碳_碳复合材料高温抗氧化涂层的研究进展
- 格式:doc
- 大小:58.00 KB
- 文档页数:5
碳碳复合材料的应用研究现状碳碳复合材料(Carbon-Carbon Composites,简称C/C复合材料)是一种高性能的结构材料,由碳纤维和炭化石墨相互穿插制成。
由于其优异的力学性能、耐高温性能和抗氧化性能,碳碳复合材料被广泛应用于航空航天、航空制动系统、摩擦材料等领域。
在航空航天领域,碳碳复合材料被广泛应用于航天器热防护系统、发动机喷管、推力矢量控制器等关键部件。
由于碳碳复合材料的高温稳定性和耐烧蚀性能,可以有效保护航天器在高速进入大气层时受到的热载荷,提高航天器的安全性能和使用寿命。
同时,碳碳复合材料还可以用于制造发动机喷管,由于其具有较高的导热性能和机械强度,可以有效提高发动机的推力和燃烧效率。
在航空制动系统中,碳碳复合材料可以用于制造刹车盘和刹车瓦。
由于其具有较低的热膨胀系数和良好的摩擦性能,可以有效提高刹车系统的制动效率和耐久性。
此外,碳碳复合材料还具有较低的密度和良好的抗疲劳性能,可以减轻飞机的重量,提高飞机的载荷能力和燃油效率。
在摩擦材料领域,碳碳复合材料可以用于制造刹车片和离合器片。
由于其具有较低的热膨胀系数和良好的摩擦性能,可以有效提高刹车和离合器的制动效率和耐久性。
此外,碳碳复合材料还具有较低的摩擦噪声和磨损率,可以提高汽车驾驶的舒适性和安全性。
除了航空航天、航空制动系统和摩擦材料,碳碳复合材料还有许多其他应用领域。
例如,在核能领域,碳碳复合材料可以用于制造核反应堆的结构材料和导热材料,由于其具有较高的热导率和较低的中子俘获截面,可以提高核反应堆的热效率和安全性能。
在光学领域,碳碳复合材料可以用于制造太阳能电池板的支撑结构,由于其具有较低的质量和较高的强度,可以提高太阳能电池板的转换效率和使用寿命。
碳碳复合材料的应用研究已经取得了显著的进展,其在航空航天、航空制动系统、摩擦材料等领域的广泛应用为相关行业带来了许多技术突破和经济效益。
随着科学技术的不断发展和创新,相信碳碳复合材料的应用前景将更加广阔。
炭/ 炭复合材料的制备及研究进展摘要:综合国内外各种文献资料,总结了炭炭复合材料的用途、制备工艺,简要介绍了几种主要的致密化方法,并对炭炭复合材料的抗氧化研究、石墨化研究做了初步的介绍,最后提出了炭炭复合材料今后发展的方向.关键词:炭炭复合材料,致密化,化学气相沉积,抗氧化,石墨化.1 引言炭/ 炭复合材料是具有优异耐高温性能的结构与功能一体化工程材料。
它和其它高性能复合材料相同, 是由纤维增强相和基体相组成的一种复合结构, 不同之处是增强相和基体相均由具有特殊性能的纯碳组成[1-2]。
炭/ 炭复合材料具有低密度、高强度、低烧蚀率、高抗热震性、低热膨胀系数、零湿膨胀、不放气、在2 000 C 以内强度和模量随温度升高而增加、良好的抗疲劳性能、优异的摩擦磨损性能和生物相容性(组织成分及力学性能上均相容)、对宇宙辐射不敏感及在核辐射下强度增加等性能[1-3], 使炭/ 炭复合材料在众多领域有着广泛用途。
在发达国家,炭/ 炭复合材料已被成功用于航天飞机的机翼前缘、鼻锥、货舱门,高推动比战机发动机的涡轮,高性能火箭发动机喷管、喉衬、燃烧室等,新一代先进飞机、坦克、赛车、高速列车等的刹车材料,以及火箭、飞机的密封圈等构件[4],同时,炭/ 炭复合材料作为生物医学材料,人造心脏瓣膜、人工骨、牙种植体及作为植入材料用于矫形是近年来的研究重点[5-7]; 作为智能材料,由于其受拉力后电阻增加,是很好的拉伸传感器,具有广阔的发展前景[8]。
炭/炭复合材料由碳纤维增强碳基体复合而成。
碳基体以热解炭的形式存在,由碳源先驱体经热解碳化而成。
炭/炭复合材料的制备工艺包括: 碳纤维及其结构的选择; 基体碳先驱物的选择; 炭/炭复合材料坯体的成型工艺; 坯体的致密化工艺以及工序间和最终产品的加工等[9]。
其中,关键技术在于坯体的致密化。
2 炭/炭复合材料的致密化工艺传统的炭/炭复合材料致密化工艺主要有化学气相沉积(CVD、化学气相渗透(CVI)和浸渍法。
碳-碳复合材料莫来石晶须增韧莫来石抗氧化涂层的制备与性能研究碳/碳复合材料莫来石晶须增韧莫来石抗氧化涂层的制备与性能研究引言碳/碳复合材料(C/C)是一种具有优异性能的结构材料,在航空、航天等领域有重要的应用价值。
然而,C/C材料的缺点之一是其低韧性和易氧化的特性。
为了解决这一问题,研究人员开始探索使用莫来石晶须作为增韧剂,并开发了一种莫来石晶须增韧C/C材料抗氧化涂层的制备方法。
制备方法1. 莫来石晶须的制备:将莫来石粉末与适量的碳源混合,并在高温下进行反应,使其发生碳化反应生成莫来石晶须。
2. 制备C/C材料:将制备好的莫来石晶须与碳纤维布层叠压制成坯体,然后在高温石墨化处理过程中使其形成成型的C/C材料。
3. 制备莫来石晶须增韧C/C材料抗氧化涂层:在C/C材料表面涂覆一层莫来石晶须和陶瓷颗粒的混合浆料,并经过热处理使其形成致密的抗氧化涂层。
性能研究1. 结构表征:使用扫描电子显微镜(SEM)观察莫来石晶须在C/C材料中的分布情况以及抗氧化涂层的致密性和结构。
2. 力学性能测试:使用万能材料试验机对莫来石晶须增韧C/C材料进行拉伸强度和断裂韧性等力学性能测试。
3. 抗氧化性能测试:将莫来石晶须增韧C/C材料暴露在高温高压的氧气环境中,观察抗氧化涂层的氧化速率和抗氧化性能。
结果与讨论1. 结构表征结果显示,莫来石晶须均匀分布在C/C材料中,并且抗氧化涂层具有致密的结构,能够有效阻挡氧气的渗透。
2. 力学性能测试结果表明,莫来石晶须增韧C/C材料的拉伸强度和断裂韧性分别提高了X%和Y%(根据实际实验结果填写具体数值),说明莫来石晶须能够有效增加C/C材料的韧性。
3. 抗氧化性能测试结果显示,莫来石晶须增韧C/C材料的抗氧化能力明显提高,氧化速率降低了Z%(根据实际实验结果填写具体数值),说明莫来石晶须增韧C/C材料抗氧化涂层的制备方法是有效的。
结论本研究成功制备了一种莫来石晶须增韧C/C材料抗氧化涂层,并对其性能进行了详细研究。
碳/碳复合材料高温抗氧化涂层的研究进展摘要:阐述了国内外近几年来碳/碳复合材料抗氧化涂层的研究新进展,并并从碳/碳复合材料的抗氧化涂层的基本条件以及抗氧化涂层类型等方面重点介绍了抗氧化涂层技术。
最后指出了目前关于抗氧化涂层技术研究中存在的问题。
关键词:C/C复合材料;抗氧化涂层;研究进展Adva nces in Research on High Temperature An ti-oxidatio n Coati ngs ofC/C CompositesABSTRACT: Research progress of high temperature anti-oxidati on coat ings of C/C composites at home and abroad has bee n reported. The types of an ti-oxidati on coati ngs of C/C composites are emphasized. The problems existi ng in the oxidati on resista nee coat ing research are poin ted out .KEY WORDS: C/C composite; an ti-oxidation coat ing ; research progress.1引言碳/碳复合材料是炭纤维增强炭基体的新型复合材料,具有低密度(理论密度为2. 2 g/ cm33,实际密度通常为1.75〜2. 10 g/ cm3 )、低热膨胀系数(仅为金属的1/ 5〜1/ 10)、高强度、高模量、耐高温、抗热震、抗热应力、抗裂纹传播、耐烧蚀、摩擦系数小等特点,尤其是它在1 000〜2 300 C时强度随温度升高而升高,是理想的航空航天及其它工业领域的高温材料[1,2]。
然而,碳在370 C的有氧气氛中开始氧化,高于500 C时迅速氧化,导致碳/碳复合材料毁灭性破坏。
收稿日期:2013-11-05!基金项目:国家自然科学基金项目(51304249),国家“973”计划项目(2011CB605801),中国博士后科学基金项目(2013T60776,2012M511752),湖南省自然科学基金项目(14JJ3023)资助作者简介:杨鑫,1983年出生,博士,助理研究员,主要从事耐高温碳/陶瓷基复合材料的研究与抗氧化防护。
E -mail :yangxincsu@csu.edu.cn 通讯作者:黄启忠,教授,主要研究方向为碳/碳复合材料、新型碳材料、耐高温碳/陶瓷基复合材料的制备与应用。
E -mail :qzhuang@csu.edu.cn!·综述·C /C 复合材料的高温抗氧化防护研究进展杨鑫黄启忠苏哲安常新(中南大学,粉末冶金国家重点实验室,长沙410083)文摘C /C 复合材料在高温有氧环境中易氧化的缺点一定程度上影响了它在航空航天领域的应用与推广,抗氧化涂层技术是提高其高温长时间抗氧化性能最直接有效的方法。
本文综述了近年来国内外C /C 复合材料高温抗氧化涂层在玻璃、贵金属、陶瓷等涂层体系方面的最新研究成果;在分析介绍C /C 高温抗氧化涂层传统制备工艺优缺点及应用情况的基础上,进一步总结了高温抗氧化涂层制备技术最新研究进展;并对已开发的抗氧化涂层体系适用环境及应用现状进行了深入的评述。
最后针对C /C 复合材料1800ħ以上的超高温抗氧化防护问题,指出了目前研究中存在的问题及未来应重点努力发展的方向。
关键词C /C 复合材料,抗氧化涂层,氧化物陶瓷,超高温陶瓷中图分类号:TB332DOI :10.3969/j.issn.1007-2330.2014.01.001Review of Recent Progress on Oxidation Protection forC /C Composites at High TemperatureYANG XinHUANG QizhongSU ZheanCHANG Xin(State Key Laboratory of Powder Metallurgy ,Central South University ,Changsha 410083)Abstract The drawback of easy oxidation for carbon /carbon (C /C )composites has limited their application asstructural materials in aerospace field.The oxidation protective coating is one of the most effective methods that can realize the long term oxidation protection for C /C composites at high temperatures.The recent development of oxida-tion protective coating materials for C /C composites ,including glass ,metal and ceramic coatings were reviewed.The advantages and defects of traditional preparation technologies as well as their application were analyzed and summa-rized.New advances in development of coating technologies were also introduced ,and then ,the suitable service envi-ronment and recent application of different coating systems were clarified.To meet the ultra high temperature oxidation protection for C /C composites above 1800ħ,the problem in recent study and the potential development directions in the future were proposed.Key words Carbon /carbon composites ,Anti-oxidation coating ,Oxide ceramics ,Ultra high temperature ceramics引言C /C 复合材料是目前新材料领域重点研究和开发的一种新型超高温结构材料,它不但具有密度小、比强度大、线胀系数低、导热导电能力高、耐腐蚀、摩擦因数稳定等优点[1],而且还具有一系列优异的高温性能,如耐烧蚀、抗热震、热稳定性好等特点[2],特别是在超过2000ħ的高温环境中,它仍具有良好的强度保持率,是一种理想的轻质耐高温结构材料。
碳碳复合材料的研究进展材料科学与工程学院 11N091820030 许明阳碳/ 碳(C/ C) 复合材料是碳纤维增强碳基体的复合材料,具有高强高模、比重轻、热膨胀系数小、抗腐蚀、抗热冲击、耐摩擦性能好、化学稳定性好等一系列优异性能,是一种新型的超高温复合材料。
C/C 复合材料作为优异的热结构、功能一体化工程材料,自1958 年诞生以来,在军工方面得到了长足的发展,其中最重要的用途是用于制造导弹的弹头部件。
由于其耐高温、摩擦性好,目前已广泛用于固体火箭发动机喷管、航天飞机结构部件、飞机及赛车的刹车装置、热元件和机械紧固件、热交换器、航空发动机的热端部件、高功率电子装置的散热装置和撑杆等方面。
C/ C 复合材料种类多、性能各异,为此人们针对特定的用途来设计合适的C/ C 复合材料。
由于碳/ 碳复合材料具有以上特征,自20 世纪50 年代末问世起就引起了全世界的关注, 各发达国家纷纷投入这方面的研究。
到60 年代末至70 年代初,美国就将其用于火箭喷管, 英国用于协和号飞机刹车盘。
自此碳/ 碳复合材料在欧美得到了很大发展。
80 年代以后, 更多国家进入了这一研究领域, 在提高性能、快速致密化工艺研究及扩大应用等方面取得很大进展。
近两年, 我国中南大学、航天科技集团公司和西北工业大学科研人员分别用CLVD( 化学液气相沉积) 法和CLVI(化学液相气化渗透) 工艺制备出碳/ 碳复合材料, 济南大学用RCLD(快速化学液相沉积)制备出1D 和2D 碳/ 碳复合材料。
碳/ 碳复合材料由于制备周期长、工艺复杂、成本高等因素, 其应用范围仅限于军事、高科技等领域, 而在民用领域远远尚未开发。
1、碳/碳复合材料的制备工艺1.1碳/碳复合材料的预成型体和基体碳在进行预制体成型前,根据所设计复合材料的应用和工作环境来选择纤维种类和编织方式,预成型体是一个多孔体系,含有大量空隙。
如三维碳/碳复合材料中常用的结构的预成型体中的纤维含量仅有40%,也就是说其中空隙就占60% 。
碳/碳复合材料高温抗氧化涂层的研究进展摘要:阐述了国内外近几年来碳/碳复合材料抗氧化涂层的研究新进展,并并从碳/碳复合材料的抗氧化涂层的基本条件以及抗氧化涂层类型等方面重点介绍了抗氧化涂层技术。
最后指出了目前关于抗氧化涂层技术研究中存在的问题。
关键词:C/C复合材料; 抗氧化涂层; 研究进展Advances in Research on High Temperature Anti-oxidation Coatings ofC/C CompositesABSTRACT:Research progress of high temperature anti-oxidation coatings of C/C composites at home and abroad has been reported. The types of anti-oxidation coatings of C/C composites are emphasized. The problems existing in the oxidation resistance coating research are pointed out .KEY WORDS:C/C composite; anti-oxidation coating ; research progress.1 引言碳/碳复合材料是炭纤维增强炭基体的新型复合材料,具有低密度(理论密度为2. 2 g/ cm33,实际密度通常为1. 75~2. 10 g/ cm3 ) 、低热膨胀系数(仅为金属的1/ 5~1/ 10) 、高强度、高模量、耐高温、抗热震、抗热应力、抗裂纹传播、耐烧蚀、摩擦系数小等特点,尤其是它在1 000~2 300 ℃时强度随温度升高而升高,是理想的航空航天及其它工业领域的高温材料[1,2]。
然而,碳在370 ℃的有氧气氛中开始氧化,高于500 ℃时迅速氧化,导致碳/ 碳复合材料毁灭性破坏。
这一致命弱点限制了碳/ 碳复合材料的直接应用。
因此,对用作高温热结构材料的碳/ 碳复合材料必须进行合适的抗氧化保护。
目前碳/ 碳复合材料的抗氧化设计思路有两种[3] : (1) 基体改性技术。
(2)抗氧化涂层技术。
由于基体改性技术防氧化效果十分有限,一般只能在1 000 ℃以下,而且保护时间不长,再者会因为基体中引入盐类或陶瓷、金属类颗粒使碳/碳复合材料力学性能和热学性能下降。
因此,高温抗氧化涂层技术的研究成为热点。
本文仅就近年来国内外学者在碳/碳(C/C )复合材料高温抗氧化涂层技术领域的研究进展情况进行评述。
2 抗氧化涂层的基本条件C/C复合材料的抗氧化关键在于把易在高温下氧化的碳材料与氧化环境隔离开来。
因此,设计可靠有效、耐长时间高温的抗氧化涂层必须具有以下基本条件[4-6]。
(1)保证涂层均匀、致密、无缺陷,且具有高的熔点和自愈合能力。
(2)基体与涂层要有适当的粘附性,既不脱粘又不过分渗透基体。
最好是化学结合,不形成明显的界面。
(3)涂层系统必须能够有效阻止氧向内侵入,即具有低的氧扩散率,并完好的包覆在C/C复合材料周围,阻止各种氧化性物质向基体内部扩散,引起次表面基体氧化。
(4)涂层系统与C/C复合材料基材之间以及涂层系统自身要有稳定的化学相容性和较高的粘结强度,避免组分间有害的相变。
(5)涂层系统能够阻挡碳向外扩散,对于含有氧化物成分的涂层系统尤为重要,因为氧化物在高温下易被碳还原。
(6)涂层系统内以及涂层系统与C/C复合材料基材间应最大限度实现热匹配,以避免涂层制备过程中产生裂纹以及因热循环引起涂层的剥落。
(7)涂层系统应具有低挥发性,即要求涂层材料的蒸气压要低,避免高温下自行退化和降低高速燃气气流侵蚀速率。
(8)对不同环境下使用的C/C复合材料而言,涂层系统要尽可能承受一定的压力和冲击力,并且具有良好的耐腐蚀性能,包括耐酸碱盐和耐潮湿性等。
以上诸因素中第(3)点和第(6)点尤为关键。
3 抗氧化涂层类型满足以上要求的涂层并不多,目前研制的涂层主要有氧化铝、镁铝尖晶石、二硅化钼、二硅化钨、莫来石及它们的复合体系。
根据温度来分,有低温(低于1 000℃)涂层和高温(1 000~1 800 ℃)涂层之分。
前者主要是B2O3系涂层,后者则主要是SiC和MoSi2系。
根据涂层结构形式来分,有单一涂层和多层梯度涂层,单一涂层主要用于温度较低,抗氧化时间较短的情况。
多层梯度涂层则多用于高温长时间抗氧化。
3.1 氧化铝涂层Al2 O3具有熔点高、硬度高和化学稳定性好、低热导率和电导率、价格低廉等优势,广泛应用于耐腐蚀、耐磨损领域的陶瓷涂层中[7 ]。
马壮等[ 8 ]采用热化学反应法在Q235钢上制备氧化铝基陶瓷涂层,该涂层在600℃固化产生了新陶瓷相; 涂层较致密,与基体结合良好; 大大提高了基体的耐蚀性和耐磨性问题。
然而, Al2 O3氧化物不宜直接涂覆在C/ C复合材料基体上作为抗氧化涂层,这是因为:一方面由于与基体CTE(热膨胀系数) 不匹配,在热循环时会引起涂层产生裂纹甚至剥落;另一方面考虑化学相容性问题,高温下碳易与氧化物发生还原反应,而使涂层失效。
此时, 可采用硅基陶瓷材料( SiC、Si3N4等) 和铝基陶瓷材料(如AlN等)作中间过渡层来克服以上缺点。
3.2 镁铝尖晶石涂层镁铝尖晶石( MgAl2O4 )熔点高(2 105℃),在很大温度范围内具有较宽的单相区,作为高温抗氧化涂层具有较大的潜力。
潘牧等[ 9 ]用等离子喷涂法在SiC基体上制备了结晶良好、晶粒细小、阳离子分布较有序的稳定的尖晶石涂层。
但是,镁铝尖晶石中的杂质和游离态的Al2O3、MgO相变会造成涂层的严重破坏。
而且使用过程中表面玻璃封填层中的SiO2以及SiC氧化生成的SiO2都会与MgAl2O4生成新矿物,矿物间转变时的体积效应对涂层产生了巨大的破坏作用。
因此, MgAl2O4作为高性能抗氧化涂层还需要进行大量的研究工作。
3.3 MoSi2、WSi2涂层MoSi2、WSi2涂层二硅化钼(MoSi2,熔点2 030 ℃) 、二硅化钨(WSi2,熔点2 180 ℃) 作为硅基金属间化合物, 因熔点高, 使用过程中表面可生成SiO2膜对涂层起到封填和阻止氧扩散的作用, 使该体系成为目前C/C、SiC基复合材料特别是电热元件生产中常用的涂层材料。
且MoSi2具有1 800 ℃氧化气氛下的高温稳定性, 并且在高温下表现出一定的塑性变形能力[9],正是其他陶瓷涂层材料所不具备和欠缺的性能。
用包埋法或渗透法制备的MoSi2/ SiC、WSi2 /Si 、MoSi2 / WSi2、WSi2 / SiC抗氧化涂层,通过Mo、W的扩散形成梯度分布,可以将C/C复合材料的抗氧化温度大幅度提高。
但硅基金属间化合物热膨胀系数比SiC的大得多,烧结温度极高,限制了该体系涂层的应用。
此外,MoSi2、WSi2低温(小于600 ℃) 时生成MoO3、WO3等挥发性物质[10 ],使涂层出现灾难性破坏,涂层抗氧化性能急剧劣化。
西北工业大学的曾燮榕等人[3]采用包埋法研制了Si2MoSi2涂层,结果表明,当涂层中MoS2含量为20 %时,涂层具有优良的抗氧化和抗热震性能。
经过242 h的氧化,试样的失重率为0. 57 %,质量损失微小,失重主要表现为涂层自身的蒸发损耗,C/C基体没有受到氧化。
3.4 莫来石涂层莫来石(mullite)作为高熔点氧化物,对环境的耐久性和化学相容性很好,且与碳化硅有相似的热膨胀系数,因此近年来成为研究的热点。
有文献报道一种在SiC涂层上涂覆1μm左右厚度的莫来石涂层,以提高C/C复合材料使用温度和延长使用寿命。
该双体系涂层能使C/C复合材料1 600 ℃时的质量损失仅为SiC单一涂层的四分之一。
研究表明[12]:SiC基体表面上的莫来石涂层和无基体的莫来石薄层一样,在1 000 ℃热循环时产生裂纹。
根据测定的等离子喷涂mullite 涂层的热膨胀系数,涂层在第一次热循环时(25~1 000 ℃),从600 ℃开始发生体积收缩,这可能是从玻璃态析出莫来石而导致的体积收缩。
莫来石结晶化后的涂层热膨胀系数与SiC非常接近,因此可以认为等离子喷涂时玻璃态莫来石涂层的结晶化是涂层产生裂纹的关键。
3.5 晶须复合涂层由于C/C复合材料需要在燃气冲刷剪切力作用下服役,因此,涂层与基体之间结合力以及涂层本身内聚力的提高是一个比较现实的问题。
晶须作为增强、增韧相能有效提高这种结合力和增强涂层的韧性。
付前刚、李贺军[13-14]等提出采用SiC晶须增韧陶瓷的复合涂层模式。
其制备的SiC f-SiC/ MoSi2-SiC-Si复合涂层能在1 500℃下有效保护碳/碳复合材料200 h, SiC晶须具有优异的力学和化学稳定性能。
SiC内涂层得到SiC晶须增韧后,强度和韧性都得到一定程度的提高[15-16],能够克服穿透性裂纹的产生,提高涂层高温抗氧化和抗冲刷能力。
武七德等[ 8]通过在抗氧化涂层中原位合成晶须的方法制备了抗氧化、抗热冲击性能优良的莫来石/莫来石复合涂层。
与掺入晶须制备晶须复合涂层相比,该方法能够在涂层内部原位合成晶须,涂层制备工艺简单,原料低廉,涂层性能更加优良。
3.6 SiC/ SiO2涂层SiC与C/C复合材料有较好的物理化学相容性,是很好的阻挡层,玻璃质的SiO2在一定温度下高温玻璃封填层。
过渡层的制备工艺是液态渗硅法,阻挡层的制备工艺是CVD法,封填层的制备工艺是液相反应生成法。
过渡层的作用是改善界面匹配程度,阻挡层的作用是阻止氧扩散和碳逸出,封填层的作用是降低裂纹生成温度和隔离原子氧。
按照这种涂层结构制备的C/C长寿命抗氧化涂层能在1 600℃下工作168 h以上。
3.7 梯度复合涂层由于碳/碳复合材料基体与涂层之间不可避免的热膨胀差异, 故在涂层中易产生裂纹。
裂纹可以通过功能梯度材料原理制作热膨胀系数梯度变化的涂层消除裂纹[11]。
黄剑锋等采用Sol-gel方法在SiC 内涂层表面制备了ZrO2-SiO2组分梯度变化的涂层, 该涂层很好地缓解了涂层间热膨胀不匹配的问题。
在此涂层体系中, 多孔的SiC 内涂层孔隙被硅-锆混合溶胶填充, 涂层中越靠近涂层表面ZrO2含量越高, 而SiO2含量越低, ZrO2-SiO2浓度的梯度变化大大缓解了内应力,有效阻止穿透性裂纹的产生, ZrO2作为热障涂层, 可以降低涂层内部和基体所承受的温度,且中间层中ZrO2和SiO2反应生ZrSiO4也有效的提高涂层的抗氧化性能。
4 存在的问题C/C复合材料抗氧化问题是国际上材料界主攻的方向之一,也是热点之一。
应该说经过近三十年的研究,已有很大进展。
目前存在的主要问题有:(1)提出的一些新涂层大多属于对小试样而做的试验的研究结果,若真正作为零件涂层,尚需研究其稳定性、均匀性和实用性问题。