激光跟踪仪测量距离误差的机器人运动学参数补偿
- 格式:pdf
- 大小:993.17 KB
- 文档页数:7
电子·激光第22卷第1期 2011年1月 Journal of Optoelectronics·Laser V ol.22N o.1 Jan.2011工业机器人坐标测量系统实时校准补偿技术刘常杰*,解成超,叶声华(天津大学精密测试技术及仪器国家重点实验室,天津300072)摘要:针对工业机器人测量系统连续长时间运行时参数不断发生变化,研究了一种采用实时校准的补偿方法。
在测量周期内,多姿态测量空间固定点,根据固定点坐标与机器人参数的关系,快速反向求解出机器人变化的参数,实现机器人模型参数实时校准;将校准后的参数应用到测量模型中,有效地减小测量系统因机器人模型参数变化而引起的系统测量误差。
实验表明,该方法能够有效地将系统测量误差从0.5mm减小到0.2mm。
关键词:机器人;在线坐标测量系统;温度补偿中图分类号:TP212.14 文献标识码:A 文章编号:1005-0086(2011)01-0086-05Study on real-tim e calibration and com pensation of the coor dinatem easurem ent syste m for industr y robotLIU Chang-jie*,XIE Cheng-chao,YE Sheng-hua(State Key Laboratory of Precision Measuring Technology and Instrument,Tianjin University,Tianj in300072,Chi-na)A bst ract:The ac curacy of the robot measurement system is greatly affected by the parameter var iationsdue to the heating problems from the robot and environmental changes after long time operation.A real-time c alibration method was presented to compensate the system parameters of the robot.Several fixedpoints in the spac e with different poses were measured during the measuring c ircle.Acc ording to the re-lationship between the c oordinates of the fixed points and the robot parameters,the parameters of therobot variations were calc ulated and calibrated in real-time.The system measuring errors resuting fromthe robot parameter variations were effectively reduc ed.The exper imental results show that the systemmeasurement error is reduced from0.5mm to0.2mm.Ke y wor ds:robot;online c oordinate measurement system;temperature compensation1 引 言 近10年,工业机器人技术发展迅速,运动精度、重复性等指标有了长足的进步,一定程度上能够满足工业现场测量系统的精度需求。
工业机器人绝对定位误差补偿方法摘要:随着我国经济在快速发展,社会在不断进步,现场环境下工业机器人连续作业运行容易导致定位漂移问题,利用外部高精度测量系统获取其末端执行器精确三维位置信息是机器人绝对定位误差的有效补偿方式。
针对误差补偿三维测量高效率、高精度、高适应性要求,提出了一种基于工作空间测量定位系统的工业机器人精度补偿方法。
利用测量定位系统的动态特性,设计了针对机器人工作轨迹空间的网格划分策略,根据定位误差实际分布情况调整网格边长,通过采集网格节点绝对定位误差矢量值,研究了反距离加权算法以完成轨迹关键节点定位误差矢量的插值计算,最终完成末端执行器绝对定位误差补偿。
试验结果表明,所研究方法实时性好、效率高,安装20kg负载补偿后机器人绝对定位误差平均值由1.36mm降为0.19mm,提升了约86%,能够显著改善工业机器人现场作业精度。
关键词:工业机器人;误差补偿;网格划分引言随着工业机器人智能控制技术的发展,需要构建工业机器人的输出稳定性控制模型,结合工业机器人的位姿补偿和误差定位的方法,进行工业机器人的控制稳定性设计,提高工业机器人的空间三维定位和控制能力,相关的工业机器人定位方法研究在工业机器人的输出定位控制中具有重要意义。
在进行工业机器人的定位控制中,需要结合工业机器人的定位参数分布,进行控制稳定性测试,结合三维空间定位的方法,提高工业机器人的输出稳定性和自适应性,研究工业机器人的空间定位误差补偿方法,在提高工业机器人的稳定性方面意义重大,相关的工业机器人定位误差补偿方法研究受到人们极大的重视。
1机器人介绍本文研究对象LR20型工业机器人为安徽零点精密机械有限公司自主研发并量产的通用工业机器人,重复定位精度达到士0.05mm,LR20型工业机器人本体自重仅230kg,结构紧凑能够满足轻量化要求,防护等级达到IP65。
该机器人采用管线内置技术,保证了不受外部恶劣环境的干扰,但对内部空间的布局和管线磨损等方面的要求较高;同时该机器人可以满足地面与悬吊两种安装方式。
基于改良的D-H模型的机器人运动参数标定方法高瑞翔 杨青 房鹤飞 / 上海市质量监督检验技术研究院摘 要 通过在D-H模型中添加一个旋转参数能够弥补其存在的缺陷。
通过激光跟踪仪测量机器人末端位置,能够逆解算出相应的运动参数补偿值。
经过补偿后,机器人的定位度得到了明显的改善。
关键词 D-H模型;运动参数;机器人;定位精度0 引言如今,机器人在工业制造中的应用越来越广泛。
根据不同的应用范围,各行业对于机器人的性能要求也不尽相同。
然而,在各项参数指标中,定位度的要求往往是最关键的。
因此,对于机器人定位度的标定研究是十分重要的[1]。
不同于机床、加工中心等坐标定位设备,机器人末端位置无法由移动机构直接到达,而是由各个机器人各轴电机根据运动学计算获得的参数进行控制,电机转动后间接使机器人末端到达所要求的位置。
由此,提高机器人定位度的关键在于标定机器人各轴的运动参数。
目前,对于机器人运动参数标定,人们已经进行了大量的研究。
研究表明,机器人末端定位精度的影响主要来源于机器人的运动模型。
由于机器人的运动控制方式为半闭环,且运动姿态也是在机器人的使用过程中需要考虑的,因此,在确保所确立的运动模型准确的同时,还需要避免由于运动参数变化后引起机器人的位姿发生跃变[2]。
现今应用最为广泛的机器人运动参数模型为Denavit和Hartenberg建立的D-H模型。
D-H模型对于机器人结构没有苛刻的要求,不仅可应有于单轴机器人的运动参数标定,也可应用于当今被广泛使用的6轴机器人,简单及普适的特性,使其成为经典。
然而该模型也存在明显缺陷,即当机器人的两个运动轴接近于平行时,该模型在解算时会发生奇异。
针对此缺陷,改良的运动模型被建立。
Crai 在D-H模型的参数中增加了旋转参数,提出了MDH运动学模型。
Stone提出了S模型,通过使用三个参数和三个旋转参数的方式,来解决参数解算时的奇异问题。
Zhuang和Roth建立了MCPC模型,为了保证机器人运动的连续性,增加了多个运动参数。
第 40卷第 2期 2007年 2月天津大学学报 Journa l of T i a n ji n Un i versity Vol . 40 No . 2Feb . 2007收稿日期 :2006203210; 修回日期 :2006209206.基金项目 :天津市应用基础研究重点资助项目 (05YFJZJC01700 .作者简介 :叶声华 (1934— , 男 , 中国工程院院士 , shhuaye@tju . edu . cn .基于激光跟踪仪的机器人运动学参数标定方法叶声华 , 王一 , 任永杰 , 李定坤(天津大学精密测试技术及仪器国家重点实验室 , 天津 300072摘要 :工业机器人的连杆参数误差是影响其绝对定位精度的最主要因素 , 为改善机器人的绝对定位精度 , 借助了高精度且可以实现绝对坐标测量的先进测量仪器———激光跟踪仪 , 以及功能强大的 C AM2M easure 4. 0配套软件 , 从机器人自身的运动约束出发 , 构建起实际的 D 2H 模型坐标系 , 进而对运动学参数进行了修正 , 获得了关节变量与末端法兰盘中心位置在基坐标系下的准确映射关系 . 结果表明 , 400/0以上 , 且该方法易于实现 , 通用性强 , 能明显改善精度 .关键词 :工业机器人 ; 绝对定位精度 ; 激光跟踪仪 ; D 2H 模型 ; 中图分类号 :TP243. 2文献标志码 :A 02li ti c Param eters sed on La ser Tracker YE Sheng 2hua, WANG Yi, RE N Yong 2jie, L ID ing 2kun(State Key Laborat ory of Precisi on Measuring Technol ogy and I nstru ments, Tianjin University, Tianjin 300072, ChinaAbstract :L ink parameter err ors of the industrial robot contribute t o the most influence on its accuracy . I n or 2der t o i m p rove the accuracy of the robot, a laser tracker, which can i m p lement highly accurate measurement and abs olute distance measurement (ADM , as well as the corres ponding CAM2Measure 4. 0s oft w are were em 2p loyed . Based on the movements constrain of the r obot itself, the actual D 2H model coordinate frames were re 2built . Accordingly, the kinematic parameters were identified and p recise mapp ing from the joint variables t o the center positi on of the end 2effector in the base frame was obtained . Results show that mean error and r oot mean sguare err or are i mp r oved more than 400/0. The p roposed calibrati on method is p ractical and generic . In addition, it can achieve better accuracy .Keywords :industrial robot; abs olute accuracy; laser tracker; D 2H model; movements constrain工业机器人的运动精度对于它在生产中的应用可靠性起着至关重要的作用 . 机器人各连杆的几何参数误差是造成机器人定位误差的最主要环节 , 它主要是由于制造和安装过程中产生的连杆实际几何参数与理论参数值之间的偏差造成的 , 一般被视为系统误差 . 除此之外 , 其他影响因素还包括由环境 (例如温度的变化、对运动参数的不确切认知、齿轮传动误差以及由于负重、应力和磨损等引起的机械变形误差等等 , 这些一般被视为随机误差 . 机器人的重复性精度只与随机误差有关 , 可以保证在 0. 1mm 以下 ; 绝对定位精度与系统误差有关 , 可以达到 2~3mm , 甚至更大 [1]. 国内外的许多学者就机器人运动学参数识别和标定问题进行了大量研究 [2— 8]. 通常采用的方法是先建立适当的运动学模型 , 然后精确测量几组位姿 , 接着推导参数识别算法或建立机构误差模型 , 最后获得实际模型参数并运用正向运动学求解真实位姿 [9]. 最近 , 世界著名工业机器人生厂商 ABB 公司运用了莱卡激光跟踪仪以保证其产品的精度 . 使用激光跟踪仪标定机器人不再需要其他的测量工具 , 从而也就省去了标定测量工具的繁琐工作 ; 同时 , 这一方法是对机器人的各个运动学参数进行修正 , 结果会使机器人在整个工作空间内的位姿得到校准 , 而不会像用迭代求解的方法那样 , 只是对某些测量姿态进行优化拟合 , 可能会造成在非测量点处残留相对较大的误差 ; 再者 , 随着机器人的机械磨损 , 机器人的运动学参数需要重新标定 , 而激光跟踪仪测量系统配置起来简单 , 特别适合于工业现场标定 . 正是鉴于以上优点 , 笔者采用激光跟踪仪作为测量工具去修正机器人的运动学参数 .1机器人模型的建立标定对象是 ABB 公司生产的 6自由度 I RB2400/10型串联机器人 , 测量工具是 F ARO 公司的 X i 型激光跟踪仪 , 该仪器测量绝对距离的精度为10μm +0. 4μm /m. D 2型 [10]. 为遵从这一模型 , (1 确定 z i 轴 . z i i 1的轴向 .(2 O i . :O i 在过 z i -1和 z i 轴的公法线上 .(3 确定 x i 轴 . 基本原则是 :x i 轴过 z i -1和 z i 轴的公法线方向 , 从 z i -1指向 z i .(4 确定 y i 轴 . 基本原则是 :y i =z i ×x i , 使坐标系为右手坐标系 . 这样就能建立起如图 1所示的坐标系系统.图 1机器人的 D 2H 模型坐标系F i g . 1 D 2H coord i n a te fram es of the robotD 2H 参数的定义如下 :杆件长度 a i 定义为从 x i -1到 x i 的距离 , 沿 x i 轴指向为正 ; 杆件扭角αi 定义为从 z i -1到 z i 的转角 , 绕x i 轴正向转动为正 , 且规定αi ∈ (-π, π];关节距离 d i 定义为从 x i -1到 x i 的距离 ,沿 z i -1轴指向为正 ; 关节转角θi 定义为从 x i -1到 x i 的转角 , 绕 x i -1轴正向转动为正 , 且规定θi ∈ (-π, π].有了这样的定义 , 可以得到相邻关节之间的齐次坐标变换矩阵[10]为i -1A i =Trans z (d i Rot z (θi Trans x (a i Rot x (αi =c i -c αi s i s αi s i a i c is ic αi c i -s αi c ia i s i 0s αi c αi d i1i =1, 3, 4, 5, 6然而 , 当相邻 2根轴线平行或近乎平行时 , 末端法兰盘的位置误差并不能通过修正 D 2H 参数来消除 . 为了避免这种数值不稳定的奇异性 , 再引入一个绕 y 轴的转角参数 , 记作β[11].i -1A i =Trans z (d i Rot z (θi Trans x (a i Rot x (αi ・Rot y (βiy (i =ii 10-sin βi0cos βii =2最后 , 根据正向运动学求解可以得到末端法兰盘坐标系到机器人基坐标系的坐标变换矩阵 0A 6=A 11A 22A 33A 44A 55A 6.2标定原理与数据测量机器人标定的目的是提高其绝对定位精度 , 也就是确定从关节变量到末端执行器在工作空间内真实位置的更为精确的函数关系 . 在本文中 , 实际模型参数的获得是通过建立真实的机器人 D 2H 坐标系实现的 , 其中的关键任务是确定机器人各根转轴的相互位置 . 一个点绕不经过它的直线旋转一周后 , 会在空间内形成一个圆周轨迹 , 圆周所在的平面与轴线垂直且圆心位于轴线上 . 据此 , 令机器人的某一根轴从零位位姿开始作步进转动 , 并保持其余 5根轴不转动 , 这样 , 各个姿态时的法兰盘中心点就位于同一条圆弧上 , 那么过该圆弧圆心且与圆弧所在平面垂直的直线方向 (或是相反方向就是转动轴的轴线方向 . 考虑到各种噪声的混入 , 采取最小二乘法拟合圆弧及其所在平面 . 为了减小噪声的影响 , 应该测量尽可能多的目标点 . 测量时 , 激光束会遇到机器人本体的阻挡 , 所以在末端关节上增加了辅助支架以扩大测量范围 . 该支架的引入只会造成旋转半径的变化 , 而不会影响到轴线位置的确定 . 因此 , 支架只要具有一定刚性 , 并通过简单的螺纹装配即可 , 并无其他设计和精度上的要求 . 同时 , 轴 4和轴6的圆弧半径显著增大 , 减小了扰动对测量结果的影响 .测量过程中还需要注意 3个问题 . 第一 , 轴 1会影・302・ 2007年 2月叶声华等 :基于激光跟踪仪的机器人运动学参数标定方法响到基坐标系原点的确定 , 作用尤为重要 , 所以应尽量使轴 1能够转动出整个圆周轨迹 ; 解决方法是调整机器人姿态 (而不是相对于零位位姿 , 使轴 1可以转动 ±180°. 第二 , 由于四杆机构的存在 , 轴 2的转动会使得轴 3也相应转动 , 从而将轴 3的误差带入到测量结果 ; 为了解决这一问题 , 可以在连杆 2上牢固地胶粘一个靶标球座 , 并将靶标球置于其上 , 这样测量结果中就不再包含轴 3的影响 . 第三 , 激光跟踪仪的测量精度与测量距离有关 , 测量距离越大则精度越低 . 所以 , 在保证一定测量范围的同时应尽量减小跟踪仪与机器人间的距离 . 标定现场如图 2所示 . 按照表 1对机器人进行编程、测量 , 共获得 428组数据.图 2实验设备配置F i g . 2 Conf i gura ti on of the exper i m en t a l setup 表 1数据的获得Tab . 1 Da t a acqu i re m en t序号范围 /(°递增 /(°测量点数1-180, 1805732-100, 1103713-60, 602614-200, 2005815-120, 1203816-180, 180661在实际操作中 , 除了基坐标系以外 , 所有的中间坐标系都能唯一地确定下来 . 为了确定基坐标系 , 在这里先简要说明一下机器人的装配过程 :先用基准尺构造两个互相垂直的平面 (水平面和竖直面 , 机器人基平面平行于水平面 , 基坐标系 z 轴位于竖直面内 ; 然后在外部工具的帮助下使机器人的各根轴处于横平竖直的姿态 , 此时安装电机编码盘并调零 , 且认为这时的姿态就是零位姿 , 以后的电机转动都以编码盘读数为准 ; 最后以基坐标系 z 轴与基平面的交点为坐标原点 , 由坐标原点指向法兰盘中心在基平面上投影点的直线方向为 x 轴的方向 . 由此 , 按照以下步骤确定基坐标系 .步骤 1确定基平面 . 直接使用靶标球对机器人的安装平面进行测量 , 尽可能在平面上分布地多取些点 , 以获得平面的真实面貌 . 由于安装平面并不与基平面重合或是平行 , 可以多测量几组 , 然后挑选出最佳的一组作为基平面 . 步骤2确定基坐标系的原点 . 轴 1与基平面的交点作为基坐标系的原点 . 步骤 3确定基坐标系 x 轴的方向 . 因为机器人的重复性定位精度很高 , 所以在建模时也按照机器人在装配时定义 x 轴的方法那样确定 x 轴方向 .3 , 利用 CAM2Measure 4. , 拟2所示 , 修正前后运动学参数的对比见表 3和表 4. 表 2平面和圆弧的拟合误差Tab . 2 Pl ane and arc f it errors on m ea sured da t a mm序号平面拟合误差弧度拟合误差10. 02990. 031820. 00870. 036630. 02630. 029440. 01370. 008650. 01220. 030860. 01250. 0271基平面0. 1206表 3 D 2H 参数的名义值Tab . 3 No m i n a l k i n e ma ti c param eters序号a i /mmαi /(°d i /mmθi /(°βi /(°1100-906150270500-9003135-90004090755050900180685・402・天津大学学报第 40卷第 2期表 4 D 2H 参数的修正值Tab . 4 I den ti f i ed k i n ema ti c param eters序号a i /mmαi /(° d i /mmθi /(° βi /(° 1100. 050-90. 010614. 7150. 001 2705. 554-0. 0200. 003-90. 060-0. 03 3135. 456-89. 99000. 02040. 15690. 017754. 918-0. 01050. 11089. 980-0. 102179. 96060. 0300. 01084. 940-0. 010注:β2 为 z1到 z2轴的转角 , 绕 y1轴正方向为正 .为了对修正结果进行验证 , 又另外随机测量了 30个点 , 由表 5可以看出 , 标定之后平均误差较之前改善了 41. 870/0,均方根误差改善了 42. 440/0. 这里的均方根误差e RM S =∑mi =1(pr-p n 2i(m =30 , p r际坐标向量 , pn5Tab . 5 Va li da ti of the ca li bra ti on result mm 验证参数标定前标定后 (不带β参数标定后 (带β参数最大误差 1. 711. 330. 99平均误差 1. 060. 910. 62均方根误差 1. 160. 960. 664结语通过参数所起的作用进一步证明了将其引入的必要性 , 而且在进一步的工作中可以尝试再次引入其他模型参数 , 如沿 y 轴方向的平移参数 , 以期待有更加满意的标定效果 . 同时也可以看出 , 由于基平面的测量是通过安装平面的测量间接实现的 , 而安装平面并没有达到精加工的程度 , 故相比之下拟合误差比较大 , 有望提高安装平面的加工水平或是采取新的测量方法以减小基平面的拟合误差 .参考文献 :[1]韩翔宇 , 都东 , 陈强 , 等 . 基于运动学分析的工业机器人轨迹精度测量的研究 [J ].机器人 , 2002, 24(1 :12 5.Han Xiangyu, Du Dong, Chen Q iang, et al . Study of mea 2sure ment of traject ory p recisi on f or industrial r obot based on kinematics analysis[J ].R obot, 2002, 24(1 :125(in Chi 2 nese .[2] Gong Chunhe, Yuan J ingxia, N i Jun . Nongeometric err or identificati on and compensati on f or r obotic syste m by inverse calibrati on [J ].International Journal of M achine Tools & M anufacture, 2000, 40(14 :211922137.[3]刘振宇 , 陈英林 , 曲道奎 , 等 . 机器人标定技术研究 [J ].机器人 , 2002,24(5 :4472450.L iu Zhenyu, Chen Yinglin, Qu Daokui, et al . Research on r obot calibration[J ].Robot, 2002, 24(5 :4472450(in Chi 2 nese .[4] Motta J M S T, de Carvalho G C, M c Master R S . Robot ca 2 librati using a 3D visi on ment syste m with a single J Integrated M anu 2[m er C E, Horning R J, et al . Calibra 2 a Mot oman P8r obot based on laser tracking [C ]∥ Proceedings of the 2000IEEE International Conference on Robotics &A uto m ation . San Francisco, C A, 2000:35972 3602.[6] Bai Ying, Zhuang Hanqi, Roth Zvi S . Experi m ent study of P UMA r obot calibrati on using a laser tracking syste m [C ]∥ Proceedings of the 2003IEEE InternationalW orkshop on Soft Co m puting in Industrial A pplications . B ingha m t on, New York, 2003:1392144.[7]张建忠 . 机器人连杆参数的视觉标定 [J ].制造业自动化 , 2004,26(11 :32234.Zhang J ianzhong . V isual de marcating f or link para meters of a r obot[J ].M anufacturing A uto m ation, 2004, 26(11 :322 34(in Chinese .[8] Gursel A lici, B ijan Shirinzadeh . A syste matic technique t o esti m ate positi oning err ors for r obot accuracy i m p r ove ment using laser interfer ometry based sensing[J ].M echanis m and M achine Theory, 2005, 40(8 :8792906.[9] Roth Zvi S, Mooring Benja m in W , Ravanil Bahra m. An overvie w of r obot calibrati on [J ].IEEE Journal of R obotics and A uto m ation, 1987, RA 23(5 :3772385.[10] Denavit J, Hartenberg R S . A kine matic notati on f or l ower 2 pair mechanis m s based on matrices[J ].Journal of A pplied M echanics, 1955, 22(2 :2152221.[11] Hayati S A. Robot ar m geometric link para meter esti m ati on [C ]∥Proceedings of 22th IEEE D ecision and Control Confe 2 rence . San Ant oni o, T X, US A, 1983:147721483.・ 5 0 2・2007年 2月叶声华等 :基于激光跟踪仪的机器人运动学参数标定方法。
激光跟踪仪与机器人坐标系转换方法研究向民志;范百兴;李祥云;隆昌宇【摘要】In order to solve the conversion parameters of the laser tracker and the robot coordinate system quickly and accurately,a coordinate transformation method based on tool calibration and common point conversion is proposed.Firstly,the target ball was fixed on the robot end tool,the robot was taught to teach six different positions,and the center coordinates were measured by the laser tracker.Then,the position of the target ball in the robot coordinate system was calculated based on the distance constraint method;Finally,the least squares iteration based on Rodrigue matrix was adopted to coordinate transformation.The experimental results show that this method is simple and can avoid the influence of fitting error and improve the precision of coordinate transformation.%为了快速准确求解激光跟踪仪与机器人坐标系转换参数,提出了一种基于工具标定与公共点转换相结合的坐标转换方法.首先,将靶球固定在机器人末端工具上,控制机器人示教6个不同位置,并同时用激光跟踪仪测量球心坐标;然后,采用基于距离约束的方法计算靶球在机器人基坐标系中的位置;最后,采用基于罗德里格矩阵的最小二乘迭代法进行坐标转换.试验表明:该方法操作简单,能够避免拟合误差的影响,提高坐标转换精度.【期刊名称】《航空制造技术》【年(卷),期】2018(061)001【总页数】4页(P98-101)【关键词】激光跟踪仪;机器人坐标系;罗德里格矩阵;坐标转换;定位误差【作者】向民志;范百兴;李祥云;隆昌宇【作者单位】解放军信息工程大学,郑州450001;解放军信息工程大学,郑州450001;解放军信息工程大学,郑州450001;北京卫星环境工程研究所,北京100094【正文语种】中文一般工业机器人重复定位精度很高,但绝对定位精度较差。
海克斯康测量技术(青岛)有限公司 刘凯Leica 绝对激光跟踪仪在工业机器人校准及检测中的应用针对国产工业机器人的绝对定位精度较低,在某些高精度检测、加工及制造应用领域存在的较大应用短板,作为全球领先的计量方案提供商——海克斯康通过感知、解析及行动,推出了工业机器人校准及检测系统,提高工业机器人精度,以弥补其在应用领域存在的不足。
文章详细介绍了该工业机器人校准及检测系统中的关键技术及校准检测流程,并通过案例展示其在工业机器人参数补偿与性能检测中的巨大优势。
一.引言在新的国际国内环境下,立足于国际产业变革大势,2015年5月19日,国务院正式印发了《中国制造2025》,旨在全面提升中国制造业发展质量和水平,从制造大国迈向制造强国。
同时我国科技部印发了关于发布国家重点研发计划智能机器人等重点专项2017年度项目申报指南的通知,围绕了对工业机器人以及其他五个方向进行部署,落实《中国制造2025》等规划,推动我国工业机器人技术和产业快速发展(图1)。
图1 机器人在整车焊装车间应用通过近十年的发展,中国机器人产业从无到有、从小到大,目前已经形成了一百余家从事机器人研发设计、生产制造、工程应用以及零部件配套的产业集群, 国产机器人的应用已遍及汽车制造、工程机械、食品加工等行业。
随着国产机器人应用场景越来越广泛,仅仅保证重复性指标已经不能满足需求,国产机器人绝对定位精度较低的弊端越来越凸显,成为限制国产工业机器人发展的绊脚石,如何提高绝对定位精度成为国产机器人厂家亟待解决的问题。
2016年我国正式开始建立实施机器人检测认证制度,以助力国产机器人质量控制和自主创新能力提升,助推国产机器人产业进步升级,增强我国在全球机器人产业标准和合格评定程序制定方面的话语权和国际竞争力。
机器人检测认证制度的实施,需要建立规范的标准及认证方式,也需要系统全面的检测手段支撑,然而在机器人整体性能指标检测领域,还并没有一套完备的解决方案。
工业机器人原点误差分析与补偿江俊林发布时间:2023-07-04T05:38:15.916Z 来源:《科技新时代》2023年8期作者:江俊林[导读] 机器人的相对定位精度是工业生产机器人的一个非常重要的特征。
机器人动力学主要参数的标定可以提高相对定位精度,因此在学术界和工业界都进行了大量的科学研究。
校准主要动态参数所需的主要参数包括关节扭转角、关节偏移和曲轴长度,这些参数通常与机器人本身的机械系统有关。
校准后的机器人在制造区运输和安装后,主要参数不会发生太大变化。
然而,在使用机器人的过程中,机器人的起点可能存在误差,这可能会导致许多问题,如上位机软件的基本理论计算模型与实际工业模型不一致、精度降低以及专用工具平面坐标校准中的误差。
身份证号:36012119741108XXXX 摘要:机器人的相对定位精度是工业生产机器人的一个非常重要的特征。
机器人动力学主要参数的标定可以提高相对定位精度,因此在学术界和工业界都进行了大量的科学研究。
校准主要动态参数所需的主要参数包括关节扭转角、关节偏移和曲轴长度,这些参数通常与机器人本身的机械系统有关。
校准后的机器人在制造区运输和安装后,主要参数不会发生太大变化。
然而,在使用机器人的过程中,机器人的起点可能存在误差,这可能会导致许多问题,如上位机软件的基本理论计算模型与实际工业模型不一致、精度降低以及专用工具平面坐标校准中的误差。
关键词:工业机器人;原点误差;补偿措施1工业机器人原点误差产生原因工业生产机器人是一种健身运动致动器,由多个部件和旋转关节串联而成。
它可以根据移动端执行器的指定位置完成所需的工作。
由于安装误差、曲轴和关节的变形、运动对之间的摩擦及其环境温度以及末端负载的变化等各种因素,机器人末端执行器的具体到达位置和基本理论位置之间也会存在一些误差,从而产生机器人的起点误差。
根据各种误差要素的成因,危害机器人相对定位精度的误差要素可分为关节误差要素、几何误差要素和非几何误差要素。
第42卷第5期 激光杂志Vol.42, No.5 2021 年5 月LASER JOURNAL M a y,2021运动位移定位误差补偿激光散斑测量郑泽蒙、张璐、陈金鳌21凯里学院,贵州凯里556011;2常州大学,江苏常州213164摘要:针对传感器机器人运动指令执行误差大、运动轨迹定位精度低的问题,提出了一种运动位移定位 误差补偿激光散斑测量方法。
首先用激光散斑测量法测量目标的空间分布,得到目标位移前后激光散斑空间 分布强度的两幅图像,然后用截面矩阵计算具体位置,突出实际位移值,然后建立定位误差模型,得到机器人关 节的微分项,得到整个关节的零位角偏差,最后用集合分析法标定零位和减速比,完成运动位移定位误差的补 偿。
实验结果表明,该方法比传统方法能更快地补偿定位误差,均方误差在1〇_5左右,且误差曲线趋势完全拟 合,补偿精度更高。
关键词:激光散斑;运动位移;误差补偿;零位标定中图分类号:TN926 文献标识码:A doi:10. 14016/j. cnki. jgzz. 2021.05. 147Laser speckle measurement with motion displacementpositioning errorcompensationZ H E N G Z e m e n g1,Z H A N G L u1 ,C H E N Jinao21 K aili U niversityy K aili G uizhou556011 , C h in a;2 Changzhou U niversity,C hangzhou Jia n g su213164,C hinaA b s t r a c t:In o r der to solve the p r o b l e m s of significant error of m o t i o n c o m m a n d e x e cution a n d l o w positioning a cc u r a c y of m o t i o n trajectory of se nsor robot, a laser s p e c k l e m e a s u r e m e n t m e t h o d with m o t i o n d i s p l a c e m e n t positioning error c o m p e n s a t i o n is p r o p o s e d.Firstly, the spatial distribution of the target is o b t a i n e d b y the laser s p e c k l e m e t h o d, a n d the n the spatial distribution of the target is obtained b y the laser s p e c k l e reduction m e t h o d,c o m p l e t e the c o m p e nsation of m o t i o n d i s p l a c e m e n t positioning error. T h e e x p e r i m e n t a l results s h o w that the p r o p o s e d m e t h o d c a n c o m p e nsate the positioning error faster t h a n the traditional m e t h o d,the m e a n s q u a r e error is a b o u t10~5,a n d the trend of the error c u r v e is w h o l l y fitted,a n d the c o m p e n s a t i o n a c c u r a c y is higher.K e y w o r d s:laser s p e c k l e;m o t i o n d i s p l a c e m e n t;error c o m p e n s a t i o n;zero calibrationi引言机器人的标定依赖于标定空间中运动参数的修 正,以保证定位精度的提高。