7-7课时作业
- 格式:doc
- 大小:257.50 KB
- 文档页数:11
项脊轩志一、选择题1.下列各句中加点字的注音不全正确的一组是( )A .尘泥渗.(shèn)漉 呱呱..(ɡū ɡū)而泣 B .余稍为修葺.(qì) 以手阖.(hé)门 C .偃.(yǎn)仰啸歌 垣.(yuán)墙周庭 D .旧时栏楯.(dùn) 扃.(jiōnɡ)牖.(yǒu)而居 2.对下列句中加点词语的解释不正确的一组是( )A .余稍为修葺..修葺:修补 B .偃仰..啸歌 偃仰:安居,休息 C .亭亭..如盖 亭亭:直立的样子 D .珊珊..可爱 珊珊:婀娜的样子 3.下列各组句子中加点词语的意义,判断正确的一项是( )⎩⎪⎨⎪⎧ ①不能得.日②得.不焚 ⎩⎪⎨⎪⎧ ③凡.再变矣④轩凡.四遭火A .①与②相同,③与④不同B .①与②相同,③与④也相同C .①与②不同,③与④相同D .①与②不同,③与④也不同4.下列句中加点的词语与“吾妻死之年所手植也”中的“手”的用法不同的一项是( )A .东犬西.吠,客逾庖而宴 B .垣墙..周庭,以当南日 C .尘泥渗漉,雨泽下.注 D .余稍为修葺,使不上.漏 5.下列句中加点词语与现代汉语用法相同的一项是( ) A .后五年,吾妻来归. B .比.去,以手阖门 C .妪每.谓余曰 D .鸡栖.于厅 6.下列句中加点词语的用法与其他三句不同的一项是( )A .日影反照,室始洞然.B .冥然.兀坐,万籁有声C .由山以上五六里,有穴窈然.D .然.自后余多在外 二、课内阅读阅读下面文段,完成7~9题。
项脊轩,旧南阁子也。
室仅方丈,可容一人居。
百年老屋,尘泥渗漉,雨泽下注;每移案,顾视无可置者。
又北向,不能得日,日过午已昏。
余稍为修葺,使不上漏。
前辟四窗,垣墙周庭,以当南日,日影反照,室始洞然。
又杂植兰桂竹木于庭,旧时栏楯,亦遂增胜。
借书满架,偃仰啸歌,冥然兀坐,万籁有声;而庭阶寂寂,小鸟时来啄食,人至不去。
Unit 3 Section ⅠStarting out & Understanding ideasⅠ.阅读理解AWe have two daughters: Kristen is seven years old and Kelly is four. Last Sunday evening, we invited some people home for dinner. I dressed them nicely for the party, and told them that their job was to join Mommy in answering the door when the bell rang. Mommy would introduce them to the guests, and then they would take the guests' coats upstairs and put them on the bed in the second bedroom.The guests arrived. I introduced my two daughters to each of them. The adults were nice and kind and said how lucky we were to have such good kids.Each of the guests made a particular fuss over(过分爱护) Kelly, the younger one, admiring her dress, her hair and her smile. They said she was a remarkable girl to be carrying coats upstairs at her age.I thought to myself that we adults usually make_a_big_“to_do”_over the younger one because she's the one who seems more easily to be hurt. We do it with the best of intentions (意图).But we seldom think of how it might affect the other child. I was a little worried that Kristen would feel she was being outshone (使黯然失色). I was about to serve dinner when I realized that she had been missing for twenty minutes. I ran upstairs and found her in the bedroom, crying.I said, “What are you doing, my dear?”She turned to me with a sad expression and said, “Mommy, why don't people like me the way they like my sister? Is it because I'm not pretty? Is that why they don't say nice things about me as much?”I tried to explain to her, kissing and hugging her to make her feel better.Now, whenever I visit a friend's home, I make it a point to speak to the elder child first.1.What does the underlined expression “make a big ‘to do’ over” in Paragraph 4 mean?A.Show much concern about.B.Have a special effect on.C. List jobs to be done for.D.Do good things for.2.The guests praised Kelly for carrying coats upstairs because of her ________.A.beautiful hair B.pretty clothesC.lovely smile D.young age3.Why did Kristen feel sad and cry?A.The guests gave her more coats to carry,B.She didn't look as pretty as Kelly.C.The guests praised her little sister more than her.D.Her mother didn't introduce her to the guests.4.What does the author want to tell us?A.Parents should pay more attention to the elder children.B.The younger children are usually more easily hurt.C.People usually like the younger children more.D.Adults should treat children equally.BA survey said the average Asian dad spent one minute a day with his children.I was shocked. I mean, a whole minute? Every day? Get real. Once a week maybe. The fact is,many Asian males are terrible at kidrelated things. I n fact, I am one of them.Childrearing (养育) doesn't come naturally to guys. My mother knew the names of our teachers,best friends and crushes. My dad was only vaguely aware that there were short people sharing the apartment. My mother bought healthy fresh food at the market every day. My dad would only go shopping when there was nothing in the fridge except a jar of butter. Then he'd buy beer. My mother always knew the right questions to ask our teachers. My dad would ask my English teacher if she could get us a discount on school fees. My mother served kid food to kids. My dad added chili sauce to everything,including our baby food.The truth is,mothers have superpowers. My son fell off a wall once and hurt himself all over. I demanded someone bring me a computer so I could google what to do. My wife ignored me and did some sort of chanting (咏诵) phrase such a s“Mummy kiss it better,” and cured 17 separate injuries in less than 15 seconds.Yes,mothers are incredible people,but they are not always correct. Yet honestyforces me to record the fact that mothers only know best 99.99 percent of the time. Here are some famous slipups.The mother of Bill Gates:“If you're going to drop out of college and hang out with your stupid friends, don't come running to me when you find yourself penniless. ”The mother of Albert Einstein: “When you grow up, you'll find that sitting around thinking about the nature of time and space won't pay the grocery bills.” The mother of George W. Bush: “You'll never be like your dad,who became President of the United States and started his own war.”5.The tone(语气) for the writer to write the passage is ________.A.serious B.humorousC.disapproving D.critical(批评的)6.In paragraph 2, the writer makes a comparison between mothers and fathers to prove that ________.A.females love kids more than malesB.childrearing is difficult both for females and malesC.my dad is not interested in childrearingD.males are not good at childrearing7.What does the underlined word “slipups” in paragraph 4 probably mean?A.Stories. B.Shortcomings.C.Mistakes. D.Disadvantages.8.The last paragraph is mainly developed by ________.A.providing different examplesB.following the order of spaceC.making comparisonsD.analyzing causesⅡ.阅读七选五Change Your LookEverybody wants to look good,especially young people. __1__1. Get into shape.Exercising regularly not only keeps you looking your best, but also improves your health, reduces your possibility of getting certain diseases and gives you more energy.Healthy adults need 150 minutes of moderate (适度的) aerobic activity or 75 minutes of vigorous (强有力的) aerobic activity each week. Moderate activitiesinclude walking and swimming, while vigorous activities include jogging, boxing, and playing basketball. You should do some kind of strength training at least two days per week.Also, consider joining a gym or local sports team.__2__2. Keep a balanced diet.__3__ Whether you want to lose weight or simply improve your overall health, what you eat matters.Your diet should consist of fruits, vegetables, and whole grains. Read food labels and stay away from foods that contain too much fat and sugar. If you suffer from anxiety or depression, then cut down on alcohol and caffeine, as these drinks will make matters worse.3. Change your clothes.__4__ Make an effort to look your best on a daily basis. This doesn't necessarily mean dressing fancifully (花哨地) or formally; rather, find clothes that are fashionable, affordable, and proper.4.__5__ Get a haircut or dye your hair a different color. Women with long hair should consider getting layers, bangs, or a short bob.A.Change your hairstyle.B. Remember that you are what you eat.C. Keep away from clothes that make you feel bad about yourself.D.The following tips may help you change your look for the better.E.You should do some kind of strength training on your own per week.F.Exercising with other people can help keep you energetic, and will make exercise more fun.G.Read this article to learn how to make changes on both the inside and the outside to feel more satisfied.课时作业(七)Ⅰ.阅读理解A【语篇解读】本文是一篇记叙文。
七年级上册数学课时作业答案第一课时作业答案1.请计算下列各题。
(1)3+5=答:3+5=8(2)12−7=答:12−7=5(3) $4 \\times 6 =$答:$4 \\times 6 = 24$(4) $\\frac{15}{3} =$答:$\\frac{15}{3} = 5$(5) $27 \\div 9 =$答:$27 \\div 9 = 3$第二课时作业答案1.请计算下列各题。
(1) $5 \\times 7 - 9 =$答:$5 \\times 7 - 9 = 26$(2) $2 \\times 3 + 4 =$答:$2 \\times 3 + 4 = 10$(3) $\\frac{10}{5} + 2 =$答:$\\frac{10}{5} + 2 = 4$(4) $18 - 7 \\div 3 =$答:$18 - 7 \\div 3 = 16$(5) $12 \\times 3 - \\frac{5}{2} =$答:$12 \\times 3 - \\frac{5}{2} = 34.5$第三课时作业答案1.请计算下列各题。
(1)2.3+4=答:2.3+4=6.3(2)8−3.2=答:8−3.2=4.8(3) $2.5 \\times 3 =$答:$2.5 \\times 3 = 7.5$ (4) $\\frac{6.4}{2} =$答:$\\frac{6.4}{2} = 3.2$ (5) $9 \\div 1.5 =$答:$9 \\div 1.5 = 6$第四课时作业答案1.请计算下列各题。
(1) $3.5 \\times 2.6 =$答:$3.5 \\times 2.6 = 9.1$ (2)4.2+1.8=答:4.2+1.8=6(3) $5.6 \\div 8 =$答:$5.6 \\div 8 = 0.7$ (4) $\\frac{3.9}{2.5} =$答:$\\frac{3.9}{2.5} = 1.56$ (5) $16.8 - 6 \\times 1.2 =$ 答:$16.8 - 6 \\times 1.2 = 9$ 第五课时作业答案1.请计算下列各题。
蒸馏和萃取一、选择题:每小题只有一个选项符合题意。
1.下列常用的混合物分离或提纯操作中,需使用冷凝管的是( )A .过滤B .蒸发C.蒸馏D .结晶2.在进行由自来水制取蒸馏水的实验中,下列叙述不正确的是( )A.在蒸馏烧瓶中加入约13体积的自来水,并放入几粒碎瓷片 B.蒸馏操作中,烧瓶可直接加热C.冷水从冷凝管的下口入,上口出D.收集蒸馏水时,应弃去开始蒸馏出的部分3.海水淡化(又称海水脱盐)是海岛地区提供淡水的重要手段,下列方法中可以用来进行海水淡化的是( )A.过滤法B .蒸馏法C.分液法D .结晶法4.下列关于萃取的操作说法正确的是( )A.从溴水中提取溴,可加入酒精作萃取剂B.萃取时,所加入的溶剂应与原溶剂互不相溶,且与溶质、原溶剂相互间不反应C.用一种有机溶剂提取水溶液中的某物质,静置分层后,“水层”一定在上层D.萃取操作完成后,静置分液,上、下层液体均从下口放出5.有关萃取操作的说法中不正确的是( )A.实验使用的主要仪器是分液漏斗B.溶质在萃取剂中的溶解度比在原溶剂中的溶解度大C.溶质溶于萃取剂中所得溶液不一定有颜色D.分液时,分液漏斗顶部塞子不能打开6.下列图示的四种实验操作名称从左到右依次是( )A.蒸发、蒸馏、过滤、萃取B.过滤、蒸馏、蒸发、萃取C.过滤、蒸发、蒸馏、分液D.萃取、蒸馏、蒸发、过滤二、选择题:每小题有一个或两个选项符合题意。
7.下列实验操作中正确的是( )A.蒸馏操作时,应向蒸馏烧瓶中加入几块沸石,以防止暴沸B.蒸发操作时,应使混合物中的水剩余少量时,停止加热C.分液操作时,先将分液漏斗中下层液体从下口放出,再将上层液体从下口放出D.萃取操作时,可以选用CCl4或酒精作为萃取剂从溴水中萃取溴8.下列分离混合物的实验计划中不正确的是( )A.分离乙酸(沸点77.1℃)与某种液态有机物(沸点120℃)的混合物——蒸馏B.从含有少量NaCl的KNO3溶液中提取KNO3——热水溶解、降温结晶、过滤C.用CCl4萃取碘水中的碘,待液体分层后——下层液体从下口放出,上层液体从上口倒出D.将溴水中的溴转移到有机溶剂中——加入酒精萃取9.下列实验中,所选装置不合理的是( )A.粗盐提纯,选①和②B.用CCl4提取碘水中的碘,选③C.用NaOH溶液吸收少量CO2,选⑤D.分离Na2CO3溶液和油,选④10.将碘水中的碘萃取出来的实验中,下列说法错误的是( )A.分液漏斗使用前要检验它是否漏水B.萃取剂要求不溶于水,且比水更容易使碘溶解C.注入碘水和萃取剂,倒转分液漏斗反复用力振荡后立即分液D.若用苯作萃取剂,则分层后下层液体呈紫红色11.下列叙述不正确的是( )A.蒸馏完毕后,应先停止加热,待装置冷却后,停止通水,再拆卸蒸馏装置B.蒸馏时的接收装置如图l4萃取碘水中的I2时,先从分液漏斗下口放出有机层,后从上口倒出水层D.做蒸馏实验时,在蒸馏烧瓶中应加入沸石,以防暴沸。
第5课古代非洲与美洲A组基础过关题1.每个文明都有自己的文明符号。
下列农作物中,原产地位于非洲的是()①甜高粱②棉花③西瓜④茶叶A.①②③B.①③④C.②③④D.①②④解析茶叶原产中国。
西非居民班图人培育出了甜高粱、西瓜和棉花等重要农作物。
答案A2.(2020·山东省实验中学模拟)非洲是古代农业一个重要发生地,西非居民培育出甜高粱、西瓜和棉花等重要农作物。
到11世纪时,当地的主要居民是()A.埃及人B.班图人C.加纳人D.马里人解析西非居民班图人培育出了甜高粱、西瓜和棉花等农作物,其活动区域逐渐扩展到撒哈拉沙漠以南地区,到11世纪,班图人成为当地的主要居民,故B项正确。
答案B3.(2020·山东滕州一中模拟)8—15世纪,马里逐步强大,一度成为西非最强大的国家。
同时,成为西非重要的文化中心,不少学者纷纷来此讲学和访问。
下列属于马里古城的是()A.阿克苏姆B.摩加迪沙C.廷巴克图D.亚历山大解析结合所学内容可知,廷巴克图是西非马里重要的文化中心,故选C;阿克苏姆是兴起于埃塞俄比亚的古王国,排除A;摩加迪沙位于东非,亚历山大位于北非,排除B、D。
故选C。
答案C4.(2020·山东历城二中模拟)中南非洲由于特殊的自然地理环境,长期孤立地发展,但绝不是“洪荒僻壤”,那里的居民也创造了灿烂的文明。
其中,西部非洲古文明的杰出代表是()A.摩加迪沙文明B.阿克苏姆文明C.桑海文明D.津巴布韦文明解析结合所学可知,15世纪兴盛起来的桑海帝国是西非古代国家的集大成者,而穆罕默德·杜尔则是这个帝国最强盛的代表人物,他的一系列改革影响直至今日,C正确;摩加迪沙文明属于东部非洲的代表,A错误;阿克苏姆文明位于非洲东北部地区,B错误;津巴布韦文明位于非洲东南部,D错误。
故选C。
答案C5.(2020·北京首师大附中模拟)某国家国名意为“石头造的房子”,其统治范围一直延伸到赞比西河和现今南非境内。
淡妆浓抹总相宜——语言的色彩1.根据语境提示填充。
一位妇女急匆匆地走进一家商店。
“5分钟前我的小儿子到您商店买了一磅果酱,可是分量不足,这个,您怎么解释?”售货员非常礼貌地答道:__________________________________________________________。
2.根据语境提示填充。
帷幕徐徐拉开,报幕员很有风度地走上台来。
不知什么原因,她被绊倒了,台下顿时一阵轰笑。
报幕员重新站了起来,对观众很有礼貌地说:“______________________________________。
”台下发出一阵热烈的掌声。
3.据报道,黑龙江省宁安市沙兰镇遭受了200年不遇的洪灾。
沙宪静老师从肆虐的洪水中先后救出了20多名学生;镇卫生院的解洪权院长一直忙于抢救受伤的学生,而自己8岁的女儿被洪水冲走,至今下落不明。
此时此刻,你想对他们说些什么呢?(1)想对受伤的学生这样说:________________________________________________________________________________________________________________________________________________(2)想对沙老师这样说:________________________________________________________________________________________________________________________________________________(3)想对解院长这样说:________________________________________________________________________________________________________________________________________________4.阅读下面一段文字,回答后面的问题。
课时作业(三十八)1.设f (n )=1+12+13+…+13n -1(n ∈N *),那么f (n +1)-f (n )等于( )A.13n +2B.13n +13n +1 C.13n +1+13n +2 D.13n +13n +1+13n +2答案 D2.在数列{a n }中,a 1=13,且S n =n (2n -1)a n ,通过求a 2,a 3,a 4,猜想a n 的表达式为( )A.1(n -1)(n +1) B.12n (2n +1)C.1(2n -1)(2n +1) D.1(2n +1)(2n +2)答案 C解析 由a 1=13,S n =n (2n -1)a n ,得S 2=2(2×2-1)a 2,即a 1+a 2=6a 2, ∴a 2=115=13×5,S 3=3(2×3-1)a 3,即13+115+a 3=15a 3. ∴a 3=135=15×7,a 4=17×9.故选C.3.n 为正奇数时,求证:x n +y n 被x +y 整除,当第二步假设n =2k -1命题为真时,进而需证n =________,命题为真.答案 2k +14.设数列{a n }的前n 项和为S n ,且对任意的自然数n 都有:(S n-1)2=a n S n .(1)求S 1,S 2,S 3;(2)猜想S n 的表达式并证明. 解析 (1)由(S 1-1)2=S 21得:S 1=12;由(S 2-1)2=(S 2-S 1)S 2得:S 2=23;由(S 3-1)2=(S 3-S 2)S 3得:S 3=34.(2)猜想:S n =nn +1.证明:①当n =1时,显然成立; ②假设当n =k (k ≥1且k ∈N *)时,S k =kk +1成立. 则当n =k +1时,由(S k +1-1)2=a k +1S k +1得:S k +1=12-S k=12-k k +1=k +1k +2, 从而n =k +1时,猜想也成立. 综合①②得结论成立.5.在数列{a n },{b n }中,a 1=2,b 1=4,且a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列(n ∈N *).(1)求a 2,a 3,a 4及b 2,b 3,b 4,由此猜测{a n },{b n }的通项公式,并证明你的结论;(2)证明:1a 1+b 1+1a 2+b 2+…+1a n +b n <512.解析 (1)由条件得2b n =a n +a n +1,a 2n +1=b n b n +1.由此可得a 2=6,b 2=9,a 3=12,b 3=16,a 4=20,b 4=25. 猜测a n =n (n +1),b n =(n +1)2. 用数学归纳法证明:①当n =1时,由上可得结论成立. ②假设当n =k 时,结论成立,即a k =k (k +1),b k =(k +1)2.那么当n =k +1时, a k +1=2b k -a k =2(k +1)2-k (k +1)=(k +1)(k +2), b k +1=a 2k +1b k=(k +2)2.所以当n =k +1时,结论也成立.由①②,可知a n =n (n +1),b n =(n +1)2对一切正整数都成立. (2)1a 1+b 1=16<512. n ≥2时,由(1)知a n +b n =(n +1)(2n +1)>2(n +1)·n . 故1a 1+b 1+1a 2+b 2+…+1a n +b n <16+12(12×3+13×4+…+1n (n +1)) =16+12(12-13+13-14+…+1n -1n +1) =16+12(12-1n +1)<16+14=512. 6.已知数列{a n }的各项都是正数,且满足:a 0=1,a n +1=12a n ·(4-a n ),(n ∈N).证明:a n <a n +1<2,(n ∈N). 证明 解法一 用数学归纳法证明:(1)当n =0时,a 0=1,a 1=12a 0(4-a 0)=32,所以a 0<a 1<2,命题正确.(2)假设n =k 时命题成立,即a k -1<a k <2. 则当n =k +1时,a k -a k +1 =12a k -1(4-a k -1)-12a k (4-a k ) =2(a k -1-a k )-12(a k -1-a k )(a k -1+a k )=12(a k -1-a k )(4-a k -1-a k ). 而a k -1-a k <0,4-a k -1-a k >0,所以a k -a k +1<0. 又a k +1=12a k (4-a k )=12[4-(a k -2)2]<2.所以n =k +1时命题成立.由(1)(2)可知,对一切n ∈N 时有a n <a n +1<2. 解法二 用数学归纳法证明:(1)当n =0时,a 0=1,a 1=12a 0(4-a 0)=32,所以0<a 0<a 1<2;(2)假设n =k 时有a k -1<a k <2成立, 令f (x )=12x (4-x ),f (x )在[0,2]上单调递增,所以由假设有:f (a k -1)<f (a k )<f (2), 即12a k -1(4-a k -1)<12a k (4-a k )<12×2×(4-2), 也即当n =k +1时,a k <a k +1<2成立. 所以对一切n ∈N ,有a k <a k +1<2.7.已知函数f (x )=ln x +ax +1,a ∈R(1)当a =2时,试比较f (x )与1的大小; (2)求证:ln(n +1)>13+15+17+…+12n +1(n ∈N *).解析 (1)当a =2时,f (x )=ln x +2x +1,其定义域为(0,+∞).令h (x )=f (x )-1=ln x +2x +1-1,∵h ′(x )=1x -2(x +1)2=x 2+1x (x +1)2>0,∴h (x )在(0,+∞)上是增函数. ①当x >1时,h (x )>h (1)=0,即f (x )>1; ②当0<x <1时,h (x )<h (1)=0,即f (x )<1; ③当x =1时,h (x )=h (1)=0,即f (x )=1.(2)证法一:根据(1)的结论,当x >1时,ln x +2x +1,即ln x >x -1x +1.令x =k +1k (k ∈N *),则有ln k +1k >12k +1,∴∑nk =1ln k +1k >∑nk =1 12k +1.∵ln(n +1)=∑nk =1ln k +1k,∴ln(n +1)>13+15+17+…+12n +1(n ∈N *).证法二:当n =1时,ln(n +1)=ln2.∵3ln2=ln8>1,∴ln2>13,即n =1时命题成立.假设当n =k 时,命题成立,即ln(k +1)>13+15+…+12k +1.∴当n =k +1时,ln(n +1)=ln(k +2)=ln(k +1)+ln k +2k +1>13+15+…+12k +1+ln k +2k +1.根据(2)的结论,当x >1时,ln x +2x +1>1,即ln x >x -1x +1.令x =k +2k +1,则有ln k +2k +1>12k +3,则有ln(k +2)>13+15+…+12k +1+12k +3,即n =k +1时命题也成立.8.已知等差数列{a n }的公差d 大于0,且a 2,a 5是方程x 2-12x +27=0的两根,数列{b n }的前n 项和为T n ,且T n =1-12b n .(1)求数列{a n }、{b n }的通项公式;(2)设数列{a n }的前n 项的和为S n ,试比较1b n与S n +1的大小,并说明理由.思路 (1)求得a 2、a 5的值即可得a n 的表达式,再利用T n -T n -1=b n 求出{b n }的通项公式;(2)首先求出S n +1与1b n的表达式,先进行猜想,再进行证明.解析 (1)由已知得⎩⎪⎨⎪⎧a 2+a 5=12,a 2a 5=27.又∵{a n }的公差大于0,∴a 5>a 2.∴a 2=3,a 5=9. ∴d =a 5-a 23=9-33=2,a 1=1.∵T n =1-12b n ,b 1=23,当n ≥2时,T n -1=1-12n -1,∴b n =T n -T n -1=1-12b n -(1-12b n -1),化简,得b n =13b n -1,∴{b n }是首项为23,公比为13的等比数列,即b n =23·(13)n -1=23n ,∴a n =2n -1,b n =23n .(2)∵S n =1+(2n -1)2n =n 2,∴S n +1=(n +1)2,1b n =3n 2,以下比较1b n与S n +1的大小:当n =1时,1b 1=32,S 2=4,∴1b 1<S 2.当n =2时,1b 2=92,S 3=9,∴1b 2<S 3.当n =3时,1b 3=272,S 4=16,则1b 3<S 4.当n =4时,1b 4=812,S 5=25,得1b 4>S 5.猜想:n ≥4时,1b n >S n +1.下面用数学归纳法证明: ①当n =4时,已证.②假设当n =k (k ∈N *,k ≥4)时,1b kS k +1,即3k2>(k +1)2, 那么,n =k +1时,1b k +1=3k +12=3·3k2>3(k +1)2=3k 2+6k +3=(k 2+4k +4)+2k 2+2k -1>[(k +1)+1]2=S (k +1)+1,∴n =k +1时,1b nS n +1也成立.由①②可知n ∈N *,n ≥4时,1b n >S n +1成立.综上所述,当n =1,2,3时,1b n <S n +1,当n ≥4时,1b n>S n +1.1.F (n )是一个关于自然数n 的命题,若F (k )(k ∈N *)是真命题,则F (k +1)是真命题,现已知F (7)是假命题,则有:①F (8)是假命题;②F (8)是真命题;③F (6)是假命题;④F (6)是真命题;⑤F (5)是假命题;⑥F (5)是真命题.其中真命题的是( )A .③⑤B .①②C .④⑥D .③④答案 A解析 用反证法,假设F (6)真,则F (7)真,与已知矛盾;假设F (5)真,则F (6)真,进而F (7)真,与已知矛盾.2.(2011·山东济南模拟)设函数f (x )=x 2e x -1-13x 3-x 2(x ∈R). (1)求函数y =f (x )的单调区间; (2)求y =f (x )在[-1,2]上的最小值;(3)当x ∈(1,+∞)时,用数学归纳法证明:∀n ∈N *,e x -1>xnn !.解析 (1)f ′(x )=2x e x -1+x 2e x -1-x 2-2x =x (x +2)(e x -1-1), 令f ′(x )=0,可得x 1=-2,x 2=0,x 3=1.当x 变化时,f ′(x ),f (x )的变化情况如下表:-2)和(0,1).(2)当x ∈[-1,2]时,f (-1)=1e 2-23<0,f (2)=4(e -53)>0,f (x )极小值=f (1)=-13>f (-1),f (x )极大值=f (0)=0.所以f (x )在[-1,2]上的最小值为1e 2-23. (3)证明:设g n (x )=e x -1-xn n !,当n =1时,只需证明g 1(x )=e x -1-x >0,当x ∈(1,+∞)时,g 1′(x )=e x -1-1>0,所以g 1(x )=e x -1-x 在(1,+∞)上是增函数.∴g 1(x )>g 1(1)=e 0-1=0,即e x -1>x .当x ∈(1,+∞)时,假设n =k 时不等式成立, 即g k (x )=ex -1-x kk !>0, 当n =k +1时,因为g k +1′(x )=e x -1-(k +1)x k (k +1)!=e x -1-xkk !>0,所以g k +1(x )在(1,+∞)上也是增函数.所以g k +1(x )>g k +1(1)=e 0-1(k +1)!=1-1(k +1)!>0,即当n =k +1时,不等式成立.所以当x ∈(1,+∞)时,∀n ∈N *,e x -1>xn n !.3.已知函数f (x )=x -sin x ,数列{a n }满足:0<a 1<1,a n +1=f (a n ),n =1,2,3,….证明:(1)0<a n +1<a n <1,(2)a n +1<16a 3n.解析 (1)先用数学归纳法证明0<a n <1,n =1,2,3,…. (ⅰ)当n =1时,由已知结论成立. (ⅱ)假设当n =k 时结论成立,即0<a k <1. 因为0<x <1时,f ′(x )=1-cos x >0, 所以f (x )在(0,1)上是增函数. 又f (x )在[0,1]上连续,从而f (0)<f (a k )<f (1),即0<a k +1<1-sin 1<1. 故当n =k +1时,结论成立.由(ⅰ)(ⅱ)可知,0<a n <1对一切正整数都成立.又因为0<a n <1时,a n +1-a n =a n -sin a n -a n =-sin a n <0, 所以a n +1<a n .综上所述0<a n +1<a n <1. (2)设函数g (x )=sin x -x +16x 3,0<x <1.由(1)知,当0<x <1时,sin x <x .从而g ′(x )=cos x -1+x 22=-2sin 2x 2+x 22>-2(x 2)2+x 22=0. 所以g (x )在(0,1)上是增函数. 又g (x )在[0,1]上连续,且g (0)=0, 所以当0<x <1时,g (x )>0成立.大家网,全球第一学习门户!无限精彩在大家 于是g (a n )>0,即sin a n -a n +16a 3n >0. 故a n +1<16a 3n .。