第4章 差错控制技术
- 格式:ppt
- 大小:3.24 MB
- 文档页数:43
简述差错控制技术
差错控制技术是一种通信系统中用于检测和纠正数据传输过程中出现的错误的技术。
差错控制技术主要包括以下几种方法:
1. 错误检测:通过添加冗余信息来检测数据传输过程中的错误。
常见的错误检测方法包括奇偶校验、循环冗余检验(CRC)、海明码等。
2. 自动重传请求(ARQ):在数据传输过程中,如果发现数
据出现错误,接收端可以向发送端发送一个请求重传的信号,从而实现错误的纠正。
3. 前向纠错(FEC):在数据传输过程中,发送端可通过添加
纠错码使得接收端能够校验和修复一定数量的错误。
4. 正确性确认:接收端在收到数据之后,向发送端发送一个确认信号,以表示数据已被正确接收。
差错控制技术的主要目标是保证数据传输的可靠性和完整性,并尽量降低错误率。
不同的差错控制技术可以根据具体的需求选择使用,例如,在对数据传输的稳定性要求较高的无线通信系统中,可以采用ARQ和FEC结合的方式来保证可靠性。
移动通信中的差错控制技术1.1 五代通信技术成为重点。
现阶段,移动通信技术发展要围绕网络化、数字化、信息化等主要方向,为用户提供更为便捷和高效的综合性通信服务。
五代(5G)通信系统,早已经成为当前通信技术研发和未来应用重点。
作为新一代的通信系统,5G 符合移动通信发展的整体需要,顺应了移动通信技术的发展规律,与第四代技术相比较,五代技术在用户体验、传输稳定性、系统安全和覆盖率方面具有明显的技术优势。
相对于过往的移动通信技术,5G 能够将移动通信技术与其他通信技术结合起来,进而构建成为一套更为科技化和信息化的网络。
总的来看,五代移动通信技术的持续应用价值要高于过往的技术。
1.2 移动通信技术发展特征1.2.1 频谱具有高利用率。
在新的移动通信技术支持下,高频段的频谱资源将得到更为广泛的有效应用。
现阶段,受限于科技水平条件问题,受高频段无线电波穿透能力的直接影响,高频段频谱资源的整体利用效率和水平并不理想。
随着技术的创新,有线与无线宽带技术更为有效融合,新一代移动通信技术其频谱将具备更强的可利用性。
1.2.2 通信系统性能得到明显提升。
在新的移动通信技术发展过程中,突出了综合性组网。
以五代通信技术为例,其重点集合了多点、多天线、多用户、多小区相互协作、相互组网,进而能够明显提升通信系统的性能。
1.2.3 设计理念持续创新。
在移动通信的主要业务当中,占据业务主导地位的是室内通信业务。
移动通信技术发展要围绕这一方向,着重做好室内无线网络覆盖及业务支撑,逐渐转变设计理念,创新技术规划和设计。
1.2.4 综合成本降低。
5G 移动通信技术在配置设计方面更具优势,网络资源能够得到更为科学和有效的配置,进而使运营商能够结合流量情况进行实时的有效调整,降低能耗和运营成本,提升移动通信的性价比。
2、差错控制技术在移动通信网络中的应用2.1 在移动通信网络中的应用。
移动通信中的差错控制技术主要包括前向纠错技术和自动重传请求 (ARQ) 技术。
网络基础 差错控制技术差错控制是指在数据通信过程中要能发现(检测)差错,并采取措施纠正,把差错限制在所允许的尽可能小的范围内的技术和方法。
差错控制除选用高可靠性的设备和传输媒介及相应的辅助措施外,在软件方面首先要进行差错控制编码。
1.差错的特点由于通信线路上总有噪声存在,噪声和有用信息中的结果,就会出现差错。
噪声可分为两类,一类是热噪声,另一类是冲击噪声,热噪声引起的差错是一种随机差错,亦即某个码元的出错具有独立性,与前后码元无关。
冲击噪声是由短暂原因造成的,例如电机的启动、停止,电器设备的放弧等,冲击噪声引起 的差错是成群的,其差错持续时间称为突发错的长度。
衡量信道传输性能的指标之一是误码率PO (错误接收的码元数/接收的总码元数)。
目前普通电话线路中,当传输速率在600~2400bit/s 时,PO 在10-4~10-6之间,对于大多数通信系统,PO 在10-5~10-9之间,而计算机之间的数据传输则要求误码率低于10-9。
2.差错控制方式差错控制方式基本上分为两类,一类称为“反馈纠错”,另一类称为“前向纠错”。
在这两类基础上又派生出一种称为“混合纠错”。
● 反馈纠错这种方式在是发信端采用某种能发现一定程度传输差错的简单编码方法对所传信息进行编码 ,加入少量监督码元,在接收端则根据编码规则收到的编码信号进行检查,一量检测出(发现)有错码时,即向发信端发出询问的信号,要求重发。
发信端收到询问信号时,立即重发 已发生传输差错的那部分发信息,直到正确收到为止。
所谓发现差错是指在若干接收码元中知道有一个或一些是错的,但不一定知道错误的准确位置。
差错控制示意图如图3-29所示。
图3-29 差错控制● 前向纠错这种方式是发信端采用某种在解码时能纠正一定程度传输差错的较复杂的编码方法,使接收端在收到信码中不仅能发现错码,还能够纠正错码。
在差错控制示意图中,除去虚线所框部分就是前向纠错的方框示意图。
采用前向纠错方式时,不需要反馈信道,也无需反复重发而延误传输时间,对实时传输有利,但是纠错设备比较复杂。
计算机网络技术基础复习资料第一章计算机网络基本概念1、什么是计算机网络?答:计算机网络是利用通信设备和通信线路将分布在不同地点、功能独立的多个计算机系统互联起来,有功能完善的网络软件从而实现网络中资源共享和信息传递的系统。
2、计算机网络的功能中最重要的功能是资源共享。
网络资源有三种:硬件、软件、数据。
3、一个计算机网络由通信子网和资源子网构成。
4、通信子网:由网络节点和通信链路组成,承担计算机网络中数据传输、交换、加工和变换等通信处理工作。
5、资源子网:提供资源的计算机和申请资源的终端共同构成。
6、计算机网络的发展分为哪三个阶段?答:第一阶段:面向终端的单级计算机网络;第二阶段:计算机对计算机的网络;第三阶段:网际网阶段;第四阶段:开放式网格化计算机网络;7、计算机网络拓扑类型有哪些,各有什么特点?答:计算机网络的拓扑结构有:星型、树型、网状型、环型、总线型和无线型;星型:由一个根结点和若干个叶节点构成,结构简单、易于实现和便于管理,缺点:一旦中心结点出现故障就会造成全网瘫痪。
树型:只有一个根节点,其他节点有且只有一个父节点;缺点:不能在相邻或同层节点之间进行传递数据。
网状型:至少有一个以上的根节点,至少有一个以上的父节点;优点:一条线路发生故障不会影响正常通信;缺点:构造复杂,不便于维护。
环型:所有节点通过通信线路连成了一个环,每个节点有且只有一个父节点和子节点,不存在根节点;优点:每个站点所获得的时间是相等的,比较公平;缺点:有一个节点发生故障其它节点就不能通信。
总线型:总线型结构是只有叶节点没有根节点的拓扑类型,优点:结构简单,易于实现,易于扩展和可靠性好;缺点:每个站点数据的发出是“随机竞争型”的,最大等待时间不确定。
无线型:优点:不需好通信线路,节约成本;缺点:抗干扰能力差,不适合远距离传输。
8、计算机网络按照地理分布范围的大小分为:局域网,城域网,广域网三类。
根据传输技术分为广播式网络和点到点网络。