函数图像+反函数+基本初等函数(讲义+例题)
- 格式:doc
- 大小:396.50 KB
- 文档页数:5
在数学的发展过程中,形成了最简单最常用的六类函数,即 常数函数 、 幂函数、 指数函数 、 对数函数 、 三角函数 与 反三角函数 ,这六类函数称为 基本初等函数。
一、常数函数y = c 或 f ( x ) = c , x ∈ R ,其中 c 是常数。
它的图像是通过点 (0,c),且平行 x轴的直线,如下图所示:常数函数的图像常数函数的性质:1、常数函数是有界函数,周期函数(没有最小的正周期)、偶函数;2、常数函数既是单调增加函数又是单调减少函数,特别的当 c = 0 时,它还是奇函数。
二、幂函数1、形如 y = x^a 的函数是幂函数,其中 a 是实数 。
幂函数图(1)2、常见幂函数的图像:幂函数图(2)注:画幂函数图像时,先画第一象限的部分,在根据函数奇偶性完成整个图像。
3、幂函数的性质:① 幂函数的图像最多只能同时出现在两个象限,且不经过第四象限;如图与坐标轴相交,则交点一定是坐标原点 。
② 所有幂函数在 (0,+∞)上都有定义,并且图像都经过点 (1,1)。
③ 若 a > 0 , 幂函数图像都经过点 (0,0)和(1,1),在第一象限内递增;若 a三、指数函数1、一般地,函数 y = a^x (a > 0 且 a ≠ 1)叫做 指数函数 ,自变量 x 叫做 指数 ,a 叫做 底数 ,函数的定义域是 R 。
2、指数函数的图像:指数函数图象3、指数函数的性质:① 指数函数 y = a^x (a > 0 且 a ≠ 1)的函数值恒大于零 ,定义域为 R ,值域为(0,+∞);② 指数函数 y = a^x (a > 0 且 a ≠ 1)的图像经过点 (0,1);③ 指数函数 y = a^x (a > 1)在 R 上递增 ,指数函数 y = a^x (0四、对数函数1、对数及其运算:一般地,如果 a (a > 0 , a ≠ 1)的 b 次幂等于 N ,即 a^b = N,那么 b 叫做以 a 为底N 的 对数 ;记作: log aN = b , 其中 a 叫做对数的 底数 , N 叫做 真数 。
⾼数总结:基本初等函数图像及其性质基本初等函数图像及其性质⼀、常值函数(也称常数函数)y =C(其中C 为常数);α1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数n4)如果m>n 图形于x 轴相切,如果m5)当α为负有理数时,n 为偶数时,函数的定义域为⼤于零的⼀切实数;n 为奇数时,定义域为去除x=0以外的⼀切实数。
三、指数函数xa y =(x 是⾃变量,a 是常数且0>a ,1≠a ),定义域是R ;[⽆界函数]1.指数函数的图象:2.1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上⽅; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。
1(3.(选,补充)指数函数值的⼤⼩⽐较*N ∈a ;a.底数互为倒数的两个指数函数x a x f =)(,xa x f ?=1)(的函数图像关于y 轴对称。
b.1.当1>a 时,a 值越⼤,xa y =的图像越靠近y 轴;b.2.当10<的图像越远离y 轴。
4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) n m n m a a a +=?m n m aa a -=÷(3)()()mn nm n m aa a ==(4) ()nnnba ab =b.根式的性质; (1)()a a nn= ; (2)当n 为奇数时,a a nn =当n 为偶数时,<-≥==)0(0)(a a a a a a nnc.分数指数幂;(1))1,,,0(*>∈>=n Z n m a a a n m n m(2))1,,,0(11*>∈>==-n Z n m a a amnm nm yxf x xxx g ?=1)(四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [⽆界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式⼦N a log 叫做对数式。
函数图像变换与基本初等函数一、函数的图象与图象交换与图象的对称点坐标函数解析式对称性关于x轴对称(x,y)与(x,-y)关于y轴对称(x,y)与(-x,y)关于原点对称(x,y)与(―x,―y)关于直线y=x对(x,y)与(y,x)称是偶函数,其图象关于y轴对称,图象在y 轴右侧部分与图象重合。
图象全部在x轴上方(含x轴):保留图象在x 轴上方部分,将图象在x轴下方部分沿x轴翻折上去。
(即作出这部分关于x轴的对称图形)基础例题1、已知函数,且满足,则a=________。
解析:,∴的曲线关于(1,0)点对称。
又是由y=x3左右平移得到的,易知a=-1。
2、利用图象变换画出下列函数的图象(1);(2);(3)。
解析:(1)∴的图象可由的图象向右平移一个单位得。
(2)(3)3、已知函数的图像过点(0,1),那么函数的反函数的图像一定经过下列各点中的()A.(4,―1)B.(1,―4)C.(―4,1)D.(1,4)解析:原函数向左平移,相应反函数向下平移。
答案选B。
4、填空:(1)将函数y=3x2―4x―12的图象沿向量平移后的解析式为__________。
(2)函数与的图像关于直线x=1对称,则________。
解析:(1)∴即∴(2)的图象与图象关于直线x=1对称,即,∴5、若函数在R 上单调递减,则的单减区间为(―2,+∞)。
解析:由复合函数单调性可知,的单减区间即为|x+2|=u的单增区间。
二、几个具体常见的函数二次函数指数函数对数函数解析式,,2,3 ,,2,3 定义域RR (0,+∞)值域、最值a>0,a<0,(0,+∞)R 图象a>0单调性a>0,在递减a<0,在a>0,递增a<0,递减a>1,递增0<a<1,递减递增奇偶对称性b=0时偶非奇非偶非奇非偶反函数无1、设二次函数满足,且图象在y轴上的截距为1,截x轴所得线段的长为,求的解析式。
解析:∴图象关于x=―2对称,∴①图象在y轴截距为1,∴c=1 ②截x轴所得线段长为,即的2根③由①②③可解,b=2,c=1,∴2、已知函数的值域为R,求a的取值范围。
六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C(其中C 为常数);α1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。
三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。
1(3.(选,补充)指数函数值的大小比较*N ∈a ;a.底数互为倒数的两个指数函数x a x f =)(,xa x f ⎪⎭⎫ ⎝⎛=1)(的函数图像关于y 轴对称。
b.1.当1>a 时,a 值越大,xa y =的图像越靠近y 轴;b.2.当10<<a 时,a 值越大,x a y =的图像越远离y 轴。
4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) n m n m a a a +=⋅(2)nm n m aa a -=÷(3)()()mn nm n m aa a ==(4) ()nnnba ab =b.根式的性质; (1)()a a nn= ; (2)当n 为奇数时,a a nn =当n 为偶数时,⎩⎨⎧<-≥==)0(0)(a a a a a a nnc.分数指数幂;(1))1,,,0(*>∈>=n Z n m a a a n m nm(2))1,,,0(11*>∈>==-n Z n m a a aanmnm nm yxf x xxx g ⎪⎫⎛=1)(四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [无界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式。
五、基本初等函数及其性质和图形1.幂函数函数称为幂函数。
如,,,都是幂函数。
没有统一的定义域,定义域由值确定。
如,。
但在内总是有定义的,且都经过(1,1)点。
当时,函数在上是单调增加的,当时,函数在内是单调减少的。
下面给出几个常用的幂函数:的图形,如图1-1-2、图1-1-3。
图1-1-2图1-1-32.指数函数函数称为指数函数,定义域,值域;当时函数为单调增加的;当时为单调减少的,曲线过点。
高等数学中常用的指数函数是时,即。
以与为例绘出图形,如图1-1-4。
图1-1-43.对数函数函数称为对数函数,其定义域,值域。
当时单调增加,当时单调减少,曲线过(1,0)点,都在右半平面内。
与互为反函数。
当时的对数函数称为自然对数,当时,称为常用对数。
以为例绘出图形,如图1-1-5。
图1-1-54.三角函数有,它们都是周期函数。
对三角函数作简要的叙述:(1)正弦函数与余弦函数:与定义域都是,值域都是。
它们都是有界函数,周期都是,为奇函数,为偶函数。
图形为图1-1-6、图1-1-7。
图1-1-6 正弦函数图形图1-1-7 余弦函数图形(2)正切函数,定义域,值域为。
周期,在其定义域内单调增加的奇函数,图形为图1-1-8图1-1-8(3)余切函数,定义域,值域为,周期。
在定义域内是单调减少的奇函数,图形如图1-1-9。
图1-1-9(4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。
图1-1-10(5)余割函数,定义域,值域为,为无界函数,周期在定义域为奇函数,图形如图1-1-11。
图1-1-115.反三角函数反正弦函数,定义域,值域,为有界函数,在其定义域内是单调增加的奇函数,图形如图1-1-12;图1-1-12,为有界函数,在其定义域内为单调减少的非奇非偶函数,图形如图1-1-13;图1-1-13反正切函数,定义域,值域为,为有界函数,在定义域内是单调增加的奇函数,图形如图1-1-14;图1-1-14为有界函数,在其定义域内单调减少的非奇非偶函数。
五、基本初等函数及其性质和图形1.幂函数函数称为幂函数。
如,,,都是幂函数。
没有统一的定义域,定义域由值确定。
如,。
但在内总是有定义的,且都经过(1,1)点。
当时,函数在上是单调增加的,当时,函数在内是单调减少的。
下面给出几个常用的幂函数:的图形,如图1-1-2、图1-1-3。
图1-1-2图1-1-32.指数函数函数称为指数函数,定义域,值域;当时函数为单调增加的;当时为单调减少的,曲线过点。
高等数学中常用的指数函数是时,即。
以与为例绘出图形,如图1-1-4。
图1-1-43.对数函数函数称为对数函数,其定义域,值域。
当时单调增加,当时单调减少,曲线过(1,0)点,都在右半平面内。
与互为反函数。
当时的对数函数称为自然对数,当时,称为常用对数。
以为例绘出图形,如图1-1-5。
图1-1-54.三角函数有,它们都是周期函数。
对三角函数作简要的叙述:(1)正弦函数与余弦函数:与定义域都是,值域都是。
它们都是有界函数,周期都是,为奇函数,为偶函数。
图形为图1-1-6、图1-1-7。
图1-1-6正弦函数图形图1-1-7余弦函数图形(2)正切函数,定义域,值域为。
周期,在其定义域内单调增加的奇函数,图形为图1-1-8图1-1-8(3)余切函数,定义域,值域为,周期。
在定义域内是单调减少的奇函数,图形如图1-1-9。
图1-1-9(4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。
图1-1-10(5)余割函数,定义域,值域为,为无界函数,周期在定义域为奇函数,图形如图1-1-11。
图1-1-115.反三角函数反正弦函数,定义域,值域,为有界函数,在其定义域内是单调增加的奇函数,图形如图1-1-12;图1-1-12反余弦函数,定义域为[-1,1],值域为,为有界函数,在其定义域内为单调减少的非奇非偶函数,图形如图1-1-13;图1-1-13反正切函数,定义域,值域为,为有界函数,在定义域内是单调增加的奇函数,图形如图1-1-14;图1-1-14反余切函数,定义域为,值域,为有界函数,在其定义域内单调减少的非奇非偶函数。
基本初等函数图像及性质六大基本初等函数图像及其性质一、常数函数(也称常值函数)y=C(其中C为常数);常数函数(y=C)是平行于x轴的直线,定义域为R,值域为{C},非奇非偶,单调性为不变,公共点为(0,C)。
二、幂函数y=x^α,x是自变量,α是常数;1.幂函数的图像:当α为正整数时,函数的图像都经过原点,并且在原点处与x轴相切。
当α为奇数时,图像关于原点对称;当α为偶数时,图像关于y轴对称。
2.幂函数的性质:函数。
定义域。
值域。
奇偶性。
单调性。
公共点y=x^2.R。
[0,+∞)。
偶。
增。
(0,0)y=x。
R。
R。
非奇非偶。
增。
(0,0)y=x^3.R。
R。
奇。
增。
(0,0)y=x^-1.{x|x≠0}。
{y|y≠0}。
奇。
(-∞,0)减。
(-1,0)∪(0,1)三、指数函数y=a^x(a>1且a≠1),定义域为R,为无界函数。
1.指数函数的图像:当a>1时,图像是单调增的曲线,经过点(0,1);当0<a<1时,图像是单调减的曲线,也经过点(0,1)。
2.指数函数的性质:函数。
定义域。
值域。
奇偶性。
单调性。
公共点y=a^x(a>1)。
R。
(0,+∞)。
非奇非偶。
增。
(0,1)y=a^x(0<a<1)。
R。
(0,1)。
非奇非偶。
减。
(0,1)本文介绍了指数函数和对数函数的基本概念和性质。
首先,介绍了指数函数的图像和比较大小的方法。
当底数互为倒数时,两个指数函数的图像关于y轴对称。
当底数大于1时,指数函数的值随着底数的增大而增大;当底数小于1时,指数函数的值随着底数的增大而减小。
其次,介绍了指数的运算法则,包括整数指数幂的运算性质和分数指数幂的运算性质。
其中,整数指数幂的运算性质包括指数相加、相减和相乘的规律;分数指数幂的运算性质包括分数指数幂的乘方和除法的规律。
接着,介绍了对数函数的概念和性质。
对数函数是指底数为常数且大于1的指数函数的反函数。
常用对数是以10为底的对数,自然对数是以无理数e为底的对数。
标准实用文案大全六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)≠C 0=C 平行于x 轴的直线y 轴本身定义域R 定义域R二、幂函数αx y=,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数xy =2xy =3xy =21x y =1-=xy 定义域R R R [0,+[0,+∞∞) {x|x {x|x≠≠0} 值域R [0,+[0,+∞∞) R [0,+[0,+∞∞) {y|y {y|y≠≠0} 奇偶性奇偶奇非奇非偶奇单调性增[0,+[0,+∞∞) ) 增增增增(0,+(0,+∞∞) ) 减减(-(-∞∞,0] ,0] 减减(-(-∞∞,0) ,0) 减减公共点(1,11,1))xyOxy =2x y =3x y =1-=x y 21x y =O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α,他们的图形都经过原点,并当α>1>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm 时,时,n n 为偶数时函数的定义域为(为偶数时函数的定义域为(0, +0, +0, +∞),∞),∞),n n 为奇数时函数的定义域为(为奇数时函数的定义域为(--∞,+,+∞),函数的图形均经过原点和(∞),函数的图形均经过原点和(∞),函数的图形均经过原点和(1 ,11 ,11 ,1););4)如果m>n 图形于x 轴相切,如果m<n,m<n,图形于图形于y 轴相切,且m 为偶数时,还跟y 轴对称;轴对称;m m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,)当α为负有理数时,n n 为偶数时,函数的定义域为大于零的一切实数;为偶数时,函数的定义域为大于零的一切实数;n n 为奇数时,定义域为去除x=0以外的一切实数。
WORD 格式整理版六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C (其中 C 为常数);常数函数( y C )C 0yy Cy 0xO平行于 x 轴的直线定义域 R二、幂函数 y x ,x是自变量,是常数;y 11. 幂函数的图像:y x2y x2y x1O2.幂函数的性质;性质y x y x2y x3函数定义域R R R值域R[0,+ ∞ )R奇偶性奇偶奇单调性增[0,+ ∞) 增增(-∞ ,0]减公共点( 1,1)C 0yOy轴本身定义域 Ry xy x3x1y x2[0,+ ∞ )[0,+ ∞ )非奇非偶增xy x 1{x|x ≠ 0}{y|y ≠ 0}奇(0,+∞) 减(-∞ ,0) 减WORD 格式整理版1)当 α 为正整数时,函数的定义域为区间为x ( ,),他们的图形都经过原点,并当α >1 时在原点处与 x 轴相切。
且 α为奇数时,图形关于原点对称;α 为偶数时图形关于 y 轴对称;2)当 α 为负整数时。
函数的定义域为除去 x=0 的所有实数;3)当 α 为正有理数m时, n 为偶数时函数的定义域为(0, +∞), n 为奇数时函数的定义域为( -n∞ ,+∞),函数的图形均经过原点和( 1 ,1);4)如果 m>n 图形于 x 轴相切,如果m<n,图形于 y 轴相切,且 m 为偶数时,还跟y 轴对称; m , n均为奇数时,跟原点对称;5)当 α 为负有理数时, n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除 x=0 以外的一切实数。
三、指数函数 ya x ( x 是自变量 , a 是常数且 a0 , a 1) ,定义域是 R ;[ 无界函数 ]1. 指数函数的图象 :ya xyyya x(a 1)(0 a1)(0,1)y 1(0,1)y 1OxOx2. 指数函数的性质 ;性质y a x(a 1)y a x(0 a 1)函数定义域 R值域(0,+∞)奇偶性非奇非偶公共点过点 (0,1),即 x0 时, y 1单调性 在( ,)是增函数在(, )是减函数1 ) 当 a 1时 函 数 为 单 调 增 , 当 0 a 1时函数为单调减;2 ) 不 论 x 为 何 值 , y 总 是 正 的 , 图 形 在 x 轴 上 方 ;3 ) 当 x0 时 , y1,所以它的图形通过(0,1) 点。
精心整理
函数图像+反函数+基本初等函数
一、函数图像:注意数形结合
(1)平移:−−−−−−→−=个单位向右平移a x f y )()(a x f y -=;)(x f y =−−−−−−→−个单位向上平移b .)(b x f y +=
(2)对称:)(x f y =−−−−−→−轴对称关于
x )(x f y -=;)(x f y =−−−−−→−轴对称关于y )(x f y -=; )(x f y =−−−−−→−关于原点对称
)(x f y --=. *若有等式)()(x a f x a f -=+成立,那么函数关于a x =对称; *若有等式)()(a x f a x f -=+成立,那么函数是周期函数,且周期为a 2
(3)其他:)(x f y =−−−−−−−−→−再把轴上方图象保留
,x |)(|x f y =;)(x f y =−−−−−−−−−→−再把轴右边的图象保留,x |).(|x f y = 习题1.例3、利用函数x x f 2)(=的图象,作出下列各函数的图象:
(1))1(-x f ;(2)|)(|x f ;(3)1)(-x f ;(4))(x f -;(5).|1)(|-x f
习题2.函数1
11--=x y 的图象是(B ) 习题3.已知)(x f 是偶函数,则)2(+x f 的图像关于__2x =-____对称;已知)2(+x f 是偶函数,则函数)(x f 的图像关于____2x =_____对称.
二、反函数
(1)互为反函数的两个函数y =f (x )与y =f -1(x )在同一直角坐标系中的图象关于直线y =x 对称.
(2)原函数与反函数有相同的增减性
(3)求反函数的步骤:
(a )解关于x 的方程y =f (x ),得到x =f -1(y ).
(b )把第一步得到的式子中的x 、y 对换位置,得到y =f -1(x ).
(c )求出并说明反函数的定义域〔即函数y =f (x )的值域〕.
习题4.函数y =-1
1+x (x ≠-1)的反函数是(A ) A.y =-x 1-1(x ≠0)B.y =-x 1+1(x ≠0)C.y =-x +1(x ∈R ) D.y =-x -1(x ∈R )
轴下方图象对称到上方x 轴左边
轴右边图象对称到y y
习题5..函数y =log 2(x +1)+1(x >0)的反函数为(A )
A.y =2x -1-1(x >1)
B.y =2x -1+1(x >1)
C.y =2x +1-1(x >0)
D.y =2x +1+1(x >0)
习题6.函数f (x )=-12+x (x ≥-2
1)的反函数(D ) A.在[-21,+∞)上为增函数 B.在[-2
1,+∞)上为减函数 C.在(-∞,0]上为增函数
D.在(-∞,0]上为减函数
习题7.设函数f (x )是函数g (x )=
x 21的反函数,则f (4-x 2)的单调递增区间为(C )
A.[0,+∞)
B.(-∞,0]
C.[0,2)
D.(-2,0] 习题8.求函数f (x )=⎩⎨⎧->+-≤+)
1(1),1(12x x x x 的反函数
习题9.求函数x a y =的反函数
三、基本初等函数
(1)指数函数:)1,0(≠>=a a a y x 且
a.定义域:R x ∈,
b.函数的值域为),0(+∞;
c.当10<<a 时函数为减函数,当1>a 时函数为增函数,
d.过定点(0,1)
e.0<c<d<1<a<b
指数函数运算法则:
①(0,,)r s r s a a a a r s R +⋅=>∈
②()(0,,)r s rs a a a r s R =>∈
③()(0,0,)r r r ab a b a b r R =>>∈
(2)对数函数:)1,0(log ≠>=a a x y a 且
a.定义域:),0(+∞
b.函数的值域为R ;
c.当10<<a 时函数为减函数,当1>a 时函数为增函数;
d.过定点(1,0)
e.0<c3<c4<1<<c2<c1
对数函数运算法则:如果a>0且a ≠1,M>0,N>0,那么
(3)幂函数:()a f x x =,定义域根据特定的a 值来确定。
习题
45
(3习题习题习题习题习题15.若{|2},{|x M y y P y y ====,则M∩P (C )
A.{|1}y y >
B.{|1}y y ≥
C.{|0}y y >
D.{|0}y y ≥
习题16.对数式2log (5)a b a -=-中,实数a 的取值范围是( C )
A.a>5,或a<2
B.2<a<5
C.2<a<3,或3<a<5
D.3<a<4
习题17.已知x a x f -=)()10(≠>a a 且,且)3()2(->-f f ,则a 的取值范围是(D )
A.0>a
B.1>a
C.1<a
D.10<<a
习题18.函数|log |)(2
1x x f =的单调递增区间是(D)
A 、]
1,0(B 、]1,0(C 、(0,+∞)D 、),1[+∞ 习题l y =A C 习题习题习题习题习题习题8100
习题26.函数2)23x (lg )x (f +-=恒过定点
习题27.点(2,1)与(1,2)在函数()2ax b f x +=的图象上,求()f x 的解析式:()22x f x -+= 习题28.已知()2x f x =,()g x 是一次函数,并且点(2,2)在函数[()]f g x 的图象上,点(2,5)在函数[()]g f x 的图象上,求()g x 的解析式.:()23g x x =- 习题29.已知函数x
x x f -+=11lg
)(,(1)求)(x f 的定义域;(2)使0)(>x f 的x 的取值范围. x
(1)(-1,1),(2)(0,1)
习题30.已知定义域为R 的函数12()22
x x b f x +-+=+是奇函数。
(Ⅰ)求b 的值; (Ⅱ)判断函数()f x 的单调性;(减函数)。