华师大版七年级数学上册图形的初步认识章节测试.doc
- 格式:doc
- 大小:120.00 KB
- 文档页数:3
图形的初步认识章节测试班级___姓名______座号___一、填空题:(每题4 分,共40 分)1、已知C 是线段AB 的中点,且AB=6cm,则AC=____cm。
2、已知:∠α=36°,则∠α的余角等于____。
3、已知要在墙上钉牢一根木条,至少要钉两颗钉子,这样的数学道理是_______。
4、如图,射线OA表示的方向是________。
5、计算21°28′40″+33°40′20″=____。
6、用度、分、秒表示35.12°=___°___′___″。
7、一个多面体有30棱、12个顶点,则这个多面体是____面体。
(顶点数+面数-棱数=2)8、右图中的两个图形分别是某个几何体的俯视图和主视图,则该几何体是____。
9、如图是一个正方体纸盒的展开图,如果其中一面标上A,那么与标有A的面相对的一面上所标的数字是____。
10、A、B、C三点在同一直线上,且AB=10cm,BC=4cm,则AC =___。
二、选择题:(每题3 分,共18 分)1、手电筒射出的光线,给我们的形象似()A、线段B、直线C、射线D、折线2、下列各图中,线段a,射线b 可以相交的是()A、①②④B、③⑤C、②③⑤D、③④⑤3、不能用一副三角板画出的角是()A、15°B、75°C、85°D、105°4、如图,把一段弯曲的公路改成直道可以缩短路程,其理由是()A、两点确定一条直线B、两点之间,线段最短C、两点之间,直线最短D、线段有两个端点东北 A30°①②③④⑤AB俯视图主视图5、下列图形中是正方体的展开图的是( )6、下列各图中,∠1和∠2是对顶角的是( )AB C D 四、读下列语句,并画出图形。
(每小题4分,共16分) 1、任意画A 、O 两点,作射线OA 。
2、点A 在直线 l 上,点 B 在直线 l 外。
3、画线段 AB =4cm ,并用刻度尺找出它的中点 C 。
第4章图形的初步认识数学七年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是:()A.美B.丽C.肇D.庆2、有五个相同的小正方体堆成的物体如图所示,它的主视图是()A. B. C. D.3、已知:如图,点E,F分别在AB,CD上,AF⊥CE,垂足为点O,∠1=∠B,∠A+∠2=90°.求证:AB∥CD.证明:如图,∵∠1=∠B(已知)∴CE∥BF(同位角相等,两直线平行)______________∴∠AFC+∠2=90°(等式性质)∵∠A+∠2=90°(已知)∴∠AFC=∠A(同角或等角的余角相等)∴AB∥CD(内错角相等,两直线平行)请你仔细观察下列序号所代表的内容:①∴∠AOE=90°(垂直的定义)②∴∠AFB=90°(等量代换)③∵AF⊥CE(已知)④∵∠AFC+∠AFB+∠2=180°(平角的定义)⑤∴∠AOE=∠AFB(两直线平行,同位角相等)横线处应填写的过程,顺序正确的是()A.⑤③①②④B.③④①②⑤C.⑤④③①②D.⑤②④4、如图,水杯的俯视图是()A. B. C. D.5、如图,正方形ABCD中,E为DC边上一点,且DE=1,AE=EF,∠AEF=90°,则FC= ()A. B. C. D.16、如图,直线、相交于点,于点,平分,,则下列结论错误的是()A. 与互为补角B.C. 的余角等于D.7、如图所示的几何体是由一个长方体和一个圆柱体组成,它的主视图是()A. B. C. D.8、下列画图语句中,正确的是()A.画射线OP=3 cmB.画出A、B两点的距离C.延长射线OAD.连接A、B两点9、如图,直线AB与CD相交于点E,∠CEB=50°,EF⊥AE,则∠DEF的度数为()A.130°B.140°C.150°D.160°10、一个正方体的表面展开图如图所示,则原正方体中字母“A”所在面的对面所标的是()A.深B.圳C.大D.运11、平面内的9条直线任两条都相交,交点数最多有m个,最少有n个,则m+n等于()A.36B.37C.38D.3912、如图,在中,,将沿直线m翻折,点B落在点D的位置,则的度数是()A. B. C. D.13、将一副直角三角扳如图放置,使含30°角的三角板的直角边和含45°角的三角扳的一条直角边重合,则∠1的度数为()A.55°B.50°C.65°D.75°14、某几何体的三视图如图所示,则组成该几何体共用了( )个小正方体.A.12B.9C.7D.615、如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形是()A. B. C.D.二、填空题(共10题,共计30分)16、一个几何体,是由许多规格相同的小正方体堆积而成的,其主视图,左视图如图所示要摆成这样的图形,至少需用________块小正方体.17、一个立方体的表面展开图如图所示,将其折叠成立方体后,“步”对面的字是________.18、如图是由几个相同的小立方体组成的左视图和俯视图,小立方块的个数最少是________ .19、如图,BA1和CA1分别是△ABC的内角平分线和外角平分线,BA2是∠A1BD的角平分线CA2是∠A1CD的角平分线,BA3是∠A2BD的角平分线,CA3是∠A2CD的角平分线,若∠A1=α,则∠A2013为 ________.20、如图,在△ABC中,AD是高,BD=6,CD=4,tan∠BAD=,P是线段AD上一动点,一机器人从点A出发沿AD以个单位/秒的速度走到P点,然后以1个单位/秒的速度沿PC走到C点,共用了t秒,则t的最小值为________.21、如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是________.22、如图所示的几何体是由一些小正方体组合而成的,若每个小正方体的棱长都是1,则该几何体俯视图的面积是________.23、如图,O为直线AB上一点,∠COB=26°30′,则∠1=________°24、如图所示,,,三点在同一条直线上,与互余,已知,则________ .25、如图,直角的直角边长,是中点,线段在边上运动,,则四边形面积的最大值为________,周长的最小值为________.三、解答题(共5题,共计25分)26、一个角的补角是123°24′16″,则这个角的余角是多少.27、公路上,A,B两站相距25千米,C、D为两所学校,DA⊥AB于点A,CB⊥AB于点B,如图,已知DA=15千米,现在要在公路AB上建一报亭H,使得C、D两所学校到H的距离相等,且∠DHC=90°,问:H应建在距离A站多远处?学校C到公路的距离是多少千米?28、完成下面的证明:已知:如图,点 D,E,F 分别在线段 AB,BC,AC 上,连接 DE、EF,DM 平分∠ADE 交EF 于点 M,∠1+∠2=180°.求证:∠B =∠BED.证明:∵∠1+∠2=180°(已知),又∵∠1+∠BEM=180°(平角定义),∴∠2=∠BEM(▲),∴DM∥▲(▲).∴∠ADM =∠B(▲),∠MDE =∠BED(▲).又∵DM 平分∠ADE (已知),∴∠ADM =∠MDE (角平分线定义).∴∠B =∠BED(▲).29、如图是一个正方体的展开图,标注了字母a的面是正方体的正面,如果正方体相对两个面上的整式的值相等,求整式(x+y)a的值.30、一个角的补角加上24°,恰好等于这个角的5倍,求这个角的度数.参考答案一、单选题(共15题,共计45分)1、D2、B3、A4、A5、B6、C7、B8、D9、B10、B11、B12、C13、D14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、29、30、。
七年级上册数学单元测试卷-第4章图形的初步认识-华师大版(含答案)一、单选题(共15题,共计45分)1、由一些相同的小正方体搭成的几何体的三视图如图所示,则搭成该几何体的小正方体有()A.3个B.4个C.5个D.6个2、如图是由4个相同的小正方体组成的一个水平放置的立体图形,其箭头所指方向为主视方向,其俯视图是()A. B. C. D.3、下列表述中,位置确定的是()A.北偏东30°B.东经118°,北纬24°C.淮海路以北,中山路以南D.银座电影院第2排4、一个角的余角是它的补角的,这个角的补角是()A.30°B.60°C.120°D.150°5、如左图,图1表示正六棱柱形状的高式建筑物,图2中的正六边形部分是从该建筑物的正上方看到的俯视图,P、Q、M、N表示小明在地面上的活动区域.小明想同时看到该建筑物的三个侧面,他应在()A.P区域B.Q区域C.M区域D.N区域6、从正面看如图中所示的几何体,得到的平面图形是()A. B. C. D.7、如图,空心圆柱在指定方向上的主视图是()A. B. C. D.8、下面图形是棱柱的是()A. B. C. D.9、利用一副三角板上已知度数的角,不能画出的角是().A.15°B.135°C.165°D.100°10、如图所示,∠1=28°,∠AOC=90°,点B,O,D在同一直线上,则∠2的度数为()A.128°B.118°C.108°D.152°11、小红把一把直尺与一块三角板如图放置,测得∠1=48°,则∠2的度数为()A.38°B.42°C.48°D.52°12、下列语句错误的是()A.两点确定一条直线B.同角的余角相等C.两点之间线段最短 D.两点之间的距离是指连接这两点的线段13、如图,军舰从港口沿OB方向航行,它的方向是()A.东偏南30°B.南偏东60°C.南偏西30°D.北偏东30°14、如图,是一个正方体纸盒的展开图,若在其中三个正方形A,B,C中分别填入适当的数使得它们折成正方体后相对的面上两个数互为相反数,则填入正方形A,B,C中的三个数依次是()A.1,﹣3,0B.0,﹣3,1C.﹣3,0,1D.﹣3,1,015、如图所示,从A地到达B地,最短的路线是()A.A→C→E→BB.A→F→E→BC.A→D→E→BD.A→C→G→E→B二、填空题(共10题,共计30分)16、如图,长方体的底面边长分别为和,高为.若一只蚂蚁从点开始经过个侧面爬行一圈到达点,则蚂蚁爬行的最短路径长为________ .17、如图,已知∠EOA=90°,射线OD在北偏东35°的方向,反向延长射线OD于点C,∠DOE的度数为________,∠AOC的度数为________.18、如图将一副三角板的直角顶点重合,摆放在桌面上,若,则________°.19、上午8:25时,时钟的时针和分针的夹角(小于平角的角)度数是________.20、北京西站和北京南站是北京的两个铁路客运中心,如图,A,B,C分别表示天安门、北京西站、北京南站,经测量,北京西站在天安门的南偏西77°方向,北京南站在天安门的南偏西18°方向.则∠BAC=________°.21、钟表在12时20分时刻的时针与分针所成的角是________22、如图,,点P为内一点,.点M、N分别在上,则周长的最小值为________.23、一个角的度数为,那么这个角的余角度数为________24、六棱柱有________ 面.25、用度、分、秒表示24.18°= ________三、解答题(共5题,共计25分)26、已知∠α与∠β互为补角,且∠β的一半比∠α大30°,求∠α27、如图,中,高为AD,∠BAC角平分线为AE,若∠B=28°,∠ACD=60°,求∠EAD的度数.28、有3个棱长分别是3cm,4cm,5cm的正方体组合成如图所示的图形.其露在外面的表面积是多少?(整个立体图形摆放在地上)29、已知:如图,直线AB,CD相交于点O,OE⊥CD于点O,∠BOD=40°.求∠AOE的度数.30、怎样才能把一行树苗栽直?请你想出办法,并说明其中的道理.参考答案一、单选题(共15题,共计45分)1、C2、C3、B4、D5、B6、D7、C8、A9、D11、B12、D13、D14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、29、。
第4章图形的初步认识数学七年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、已知点,,则,两点间的距离是()A.4个单位长度B.3个单位长度C.2个单位长度D.1个单位长度2、图(1)是一个正方体的表面展开图,小正方体从图(2)所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是()A.家B.乡C.是D.临3、如图是一个由5个相同的正方体组成的立体图形,它的三视图是()A. B. C.D.4、下面图形经过折叠可以围成一个棱柱的是 ( )A. B. C. D.5、如图是由5个相同的小立方块搭成的几何体,这个几何体的左视图是()A. B. C. D.6、如图,一个几何体由5个大小相同的正方体搭成,则这个立体图形的俯视图是()A. B. C. D.7、如图所示的几何体是由六个相同的小正方体组合而成的,它的俯视图是()A. B. C. D.8、已知:∠,∠,∠,则下列说法正确的是()A.∠1=∠2B.∠2=∠3C.∠1=∠3D.∠1、∠2、∠3互不相等9、A、B、C三点在同一条直线上,M,N分别为AB,BC的中点,且AB=60,BC=40,则MN的长为()A.30B.30或10C.50D.50或1010、如图给定的是纸盒的外表面,下面能由它折叠而成的是( )A. B. C. D.11、A、B、C中三个不同的点,则()A.AB+BC=ACB.AB+BC>ACC.BC≥AB-ACD.BC=AB-AC12、下列两个生产生活中的现象:①植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;②把弯曲的公路改直,就能缩短路程.其中可用公理“两点之间,线段最短”来解释的现象有()A.只有①B.只有②C.①②D.无13、如图,是某几何体的俯视图,该几何体可能是()A.圆柱B.圆锥C.球D.正方体14、如图,是某种几何体表面展开图的图形.这个几何体是()A.圆锥B.球C.圆柱D.棱柱15、下列说法不正确的是()A.两点之间,线段最短B.两条直线相交,只有一个交点C.两点确定一条直线D.过平面上的任意三点,一定能做三条直线二、填空题(共10题,共计30分)16、如图是某个几何体的三视图,则该几何体的名称是________.17、已知,那么的补角等于________.18、补全解题过程.已知:如图,点C是线段AB的中点,AD=6,BD=4,求CD的长.解:∵AD=6,BD=4,∴AB=AD+________=________.∵点C是线段AB的中点,∴AC=CB=________=________.∴CD=AD﹣________ =________.19、已知点A在点B的北偏东62°,则点B在点A的________.20、由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是________.21、由5个棱长为1的小正方形组成的几何体如图放置,一面着地,两面靠墙,如果要将露出来的部分涂色,则涂色部分的面积为________.22、已知数轴上两点A,B表示的数分别为6,-4,点A与点B的距离是________.23、如图,正方形的边长为,是边上的一点,且是对角线上的一动点,连接,当点在上运动时,周长的最小值是________24、小明将一根木条固定在墙上只用了两个钉子,他这样做的依据是________.25、∠α=15°35′,∠β=10°40′,则∠α+∠β=________.三、解答题(共5题,共计25分)26、一个角的补角比它的余角的4倍少,求这个角的度数.27、如图,已知线段AB和CD的公共部分为BD,且BD=AB=CD,线段AB,CD的中点E,F之间的距离是30,求线段AB,CD的长.28、画出从三个方向看如图所示的几何体的形状.29、如图,OC是∠AOB的平分线,且∠AOD=90°,∠COD=27°19′.求∠BOD的度数.30、如图,直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.参考答案一、单选题(共15题,共计45分)1、B2、C3、A4、D5、C7、D8、C9、D10、B11、C12、B13、B14、A15、D二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
第4章图形的初步认识数学七年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、有一圆形纸片,要用折叠的方法找出其圆心,至少要折叠()A.1次B.2次C.3次D.4次2、下列图形是正方体的展开图,还原成正方体后,其中完全一样的是()(1)(2)(3)(4)A.(1)和(2)B.(1)和(3)C.(2)和(3)D.(3)和(4)3、下列几何体的三视图中,左视图是圆的是()A.①B.②C.③D.④4、如图是由3个完全相同的小正方体组成的立体图形,它的主视图是()A. B. C. D.5、如图,观察图形,下列结论中错误的是()A.图中有条线段B.直线和直线是同一条直线C.D.射线和射线是同一条射线6、将21.54°用度、分、秒表示为()A.21°54′B.21°50′24″C.21°32′40″D.21°32′24″7、下列图形中,∠1和∠2互为余角的是()A. B. C. D.8、若把一副三角板如图叠放在一起,使顶点、、在一直线上,则等于()A. B. C. D.9、用一个平面截一个正方体,截面可能是下列图形中的()①三角形②正方形③长方形④梯形⑤圆A.①②③④B.①②③C.②③⑤D.③④10、如图所示,A,B两点所对的数分别为a、b,则AB的距离为()A.a﹣bB.a+bC.b﹣aD.﹣a﹣b11、如图所示的几何体,其左视图是()A. B. C. D.12、如图是某体育馆内的颁奖台,其主视图是()A. B. C. D.13、李明为好友制作一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是()A. B. C. D.14、轮船航行到A处时,观测到小岛B的方向是北偏西65°,那么同时从B处观测到轮船的方向是()A.南偏西65°B.东偏西65°C.南偏东65°D.西偏东65°15、一个几何体是由一些大小相同的小正方体摆成其主视图和左视图如图所示则组成这个几何体的小正方体最少有个,最多有个,()A.3B.4C.5D.6二、填空题(共10题,共计30分)16、如图,在一次活动中,位于A处的1班准备前往相距8km的B处与2班会合,如果用方位角和距离描述位置,则1班在2班的________.17、已知∠AOB=25°42′,则∠AOB的补角为________.18、当钟面上是6点30分时,时针与分针的夹角是________度.19、如图,已知线段AC,点D为AC的中点,BC= AB,BD=1cm,则AC=________.20、如图,菱形ABCD的边长为2,,点E为BC边的中点,点P为对角线AC上一动点,则PB+PE的最小值为________.21、若=52°16′,则的补角为________.22、如图,C是线段AB的中点,D是线段AC的中点,且BD=6cm,则AB的长为________cm.23、同学们都知道:表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,同理,可以表示数轴上有理数x所对应的点到-2和3所对应的点的距离之和,则的最小值为________.24、把图折叠成一个正方体,如果相对面的值相等,则一组x,y的值是________.25、如图,∠ABC=90°,∠CBD=45°,BP平分∠ABD,则∠ABP的度数是________°.三、解答题(共5题,共计25分)26、由大小相同的5个小立方块搭成的几何体如图所示,请在方格中画出该几何体从上面和左面看到的形状图(用黑色笔将虚线画为实线).27、如图是一个安全用电标记图案.可以抽象为图(2)的几何图形.其中.点在上.若,求的度数.28、已知∠1+∠2=180°,∠3=∠A,试判断∠ACB与∠DEB的大小关系,并证明你的结论.29、如图,一副三角板的两个直角顶点重合在一起.⑴比较∠EOM与∠FON的大小,并写出理由;⑵求∠EON+∠MOF的度数.30、如图,点A、O、B在一条直线上,∠AOC=50°,OD平分∠AOC,求∠BOD的度数。
第四单元 《图形认识初步》单元测试一、填空题(每题3分,共30分)1、 三棱柱有_条棱,—个顶点,——个面;A ° E ;2、 如图1,若D 是M 中点,AB 二4,则DB 二 _________ ; 图13、 79.42° 二 ____ 度 ____ 分 _____ 秒;4、 如果Za=29° 35’,那么的余角的度数为____________________ ;5、 如图2,从家A 上学时要走近路到学校B,最近的路线为 ___________ (填序号),理由是 ________________________________________ ;6、 如图3, 0A 、0B 是两条射线,C 是0A 上一点,D 、E 分别是0B 上两7. 如图4,把书的一角斜折过去,使点A 落在E 点处,BC 为折痕,BD 是ZEBM 的平分线,则ZCBD= ________8. 如图5,将两块三角板的直角顶点重合,若ZA0D=128° ,则ZB0C= ______________ ; 9. 2: 35时钟面上时针与分针的夹角为 __________ ;10. 经过平面内四点中的任意两点画直线,总共可以画 _____________条直线; 二选择题(每题3分,共24分)11. 将一个直角三角形绕它的直角边旋转一周得到的几何体是()点,则图中共有 _____ 条线段,共有射线,共有 个角;BI)D.以上都不对12、如果4与N2互补,Z2与Z3互余, 则与Z3的关系是(A. Z1=Z3 B . J =C. Z1=9O*+Z313、对于直线线段CD,射线刖,在下列各图中能相交的是(D. 4个已知M 是线段AB 的中点,那么,®AB=2AM ;②BM=-AB ;(3)AM=BM ;④AM+BM 二AB 。
上面四2 个式子中,正确的有(图中(1)-(4)各图都是正方体的表面展开图,若将他们折成正方体,各面图案均在正方体外面,则其中两个正方体各面图案完全一样,他们是( )A. (1) (2)三、解答题(7+7+8+8+9)19、按照要求,在图中画出表示下列方向的射线:18、14、 15、16、 17、 A. 1个B. 2个C. 3个D. 在海上,灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的A.南偏西50度B.南偏西40度C.北偏东50度D.北偏东40度 如右图,AB 、CD 交于点 0, ZA0E 二90° ,若ZAOC : ZCOE=5: 4,则ZA0D 等于()A. 120°B. 130°C. 140°D. 150° ABC下面图形经折叠后可以围成一个棱柱的有(A .(3) (4) D. (2) (4)4个(1) (2) (3) (4)B. (2) (3)C.(1)南偏东30°(2)北偏西60°(3)西南方向20、如图,ZA0B是直角,0D平分ZBOC, 0E平分ZAOC,求ZEOD的度数。
第4章图形的初步认识数学七年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、下面几何体中,其主视图与俯视图相同的是()A. B. C. D.2、下列说法,正确的是()A.经过一点有且只有一条直线B.两点确定一条直线C.两条直线相交至少有两个交点D.线段就是表示点A到点B的距离3、已知:∠AOC=90°,∠AOB:∠AOC=2:3,则∠BOC的度数是()A.30°B.60°C.30°或60°D.30°或150°4、正多面体的面数.棱数.顶点数之间存在着一个奇妙的关系,若用F , E , V分别表示正多面体的面数.棱数.顶点数,则有F+V﹣E=2,现有一个正多面体共有12条棱,6个顶点,则它的面数F等于()A.6B.8C.12D.205、下列图形中表示射线EF的是()A. B. C.D.6、我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A. B. C. D.7、如图所示的几何体的俯视图是().A. B. C. D.8、下列图形中可以作为一个三棱柱的展开图的是()A. B. C. D.9、如图,点Q的方向是位于点O().A.北偏东30°B.北偏东60°C.南偏东30°D.南偏东60°10、下列描述不正确的是()A.单项式﹣的系数是﹣,次数是 3 次B.用一个平面去截一个圆柱,截面的形状可能是一个长方形C.过七边形的一个顶点有 5 条对角线D.五棱柱有 7 个面,15 条棱11、如图是某几何体的三视图,该几何体是()A.圆锥B.圆柱C.三棱柱D.长方体12、下列图形是正方体展开图的是()A. B. C. D.13、如图所示是五个棱长为“1”的小立方块组成的一个几何体,下列选项中不是三视图其中之一的是()A. B. C. D.14、圆锥的截面不可能是()A.三角形B.圆C.长方形D.椭圆15、如图所示,将一个含30°的三角板ABC绕点A旋转,使得点B,A,C'在同一条直线上,则三角板ABC旋转的角度是()A.60°B.90°C.120°D.150°二、填空题(共10题,共计30分)16、小明同学从A地出发沿北偏东30°的方向到B地,再由B地沿南偏西40°的方向到C 地,则∠ABC=________°17、AB=8cm,点C是线段AB的中点,点D是线段BC的中点,那么AD=________ cm18、钟表上的时间是3时30分,此时时针与分针所成的夹角是________度.19、一个角的余角比这个角的补角的一半少,则这个角的度数是________.20、已知∠A=50°,则∠A的余角是________度.21、已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画________条直线.22、若某几何体从某个方向观察得到的视图是正方形,则这个几何体可以是________.23、如图,在中,,,以BC为直径的半圆交AB于点D,P是上的一个动点,连接AP,则AP的最小值是________.24、一个正方体的表面展开如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是________.25、若的余角是,则的值是________.三、解答题(共5题,共计25分)26、若一个角比它的补角大20°,求这个角的度数.27、如图,矩形,为射线上一点,连接,为上一点,交于点,.求证:.28、一个物体的三视图如图所示,试举例说明物体的形状.29、已知线段AB=5cm,回答下列问题:是否存在一点C,使它到A、B两点的距离之和等于4?30、如图是一个几何体的三视图:(1)请写出这个几何体的名称.(2)求这个几何体的侧面积.参考答案一、单选题(共15题,共计45分)1、C2、B3、D4、B5、B6、B7、B8、A9、B10、C11、D13、A14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
第4章图形的初步认识(单元测试)华东师大新版七年级上册数学一.选择题(共7小题)1.时钟的时针由4点转到5点45分,时针转过的角度是( )A.52030'B.50045'C.5405'D.10045'2.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB 的大小为( )A.69°B.111°C.141°D.159°3.如图,点A,O,B在同一条直线上,OC平分∠DOB,已知,∠AOE=30°30',∠DOC=65°15',则∠DOE的度数是( )A.70°B.78°C.80°D.84°4.如图所示,下列说法错误的是( )A.∠DAO可用∠DAC表示B.∠COB也可用∠O表示C.∠2也可用∠OBC表示D.∠CDB也可用∠1表示5.用3个同样的小正方体摆出的几何体,从三个方向看到的图形分别如图:....=∠A.∠AOC=∠BOCB.∠AOC<∠AOBC.∠AOC=∠BOC或∠.如图所示,图(表面上),请根据要求回答问题:,求的值;运动秒后都停止运动,此时恰有=BD第4章图形的初步认识(单元测试)华东师大新版七年级上册数学参考答案与试题解析一.选择题(共7小题)1.时钟的时针由4点转到5点45分,时针转过的角度是( )A.52030'B.50045'C.5405'D.10045'【答案】A【解答】解:钟表12个数字,每相邻两个数字之间的夹角为30°,每相邻两个数字之间有5个格,每格之间的度数为6°,时钟的时针由4点转到5点45分,时针转过的5+5×格,时针转过的度数=6°×(5+5×)=52°30′.故选:A.2.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB 的大小为( )A.69°B.111°C.141°D.159°【答案】C【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.3.如图,点A,O,B在同一条直线上,OC平分∠DOB,已知,∠AOE=30°30',∠DOC=65°15',则∠DOE的度数是( )A.70°B.78°C.80°D.84°【答案】C【解答】解:∵OC平分∠DOB,∠DOC=65°15',∴∠BOD=2∠DOC=130°30′,∴∠AOD=180°﹣130°30′=49°30′,∴∠DOE=∠AOD+∠AOE=49°30′+30°30′=80°.故选:C.4.如图所示,下列说法错误的是( )A.∠DAO可用∠DAC表示B.∠COB也可用∠O表示C.∠2也可用∠OBC表示D.∠CDB也可用∠1表示【答案】B【解答】解:A、∠DAO可用∠DAC表示,本选项说法正确;B、∠COB不能用∠O表示,本选项说法错误;C、∠2也可用∠OBC表示,本选项说法正确;D、∠CDB也可用∠1表示,本选项说法正确;故选:B.5.用3个同样的小正方体摆出的几何体,从三个方向看到的图形分别如图:这个几何体是( )A.B.C.D.【答案】B【解答】解:由俯视图可知,小正方体摆出的几何体为:,故选:B.6.如图是由几个相同的小正方体组成的几何体,则下列说法正确的是( )A.左视图面积最大B.俯视图面积最小C.左视图面积和正视图面积相等D.俯视图面积和正视图面积相等【答案】D【解答】解:观察图形可知,几何体的主视图由4个正方形组成,俯视图由4个正方形组成,左视图由3个正方形组成,所以左视图的面积最小,俯视图面积和正视图面积相等.故选:D.=∠A.∠AOC=∠BOCB.∠AOC<∠AOBC.∠AOC=∠BOC或∠=∠=∠===×【答案】(1(2)图形见解答.【解答】解:的距离为×∴△ABM的面积=×10×5=25.或△ABM′的面积=×10×21=105.19.如图甲,点O是线段AB上一点,C、D两点分别从O、B同时出发,以2cm/s、4cm/s的速度在直线AB上运动,点C在线段OA之间,点D在线段OB之间.(1)设C、D两点同时沿直线AB向左运动t秒时,AC:OD=1:2,求的值;(2)在(1)的条件下,若C、D运动秒后都停止运动,此时恰有OD﹣AC=BD,求CD的长;(3)在(2)的条件下,将线段CD在线段AB上左右滑动如图乙(点C在OA之间,点D在OB 之间),若M、N分别为AC、BD的中点,试说明线段MN的长度总不发生变化.【答案】见试题解答内容【解答】解:(1)设AC=x,则OD=2x,又∵OC=2t,DB=4t∴OA=x+2t,OB=2x+4t,∴;(2)设AC=x,OD=2x,又OC=×2=5(cm),BD=×4=10(cm),由OD﹣AC=BD,得2x﹣x=×10,x=5,OD=2x=2×5=10(cm),=AC=×=BC=×=acm=AC=BC=AC+BC=AB=acm=AC=BC=AC﹣BC=()=bcm(2)数轴上表示a和﹣5的两点A和B之间的距离是 |a+5| ;(3)若数轴上三个有理数a、b、c满足|a﹣b|=1,|a﹣c|=7,则|b﹣c|的值为 6或8 ;(4)当a= 1 时,|a+3|+|a﹣1|+|a﹣4|的值最小,最小值是 7 .【答案】见试题解答内容【解答】解:(1)2﹣(﹣3)=5,故答案为:5;(2)|AB|=|a﹣(﹣5)|=|a+5|,故答案为:|a+5|;(3)当a>b>c时,|b﹣c|=|a﹣c|﹣|a﹣b|=7﹣1=6;当b>a>c时,|b﹣c|=|a﹣c|+|a﹣b|=7+1=8;C点在A,B两点之间时不符合题意,综上|b﹣c|的值为6或8,故答案为:6或8;(4)∵当﹣3≤a≤4时,|a+3|+|a﹣4|的最小值为7,∴只需要|a﹣1|的值最小即可,此时a=1,|a﹣1|=0,∴当a=1时,|a+3|+|a﹣1|+|a﹣4|的值最小,最小值是7.故答案为:1;7.。
华师大新版七年级数学上册《第4章图形的初步认识》单元测试卷一、选择题(本大题共10小题,共30.0分)1.如图,下列立体图形中,全部是由平面围成的有()A. 1个B. 2个C. 3个D. 4个2.下面图形中,三棱柱的平面展开图为()A. B. C. D.3.∠AOB+∠BOC=180°,又∠BOC与∠COD互补,那么∠AOB与∠COD的关系()A. 互余B. 互补C. 相等D. 不能确定4.下列四个几何体,其中主视图与如图相同的是()A. B. C. D.5.如图,是一个正方体的表面展开图,则原正方体中“梦”字所在面的对面上的字是A. 大B. 伟C. 国D. 的6.如图,若OB平分∠AOC,OC平分∠BOD,且∠AOB=25°,则∠AOD等于()A. 25°B. 50°C. 75°D. 90°7.如图所示,直线AB与CD相交于点O,OB平分∠DOE,若∠DOE=60°,则∠AOE的度数是()A. 90°B. 150°C. 180°D.不能确定8.下列图形中,是正方体平面展开图的图形的个数是()A. 4个B. 3个C. 2个D. 1个9.已知线段AC=4,BC=1,则线段AB的长度()A. 一定是5B. 一定是3C. 一定是5或3D. 以上都不对10.下列四个日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小;④沿桌子的一边看,可将桌子排整齐.其中,可以用“两点之间,线段最短”来解释的现象()A. ①③B. ②③C. ①④D. ②④二、填空题(本大题共8小题,共24.0分)11.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是______ .12.十条直线两两相交,最多x个交点,最少y个交点,那么x+y=_____________.13.长方体的主视图与俯视图如图所示,则这个长方体的体积是.14.若∠BAC的余角的度数是58°19′20″,它的补角的度数是_____.15.如图,图中共有________条线段,________条射线,________条直线.16.当√x−1=2时,则x=______ .17.如图,CD是线段AB上两点,若CB=4cm,DB=7cm,且D是AC中点,则AC的长等于______.18.如图是由大小相同的小正方体组成的简单几何体的左视图和俯视图,那么组成这个几何体的小正方体的个数最少为______个.三、解答题(本大题共7小题,共46.0分)19.如图是由5个小正方形组成的“7”字图形,请你用4种方法分别在图中添加一个正方形,使它折叠后能成为立方体.20.如图是一个正方体的展开图,每个面上都标注了字母(字母折在外面),请解答下列问题:(1)如果A面在正方体的底部,那么哪个面会在上面⋅(2)如果F面在正面,从左面看是B面,那么哪个面会在上面⋅(3)如果从右面看是C面,D面在后面,那么哪个面会在上面⋅21.如图,已知B、C、D是线段AE上的点,如果AB=BC=CE,D是CE的中点,BD=6,求AE的长.22.观察下面的点阵图和相应的等式,探究其中的规律:(1)认真观察,并在④后面的横线上写出相应的等式.①1=1②1+2=(1+2)×22=3③1+2+3=(1+3)×32=6④______…(2)结合(1)观察下列点阵图,并在⑤后面的横线上写出相应的等式.1=12②1+3=22③3+6=32④6+10=42⑤______…(3)通过猜想,写出(2)中与第n个点阵相对应的等式______.23.如图,OM是∠AOB的平分线,射线OC在∠BOM内部,∠AOC=90°,ON是∠COB的平分线.(1)若∠COB=30°,求∠MON的度数;(2)若∠COB=n°,求∠MON的度数.24.如图,点B,D都在线段AC上,D是线段AB的中点,BD=3BC,如果AC=21cm,求CD的长.25.观察下列多面体,并把下表补充完整.名称三棱柱四棱柱五棱柱六棱柱图形顶点数a61012棱数b912面数c58(1)完成上表中的数据;(2)根据上表中的规律判断,十四棱柱共有____个面,共有____个顶点,共有____条棱;(3)若某个棱柱由30个面构成,则这个棱柱为____棱柱;(4)观察上表中的结果,你能发现顶点数棱数面数之间有什么关系吗?请写出来.-------- 答案与解析 --------1.答案:B解析:本题考查了认识立体图形,熟悉常见几何体的面的组成是解题的关键.解:正方体是有六个平面围成,故本图形符合要求;三棱锥有四个平面组成,故本图形符合要求;圆锥体是一个底面和一个侧面组成,侧面是一个曲面,故本图形不符合要求;圆柱体是两个底面和一个侧面组成,侧面是曲面,故本图形不符合要求.符合要求的共有2个,故选B.2.答案:A解析:本题主要考查的是三棱柱的平面展开图,熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.根据三棱柱的展开图的特点作答.解:A.是三棱柱的平面展开图,故选项正确;B.不是三棱柱的展开图,故选项错误;C.不是三棱柱的展开图,故选项错误;D.两底在同一侧,也不符合题意.故选A.3.答案:C解析:解:∵∠AOB+∠BOC=180°,又∠BOC与∠COD互补,∴∠AOB与∠COD的关系是相等.故选:C.直接利用互补的性质得出∠AOB与∠COD的关系.此题主要考查了互补两角的性质,正确把握相关性质是解题关键.4.答案:D解析:解:A、主视图是第一层两个小正方形,第二层左边一个小正方形,B、主视图是第一层两个小正方形,第二层左边一个小正方形,C、主视图是第一层两个小正方形,第二层左边一个小正方形,D、主视图是第一层两个小正方形,第二层两个小正方形,故选:D.根据主视图是从正面看得到的图形,可得答案.本题考查了简单组合体的三视图,从正面看得到的视图是主视图.5.答案:D解析:本题考查了正方体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.利用正方体及其表面展开图的特点解题.解:这是一个正方体的平面展开图,共有六个面,其中面“伟”与面“国”相对,面“大”与面“中”相对,“的”与面“梦”相对.故选D.6.答案:C解析:此题主要考查了角平分线定义,关键是掌握角平分线把角分成相等的两部分.根据角平分线定义可得∠AOB=∠BOC=∠COD,即可得出∠AOD的度数.解:∵OB平分∠AOC,OC平分∠BOD,∴∠AOB=∠BOC=∠COD,∴∠AOD=∠AOB+∠BOC+∠COD=3∠AOB=75°.故选C.7.答案:B解析:本题考查了邻补角,角平分线的定义,熟练运用角平分线的定义是本题的关键.根据角平分线的定义可得∠BOE=30°,根据邻补角的定义可求∠AOE的度数.解:∵OB平分∠DOE∴∠BOE=12∠DOE=30°∵∠AOE+∠BOE=180°∴∠AOE=180°−30°=150°.故选B.8.答案:C解析:解:第一个图形、第二个图形都是正方体的展开图;第三个图形:“田”字格,不能折成正方体.第四个图形:“凹“字格,不能折成正方体.综上所述,是正方体平面展开图的图形的个数是2个.故选:C.由平面图形的折叠及立体图形的表面展开图的特点解题.本题考查了几何体的展开图.只要有“田”、“凹“字格的展开图都不是正方体的表面展开图.9.答案:D解析:解:当A、B、C三点共线时,AB=3或5,当A、B、C三点不共线时,AB长度确定不了,故选:D.当A、B、C三点共线时,AB=3或5,当A、B、C三点不共线时,AB长度确定不了,即可求解.在未画图类问题中,正确画图很重要.本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.10.答案:B解析:此题主要考查了线段的性质,关键是掌握两点之间,线段最短.根据线段的性质进行解答即可.解:①用两根钉子就可以把一根木条固定在墙上;④沿桌子的一边看,可将桌子排整齐用两点确定一条直线来解释;②把弯曲的公路改直,就能够缩短路程;③用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小用“两点之间,线段最短”来解释,故选B.11.答案:两点确定一条直线解析:解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是:两点确定一条直线.故答案为:两点确定一条直线.根据公理“两点确定一条直线”,来解答即可.本题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.12.答案:46解析:本题主要考查直线的交点问题.注意直线相交时得到最多交点的方法是:每增加一条直线,这条直线都要与之前的所有线段相交.在同一平面内,直线相交时得到最多交点的方法是:每增加一条直线这条直线都要与之前的所有线段相交,即第n条直线时交点最多有1+2+3+4+⋯+(n−1)个,整理即可得到一般规律:n(n−1),再把特殊值n=10代入即可求解.2解:在同一平面内,两条直线相交时最多有1个交点,三条直线最多有3=1+2个交点,四条直线最多有6=1+2+3个交点,…,n条直线最多有1+2+3+4+⋯+(n−1)个交点,即1+2+3+ 4+⋯+(n−1)=n(n−1).2=45当n=10时,x=10(10−1)2都交于同一点,得y=1,∴x+y=46,故答案为46.13.答案:24解析:本题主要考查了由两种视图来推测整个长方体的特征,这种类型问题在中考试卷中经常出现,注意:主视图反映物体的长和高,左视图反映物体的宽和高,俯视图反映物体的长和宽.由所给的视图判断出长方体的长、宽、高,让它们相乘即可得到体积.解:由主视图可知,这个长方体的长和高分别为4和3,由俯视图可知,这个长方体的长和宽分别为4和2,因此这个长方体的长、宽、高分别为4、2、3,因此这个长方体的体积为4×2×3=24.故答案为:24.14.答案:148°19′20″解析:本题主要考查的是余角和补角的定义,熟练掌握余角和补角的定义是解题的关键.先表示这个角的余角,然后再求它的补角即可.解:它的补角的度数=180°−(90°−58°19′20=180°−90°+58°19′20=148°19′20″.故答案为148°19′20″.15.答案:6;5;0解析:本题主要考查了直线、线段、射线的定义,在直线、线段、射线计数时,应注意分类讨论的方法计数,做到不遗漏,不重复.线段有两个端点,不能延伸,射线有一个端点,能向一方无限延伸,直线没有端点,能向两方无限延伸,根据以上内容和图形找出即可.解:图中线段有:线段OA、线段OB、线段AB、线段OC、线段AC、线段BC,共6条线段;射线有:射线CE、射线OE、射线AD、射线BD、射线OD,共5条射线;图中没有直线,即有0条直线,故答案为6;5;0.16.答案:5解析:解:∵√x−1=2,∴x−1=4.解得:x=5.故答案为:5.依据算术平方根的定义可求得x−1=4,然后解方程即可.本题主要考查的是算术平方根的定义,依据算术平方根的定义列出关于x的方程是解题的关键.17.答案:6cm解析:解:由线段的和差,得DC=DB−CB=7−4=3cm,由且D是AC中点,得AC=2DC=6cm,故答案为:6cm.根据线段的和差,可得DC的长,根据线段中点的性质,可得答案.本题考查了两点间的距离,利用线段的和差得出DC的长是解题关键.18.答案:5解析:本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.做题要掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”.由左视图易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由左视图可得第二层正方体的可能的最少个数,相加即可.解:由俯视图可以看出组成这个几何体的底面小正方体有4个,由左视图可知第二层最少有1个,故组成这个几何体的小正方体的个数最少为:4+1=5(个),故答案为:5.19.答案:解:如图:解析:本题主要考查正方体展开图的知识.根据正方体的11种展开图来解答本题即可.20.答案:解:(1)∵面“A”与面“F”相对,∴A面是正方体的底部时,F面在上面;(2)由图可知,如果F面在前面,B面在左面,那么“E”面下面,∵面“C”与面“E”相对,∴C面会在上面;(3)由图可知,如果C面在右面,D面在后面,那么“F”面在下面,∵面“A”与面“F”相对,∴A面在上面.解析:本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.利用正方体及其表面展开图的特点解题.这是一个正方体的平面展开图,共有六个面,其中面“A”与面“F”相对,面“B”与面“D”相对,“C”与面“E”相对.21.答案:解:设DE=x,∵D是CE的中点,∴CD=DE=x,则AB=BC=CE=2x,∴BD=BC+CD=6,∴2x+x=6,∴x=2∴AE=6x=12.答:AE的长为12.解析:本题考查了线段的中点及线段的运算.在一条直线或线段上的线段的加减运算和倍数运算,首先明确线段间的相互关系,最好准确画出几何图形,再根据题意进行计算.利用中点性质转化线段之间的倍分关系是解题的关键.22.答案:解:(1)1+2+3+4=(1+4)×42=10;(2)10+15=52;(3)n(n−1)2+n(n+1)2=n2.解析:解:(1)根据题中所给出的规律可知:1+2+3+4=(1+4)×42=10,故答案为:1+2+3+4=(1+4)×42=10;(2)由图示可知点的总数是5×5=25,所以10+15=52,故答案为:10+15=52;(3)由(1)(2)可知n(n−1)2+n(n+1)2=n2,故答案为:n(n−1)2+n(n+1)2=n2.(1)根据①②③观察会发现第四个式子的等号的左边是1+2+3+4,右边分子上是(1+4)×4,从而得到规律;(2)通过观察发现左边是10+15,右边是25即5的平方;(3)过对一些特殊式子进行整理、变形、观察、比较,归纳出一般规律.主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.23.答案:解:(1)∵∠AOC=90°,∠COB=30°,∴∠AOB=∠AOC+∠COB=90°+30°=120°,∵OM是∠AOB的平分线,ON是∠COB的平分线,∴∠MOB=12∠AOB,∠NOB=12∠COB,∴∠MON=∠MOB−∠NOB=60°−15°=45°;(2)当∠AOC=90°,∠COB=n°时,∴∠MON=∠MOB−∠NOB=12(90+n)°−12n°=45°.解析:本题主要考查角的计算和角平分线的定义等知识点的理解和掌握.(1)根据∠AOC=90°,∠COB=30°,可得∠AOB=∠AOC+∠COB=90°+30°=120°,再利用OM 是∠AOB的平分线,ON是∠COB的平分线,即可求得答案;(2)根据∠MON=∠MOB−∠NOB,又∠AOC=90°,∠COB=n°,由(1)可得出答案.24.答案:解:由D是线段AB的中点,BD=3BC,得AD=BD=3BC.由线段的和差,得AD+BD+BC=AC,即3BC+3BC+BC=21.解得BC=3,BD=3BC=3×3=9,CD=BC+BD=3+9=12.解析:本题考查了两点间的距离,利用线段的和差得出关于BC的方程是解题关键.根据线段中点的性质,可得AD与BD的关系,根据线段的和差,可得关于BC的方程,根据解方程,可得BC的长,再根据线段的和差,可得答案.25.答案:解:(1)填表如下:名称三棱柱四棱柱五棱柱六棱柱图形顶点数a6 81012棱数b9121518面数c5 678(2)16,28,42;(3)二十八;(4)关系:顶点数+面数−棱数=2.解析:本题考查规律型问题,欧拉公式等知识,解题的关键是学会从特殊到一般探究规律的方法,属于中考常考题型.(1)通过认真观察图象,即可一一判断;(2)根据面、顶点、棱的定义一一判断即可;(3)根据棱柱的定义判定即可;(4)从特殊到一般探究规律即可;解:(1)见答案;(2)根据上表中的规律判断,十四棱柱共有16个面,共有28个顶点,共有42条棱;故答案为16,28,42;(3)若某个棱柱由30个面构成,则这个棱柱为二十八棱柱;故答案为二十八;(4)见答案.。
华师大版七年级上册数学第4章图形的初步认识含答案一、单选题(共15题,共计45分)1、如图是由几个相同的正方体搭成的一个几何体,它的俯视图是()A. B. C. D.2、一个正方体的每个面都有一个汉字,其平面展开图如图,那么在该正方体中和“毒”字相对的字是()A.卫B.防C.讲D.生3、下列哪个图形,主视图、左视图和俯视图相同的是()A.圆锥B.圆柱C.三棱柱D.正方体4、如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是()A. B. C. D.5、某物体的三视图如图所示,那么该物体是()A.长方体B.圆锥体C.正方体D.圆柱体6、如图所示几何体的左视图是()A. B. C. D.7、一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为()A.2个B.3个C.5个D.10个8、在市委市政府的领导下,经过全市人民的努力,义乌市获“全国文明城市”提名,为此小兵特制了一个正方体玩具,其展开图如图所示,正方体中与“全”字所在的面正对面上标的字是()A.文B.明C.城D.国9、如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A. B. C. D.10、如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是()A.∠1=∠3B.∠1=180°﹣∠3C.∠1=90°+∠3D.以上都不对11、下列图形中,不能折叠成一个正方体的是()A. B. C.D.12、一物体及其正视图如下图所示,则它的左视图与俯视图分别是右侧图形中的().A.①②B.③④C.①④D.③②13、下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是()A. B. C.D.14、木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为()A.两点之间,线段最短B.两点确定一条直线C.两点之间线段的长度,叫做这两点之间的距离D.圆上任意两点间的部分叫做圆弧15、过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的俯视图为A. B. C. D.二、填空题(共10题,共计30分)16、数轴上和表示-1的点的距离等于4的点表示的有理数是________17、近日,以“奋斗40载”为主题的大型无人机灯光表演在深圳龙岗上演,小刚把其中一句祝福“致敬奋斗的你”写在了正方体的各个面上,展开图如图所示,请问“敬”的相对面是________。
图形的初步认识章节测试
班级___姓名______座号___
一、填空题:(每题 4 分,共 40 分)
1、已知 C 是线段 AB 的中点,且AB=6cm,则 AC=____cm。
2、已知:∠α=36°,则∠α的余角等于____。
3、已知要在墙上钉牢一根木条,至少要钉两颗钉子,这样的数学道理是_______。
4、如图,射线OA表示的方向是________。
5、计算21°28′40″+33°40′20″=____。
6、用度、分、秒表示35.12°=___°___′___″。
7、一个多面体有30棱、12个顶点,则这个多面体是____面体。
(顶点数+面数-棱数=2)
8、右图中的两个图形分别是某个几何体的俯视图和主视图,
则该几何体是____。
9、如图是一个正方体纸盒的展开图,如果其中一面标上 A,那么
与标有A的面相对的一面上所标的数字是____。
10、A、B、C三点在同一直线上,且AB=10cm,BC=4cm,则AC=___。
二、选择题:(每题 3 分,共 18 分)
1、手电筒射出的光线,给我们的形象似()
A、线段
B、直线
C、射线
D、折线2、下列各图中,线段 a,射线 b 可以相交的是()
A、①②④
B、③⑤
C、②③⑤
D、③④⑤3、不能用一副三角板画出的角是()
A、15°
B、75°
C、85°
D、105°4、如图,把一段弯曲的公路改成直道可以缩短路程,其理由是()
A、两点确定一条直线
B、两点之间,线段最短
C、两点之间,直线最短
D、线段有两个端点东
北 A
30°
①②③④⑤
A
B
俯视图主视图
5、下列图形中是正方体的展开图的是( )
6、下列各图中,∠1和∠2是对顶角的是( )
A B
C D
四、读下列语句,并画出图形。
(每小题4分,共16分)
1、任意画A 、O 两点,作射线OA 。
2、点A 在直线 l 上,点 B 在直线 l 外。
3、画线段 AB =4cm ,并用刻度尺找出它的中点 C 。
4、直线 l 与直线AB 交于O 点。
五、(12分)下列图形是某些立体图形的平面展开图,说出这些立体图形的名称。
①
②
③ ①________ ②________
③________
六、(12
七、解答题:(43分)
A B C D
(
( ( ( ( ( ( ( A B C D
· ( ) ( ) ( ) ( )
1、已知 C 为线段 AB 的中点,D 在线段 CB 上,且DA=6,DB=4,
求 CD 的长度。
(10分)
2、如图,已知∠1=24°40′,OD平分∠BOC,求∠AOD的度数。
(10分)
3、如图,已知∠53°,∠2=37°,射线CF是∠DCE的角平分线,
求∠ACF的度数。
(10分)
4、如图,已知线段AB=14,在AB上有C、D两点,且满足AC:CD:DB=1:2:4,点M、N
分别为线段AC和DB的中点,求线段MN的长。
(13分)
八、(9分)如图所示的几何体是由 5 个相同的正方体搭成,请画出它的主视图、左视图
和俯视图。
初中数学试卷
桑水出品。