轨道车辆制动装置
- 格式:ppt
- 大小:408.00 KB
- 文档页数:14
轨道作业车制动系统原理全文共四篇示例,供读者参考第一篇示例:轨道作业车是铁路上的重要施工和维护工具,它承载着修建、维护、清理轨道等任务。
轨道作业车在运行过程中,制动系统是至关重要的安全保障。
制动系统的性能直接影响到轨道作业车的运行稳定性和安全性。
本文将深入探讨轨道作业车制动系统的原理。
一、制动系统的作用轨道作业车的制动系统是为了实现对车辆速度的控制和停车,确保车辆在施工和维护作业过程中的安全。
制动系统通过作用在车轮上的制动装置,减缓车辆速度并最终实现停车。
在紧急情况下,制动系统能够快速有效地将车辆停下,保障乘员和周围环境的安全。
二、制动系统的组成部分1. 制动装置:制动装置是轨道作业车制动系统的核心部件,它通过对车轮施加制动力来使车辆减速并停车。
常见的制动装置有空气制动、液压制动等。
2. 制动控制系统:制动控制系统是制动系统的“大脑”,它根据司机的操作指令或系统自动判定,控制制动装置的施加力度和时机,实现车辆的减速和停车。
3. 制动传动系统:制动传动系统将控制系统产生的制动力传递给制动装置,使制动装置施加合适的制动力。
传统的制动传动系统采用机械传动方式,现代的轨道作业车制动系统多采用电子控制技术。
4. 制动辅助系统:制动辅助系统包括制动液压系统、制动空气系统等,为制动系统提供必要的能源和辅助功能,确保制动系统正常运行。
1. 空气制动系统原理:空气制动系统是轨道作业车常用的制动方式之一。
空气制动系统通过气压传动实现对制动装置的控制。
当司机踩下制动踏板时,空气压缩机将空气供给到制动缸,使制动装置施加在车轮上,从而减速车辆。
3. 制动力分配原理:轨道作业车制动系统需要根据载重情况、速度、路况等因素来分配制动力。
通常情况下,前轮应施加更大的制动力,以实现车辆稳定减速和停车。
四、轨道作业车制动系统的优化与发展随着铁路技术的不断进步和发展,轨道作业车制动系统也在不断优化和改进。
未来的轨道作业车制动系统将更加智能化和自动化。
轨道内部刹车结构
轨道内部的刹车结构主要由紧急制动安全环路线、制动控制装置和制动执行机构组成。
紧急制动安全环路线是一种控制电路,用于监控列车的紧急制动状态。
当紧急制动安全环路线的某一处瞬间失电时,列车会产生紧急制动指令。
制动控制装置是制动指令的执行和控制机构,由电气控制部分和气动控制部分组成。
在气动控制部分中,有一个紧急制动电磁阀,通常处于得电状态,将中继阀的紧急制动预先控制压力口与空重车调整阀输出口的气路通道切断,并将中继阀的紧急制动预先控制压力排向外界。
制动执行机构则包括盘形制动和磁轨制动等类型。
盘形制动是在车轴上或在车轮辐板侧面装上制动盘,用制动夹钳使合成材料制成的两个闸片紧压制动盘侧面,通过摩擦产生制动力。
磁轨制动则是在转向架的两个侧架下面,在同侧的两个车轮之间,各安置一个制动用的电磁铁,制动时将它放下并利用电磁吸力紧压钢轨,通过电磁铁上的磨耗板与钢轨之间的滑动摩擦产生制动力。
在紧急情况下,列车会触发紧急制动指令,通过制动控制装置和制动执行机构的工作,使列车迅速停止运行。
轨道车辆制动设计方案一、概述轨道车辆作为重要的公共交通工具,有着很高的安全要求。
在轨道车辆运行过程中,制动器是关键的安全保障装置之一。
本文将介绍轨道车辆制动的设计方案。
二、制动器分类轨道车辆制动器分为三种类型:手动制动器、气动制动器和电动制动器。
1.手动制动器:由于采用人工操作制动,因此手动制动器不易实现制动力的平稳控制,常用于紧急制动。
2.气动制动器:采用压缩空气为动力,适用于轨道车辆的常规制动和保持制动作用。
3.电动制动器:采用电能为动力,实现轨道车辆的惯性制动和再生制动作用,还可以作为辅助制动器。
三、气动制动器设计气动制动器的设计需要考虑以下因素:1.制动力大小:制动力大小的设计需要结合轨道车辆的使用情况和安全要求来确定。
2.制动力平稳性:制动力的平稳性对乘客的安全和行车的平稳有很大的影响,需要注意制动力的控制和平稳过渡。
3.制动器材质的选择:制动器材质的选择需要考虑它在高温、高压气体等特殊工况下的耐久性和稳定性。
4.制动器的调节和维护:通过制动器的调节和维护来保证其在长期运行中的可靠性和安全性。
四、电动制动器设计电动制动器的设计需要考虑以下因素:1.制动力大小:与气动制动器相同,制动力大小的设计需要结合轨道车辆的使用情况和安全要求来确定。
2.制动力平稳性:平稳性不仅对乘客的安全和行车的平稳有很大的影响,也对动力电子元器件的寿命和可靠性产生影响。
3.动力电子元器件的选择:选择合适的IGBT、电容、电感等元器件,设计合理的电路结构,保证电动制动器的性能。
4.制动器的调节和维护:通过制动器的调节和维护来保证其在长期运行中的可靠性和安全性。
五、总结综上所述,轨道车辆的制动器设计方案需要考虑制动力大小、制动力平稳性、材质选择、调节和维护等因素。
在选择制动器类型时,需要考虑不同类型的特性和适用情况。
在制动器的实际使用过程中,需要严格遵守相关规定,进行维护和检测,确保制动器的性能和安全。
城市轨道交通制动系统1、制动与缓解(1)制动。
制动是指人为地通过制动装置使车辆减速或阻止其加速的过程。
从能量变化角度分析,制动过程是一个能量转移的过程,即将列车运行的动能人为控制地转化成其他形式能量的过程。
而制动力则是指使车辆减速或阻止其加速的外力,制动机是产生并控制制动力的装置。
(2)缓解。
缓解是对已经施行制动的列车,解除或减弱其制动作用。
对于运动的列车而言,列车在停车后启动加速前或列车在运行途中限速制动后加速前均要解除制动作用,即施行缓解作用。
2、制动装置与制动系统(1)制动装置。
制动装置是在车辆中产生制动力,使列车减速、停车的一套机械、电气装置,一般将机械装置称为基础制动装置,而将电气控制的部分称为制动机。
制动作用的性能对保证车辆安全和正点运行具有极其重要的作用,制动装置也是提高列车运行速度和线路输送能力的重要条件之一。
(2)制动系统。
①制动系统的组成。
制动系统由动力制动系统、空气制动系统及指令和通信网络系统组成。
动力制动系统。
动力制动系统一般与牵引系统连在一起形成主电路,包括再生反馈电路和制动电阻器,将动力制动产生的电能反馈给供电接触网或消耗在制动电阻器上。
空气制动系统。
空气制动系统由供气部分、控制部分和执行部分组成。
供气部分有空气压缩机组、空气干燥器的风缸等;控制部分有电-空转换阀、紧急阀、称重阀、中继阀等;执行部分主要是指基础制动装置,主要有闸瓦制动装置、盘形制动装置等。
指令和通信网络系统。
指令和通信网络系统是传递司机指令的通道,也是制动系统内部数据传递交换及制动系统与列车控制系统进行数据通信的总线。
②制动系统的作用。
制动系统的主要作用如下:车辆在运行过程中,司机通过制动装置使列车减速、停车或停止加速。
防止车辆在长大下坡道运行时加速。
防止城轨车辆在停车线或检修线上自动溜放而实施停放作用等。
我国城轨车辆制动系统介绍及选型吕晓晖(中国北方机车车辆工业集团,266031,青岛∥高级工程师)摘 要 介绍了日本N A BCO、德国K N O RR和英国WEST IN G HO US E制动系统控制装置的组成、工作原理及在我国各地城轨车辆上的应用。
提出了选用城轨车辆制动系统需注意的几个方面:在保证安全性的同时,尽量减少制动系统的运用。
应考虑制动控制系统的寿命周期成本;在选用城轨制动控制系统时,需要研究其零部件维修的可能性,而不是自始至终从国外购买整机。
关键词 城轨车辆;制动控制系统;电空制动中图分类号 U260.352Selection of Vehicle Brake System in C hinaLv XiaohuiA bstract Compar ed with the br ake systems in Japan, Ge mar y and UK(NABCO,KNORR and Westing House), the com position and func tions of the contempor ar y urban ra il vehicle bra ke syste m adopted in China's ur ban r ail tra nsit ar e introduced,meanwhile suggestions and analysi s are pr ese nted on the selec tion of ur ban r ail vehicle br ake system.The auther ar gues that a fe asibility study on br ake parts maintenance should be car ried out be fore the pur chase of the wh ole car body f rom abr oud.Key words urban r ail vehicle;br ake contr ol syste m; elec tropne uma tic br akeAuthor's address Chinese Norther n Loco.and Ca r I ndustr ial Gr oup,266031,Qingdao,China 城轨车辆制动系统的整体使用寿命要求20~30年,是影响城轨车辆安全性和寿命成本最重要的因素之一。
铁路车辆制动装置及铁路车辆铁路交通作为我国重要的交通运输方式之一,具有高效、安全的特点。
而铁路车辆制动装置则是保障铁路运输安全的重要组成部分。
本文将对铁路车辆制动装置及铁路车辆的相关内容进行探讨。
一、铁路车辆制动装置概述铁路车辆制动装置是指用来控制车辆制动的系统和设备,通过对车轮施加一定的制动力,使车辆减速、停车或维持稳定速度行驶。
铁路车辆制动装置分为三类:摩擦制动装置、电磁制动装置和风动制动装置。
1. 摩擦制动装置摩擦制动装置是最常用的车辆制动装置,通过摩擦副产生摩擦力来制动车辆。
主要包括制动鞋、制动盘、液压传动装置等。
其优点是结构简单、制动力大,但受到磨损和热效应影响较大。
2. 电磁制动装置电磁制动装置利用电磁原理实现制动。
电磁制动装置适用于高速列车和电动车辆,其优点是响应速度快、调度灵活,但制动力相对较小。
3. 风动制动装置风动制动装置利用空气压缩机产生压缩空气,通过气动系统控制车辆制动。
风动制动装置结构复杂,但其制动力可靠,适用于长时间连续运行的列车。
二、铁路车辆制动装置的工作原理铁路车辆制动装置的工作原理是根据列车的运行速度和牵引力需求,通过控制制动装置的工作状态,实现列车的制动或牵引。
1. 制动过程列车制动时,司机通过操作制动系统,使制动操纵装置通过传递力或信号,控制制动装置施加制动力。
制动力通过轮子与轨道的摩擦力,减小列车的速度直至停车。
2. 牵引过程列车牵引时,司机通过操作牵引手柄,控制牵引系统将电能或机械能传递到车轮,推动列车行驶。
三、铁路车辆的特点和要求铁路车辆作为长距离、高速度、高能耗的交通工具,在制动装置和车辆设计上有一些特点和要求。
1. 制动能力要求铁路车辆制动装置需要具备足够的制动能力,能够保证列车在不同工况下的安全制动。
同时,制动装置还需要具备调整和控制制动力的能力,以适应列车不同运行状态下的牵引和制动需求。
2. 稳定性要求铁路车辆制动装置的稳定性是保证列车运行安全的基础。
轨道交通车辆的制动系统设计与优化在现代城市交通中,轨道交通系统扮演着重要的角色,它为人们提供了高效、便捷、安全的出行方式。
而轨道交通车辆的制动系统作为保障乘客安全的关键部件,其设计与优化显得尤为重要。
本文将探讨轨道交通车辆制动系统的设计原理,以及如何进行优化,以提高制动性能和乘客的乘坐舒适度。
一、轨道交通车辆制动系统的设计原理轨道交通车辆制动系统的设计目标是在车辆运行过程中保证行车的安全、可靠性和舒适性。
一个完整的制动系统一般由三个部分组成:制动装置、操纵装置和辅助装置。
制动装置:制动装置包括主要制动装置和辅助制动装置。
主要制动装置通常是通过压力传感器或踏板来控制,分为空气制动和电力制动两种方式。
空气制动是利用空气压力驱动制动系统,而电力制动则是通过电能转换为机械能来实现制动。
辅助制动装置是为了在主要制动系统失效时提供备用制动。
操纵装置:操纵装置是指用于控制制动系统的操作手柄或按钮,一般位于驾驶室内或乘客车厢内,方便司机或乘客进行制动操作。
辅助装置:辅助装置是指用于制动系统安全性和舒适性的增强装置,如制动防滞系统、牵引力控制系统和气囊减震系统等。
二、轨道交通车辆制动系统的优化在轨道交通车辆的制动系统中,性能的优化是提高乘车安全性和乘坐舒适度的关键。
以下是几种常用的优化措施:1. 制动力的精确控制:制动力的精确控制可以减少制动时的冲击力和停车距离。
通过先进的电子控制系统,可以实现对制动力的精确调节,提高制动的平稳性和减震效果。
2. 制动材料的选择与设计:轨道交通车辆制动材料的选择和设计直接影响制动性能。
合适的材料选用可以提高制动的效率和耐久性。
目前,常用的制动材料包括钢、碳陶瓷和碳纤维等,它们各自具有不同的制动性能和耐磨性。
3. 制动系统的故障检测和预警:为了保证车辆的安全运行,制动系统需要进行定期的故障检测和维护。
通过安装传感器和数据监测装置,可以实时监测制动系统的工作状态,并提前发现潜在故障,以避免事故的发生。