条亮(或暗)条纹的间距a,则相邻两条闻之间的距离△x=a/n。
实验图:由此可以看出:只要测出任意级次的某一条光谱线的衍射角,即可计算出该光波长。
3)用双缝测量光的波长双缝干涉的两个相邻亮(暗)条纹的距离△x 与波长λ、双缝的间距d 及双缝到屏的距离L 满足~~~3)驻波法测量微波波长 微波喇叭既能接收微波,同时它也会反射微波,因此发,发射器发射的微波在发射喇叭和接收喇叭之间来回反射,振幅逐渐减小。
当发射源距接收检波点之间的距离等于n λ/2时(n 为整数,λ为波长),经多次反射的微波与最初发射的波同相,此时信号振幅最大,电流表读数最大。
2λN d =∆上式中的d ∆表示发射器不动时接收器移动的距离,N 为出现接收到信号幅度最大值的次数。
4)衍射光栅测波长光栅是根据多缝衍射原理制成的一种分光元件,它能产生谱线间距离较宽的匀排光谱。
所得光谱线的亮度比棱镜分光时要小一些,但光栅的分辨本领比棱镜大。
光栅不仅适用于可见光,还能用于红外和紫外光波,常用于光谱仪上。
光栅在结构上有平面光栅,阶梯光栅和凹面光栅等几种、同时又分为透射式和反射式两类。
本实验选用透射式平面刻痕光栅或全息光栅。
透射式平面刻痕光栅是在光学玻璃片上刻划大量互相平行,宽度和间距相等的刻痕制成的。
当光照射在光栅面上时,刻痕处由于散射不易透光,光线只能在刻痕间的狭缝中通过。
因此,光栅实际上是一排密集均匀而又平行的狭缝。
若以单色平行光垂直照射在光栅面上,则透过各狭缝的光线因衍射将向各个方向传播,经透镜会聚后相互干涉,并在透镜焦平面上形成一系列被相当宽的暗区隔开的间距不同的明条纹。
按照光栅衍射理论,衍射光谱中明条纹的位置由下式决定:λφk b a k ±=+sin )( 或:λφk d k ±=sin ( 2.1.0=k ) (1.3—1)式中:d=)(b a +称为光栅常数,λ为入射光波长,k 为明条纹(光谱线)级数,φk 为K 级明条纹的衍射角。
(参看图1.3—1)。
如果入射光不是单色光,则由式(1.3—1)可以看出,光的波长不同其衍射角φk 也各不相同,于是复色光将被分解。
而在中央k=0,φk=0处,各色光仍重叠在一起,组成中央明条纹,在中央明条纹两侧对称分布着k=1、2……级光谱,各级光谱线都按波长大小的顺序依次排列成一组彩色谱线,这样就把复色光分解为单色光(如图1.3—1)如果已知光栅常数d ,用分光计测出k 级光谱中某一明条纹的衍射角φk ,按(1.3—1)即可算出该明条纹所应的单色光的波长λ。
5)【实验原理】利用光的干涉现象进行光波波长的测量,首先要得到干涉图样。
两个独立光源发出的光不可能产生干涉图样,只有将一束由点光源发出的光用分波前法或分振幅法将其分成两束位相差恒定的相干光,在其交迭区域才可得到稳定的干涉图样。
菲涅耳双棱镜是分波前的一种装置。
图1 图2如图1所示,被照亮的狭缝S 所射出的光波经双棱镜B 后,其波前便分割为两部分,各自向不同方向传播。
可以把它们等价地看成是由两个符合相干条件的虚光源1S 和2S 所发出的柱面波。
若在两光波叠加区域中任意位置放观察屏,即可看到明暗相间的干涉条纹,条纹的取向与狭缝平行。
找出干涉条纹的空间分布与波长的定量关系,就可求出光波的波长。
图2中1S 、2S 是双棱镜所产生的两相干虚光源,其间距为l 。
屏幕到21S S 平面的距离为d 。
设1S 和2S 到屏上任一点K P 的光程差为△,K P 与O 的距离为K x ,当l <<d ,K x <<d 时,可得到l d x k =∆ (1)当∆为半波长的偶数倍时,即满足以下条件时,λλk k ±=±=∆22,K =0,1,2, (2)可得到明条纹,由(1)和(2)式可得第k 级明纹的位置d l K x k λ±= (3)由(3)式可得到相邻条纹的间距与波长的关系λl d x x x k k =-=∆+1………………………………(4) 于是,光波波长x d l ∆=λ…………………………(5) 对暗条纹也可得到同样结果。
(5)式就是本实验利用光的干涉现象求光波波长所依据的公式。
实验中测出条纹间距x ∆,虚光源间距l ,及虚光源到屏的距离d ,代入(5)式,即可得到光波波长λ。
这种波长的绝对测量方法的相对误差在1%左右。
6)麦克尔逊干涉仪测定氦氖激光或钠光的波长1、用氦氖激光器的nm 8.632谱线校正干涉仪的刻度尺。
将氦氖激光器置于图一S 处,并置发散透镜于其前方,调节干涉仪使21,M M 两镜面距1P 板大致等距。
再以一细针置于光源与1P 板之间,则在E 处的屏幕上可看到细针的两个清晰像。
调节1M 与2M 的方位,之两像很好的重合,这时'2M 与1M 就近乎平行,即可出现干涉条纹。
但有时还需微调1M 和2M ,使两细针的像相对上下左右略有移动而使其更好地重合。
干涉仪调好后即可见到一系列同心圆形的干涉条纹。
再细调使干涉条纹的圆心成在屏幕的中心,转动测微旋钮使标准线指在刻度尺上某一起始位置,然后缓慢转动微调鼓轮,使刻度尺上的标线向数值增大的方向移动。
同时观察屏幕上的中心圆环是否有变化(益出或陷入)。
当出现变化时,记下该刻度尺的读数,而后继续缓慢转动微调鼓轮,同时屏幕上的圆环变化的数目n ,每当变化了100个时,记下刻度尺相应的读数。
如此往下,继续读出刻度尺的一段读数。