探究一个角的正弦值与余弦值之间的关系
- 格式:ppt
- 大小:366.00 KB
- 文档页数:3
第8讲正弦定理余弦定理面积公式教师一、正弦定理正弦定理是三角形中一个非常重要的定理,它表达了三角形中各边与其对应角的正弦值之间的关系。
正弦定理可以表示为:a/sinA = b/sinB = c/sinC其中,a、b、c分别是三角形ABC的边长,A、B、C分别是与这些边对应的角。
二、余弦定理余弦定理是另一个关于三角形的定理,它表达了三角形中各边与其对应角的余弦值之间的关系。
余弦定理可以表示为:c^2 = a^2 + b^2 2abcosC其中,a、b、c分别是三角形ABC的边长,C是与边c对应的角。
三、面积公式三角形的面积可以通过多种方式计算,其中一种常用的方法是利用海伦公式。
海伦公式可以表示为:Area = √[s(sa)(sb)(sc)]其中,s是三角形的半周长,s = (a + b + c) / 2。
四、教学目标1. 让学生掌握正弦定理和余弦定理的基本概念和公式。
2. 培养学生运用正弦定理和余弦定理解决实际问题的能力。
3. 让学生了解三角形面积的计算方法,并能够灵活运用。
五、教学方法1. 讲授法:通过讲解正弦定理、余弦定理和面积公式的概念和推导过程,帮助学生理解这些定理和公式的原理。
2. 示例法:通过列举具体的例子,展示如何运用正弦定理、余弦定理和面积公式解决实际问题。
3. 练习法:布置相关的练习题,让学生独立思考和解决问题,巩固所学知识。
六、教学评价1. 课堂提问:通过提问的方式,检查学生对正弦定理、余弦定理和面积公式的理解和掌握程度。
2. 练习题:通过批改练习题,了解学生对这些定理和公式的应用能力。
3. 测试:通过进行测试,全面评估学生对正弦定理、余弦定理和面积公式的掌握情况。
第8讲正弦定理余弦定理面积公式教师七、教学资源1. 教学PPT:制作包含正弦定理、余弦定理和面积公式概念、公式推导及应用例题的PPT,以便于课堂讲解和学生课后复习。
2. 教学视频:录制正弦定理、余弦定理和面积公式的讲解视频,帮助学生更好地理解这些定理和公式的原理。
正弦和余弦转换公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
深入探讨30度、60度和45度的正弦、余弦和正切值,需要从简单的数学概念开始逐步展开,让读者能够全面地理解这些三角函数的概念和性质。
一、简介在数学中,三角函数是研究角和角的变化关系的重要工具。
其中,正弦、余弦和正切是最常见的三角函数。
它们描述了角度和直角三角形边之间的关系。
在本文中,我们将着重讨论特定角度下的正弦、余弦和正切值,即30度、60度和45度,探究它们在数学和实际问题中的应用。
二、30度的正弦、余弦和正切值1. 正弦值:在直角三角形中,30度角的正弦值可以表示为对边与斜边的比值。
即sin(30°) = 1/2。
2. 余弦值:30度角的余弦值可以表示为邻边与斜边的比值。
即cos(30°) = √3/2。
3. 正切值:30度角的正切值可以表示为对边与邻边的比值。
即tan(30°) = 1/√3。
三、60度的正弦、余弦和正切值1. 正弦值:在直角三角形中,60度角的正弦值可以表示为对边与斜边的比值。
即sin(60°) = √3/2。
2. 余弦值:60度角的余弦值可以表示为邻边与斜边的比值。
即cos(60°) = 1/2。
3. 正切值:60度角的正切值可以表示为对边与邻边的比值。
即tan(60°) = √3。
四、45度的正弦、余弦和正切值1. 正弦值:在直角三角形中,45度角的正弦值可以表示为对边与斜边的比值。
即sin(45°) = 1/√2。
2. 余弦值:45度角的余弦值可以表示为邻边与斜边的比值。
即cos(45°) = 1/√2。
3. 正切值:45度角的正切值可以表示为对边与邻边的比值。
即tan(45°) = 1。
五、总结与回顾通过对30度、60度和45度的正弦、余弦和正切值的深入探讨,我们可以发现它们之间的关系和特点。
正弦值描述了角度对应的三角形的竖直分量,余弦值描述了水平分量,而正切值则描述了这两个分量之间的比例关系。
1.三角形的有关性质(1)在△ABC 中,内角和定理:A +B +C =π,A 2+B 2+C 2=π2中互补和互余的情况;(2)a +b>c ,a -b<c ;(3)在三角形中有:sin 2A =sin 2B ⇔A =B 或A+B =π2⇔三角形为等腰或直角三角形;cos2A=cos2B ⇔A =B ⇔三角形为等腰三角形; tan2A=tan2B ⇔A =B ⇔三角形为等腰三角形; (4) sin(A +B)=sin(π-C)=sin C ,cos(A +B)=cos(π-C)=-cos C ,tan(A +B)=tan(π-C)=-tan C ,sin ⎝⎛⎭⎫A 2+B 2=sin ⎝⎛⎭⎫π2-C 2=cos C 2,cos ⎝⎛⎭⎫A 2+B 2=cos ⎝⎛⎭⎫π2-C 2=sin C 2. (5) 三角形中的边角关系:在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大, 即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B.2.3.(1) ①S =12ah a =12bh b =12ch c (h a ,h b ,h c 分别是边a ,b ,c 上的高);②S =12absin C =12bcsin A =12acsin B, 一般是已知哪一个角就使用哪一个公式;③S △ABC =s (s -a )(s -b )(s -c )(海伦公式). ④S △ABC =abc 4R =12(a +b +c)·r(r 是三角形内切圆的半径, R 是△ABC 外接圆半径),并可由此计算R 、r. (2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. 4.解三角形常见问题(1)已知一边和两角解三角形; (2)已知两边及其中一边的对角解三角形; (3)已知两边及其夹角解三角形;(4)已知三边解三角形;(5)三角形形状的判定; (6)三角形的面积问题; (7)正弦、余弦定理的综合应用. 5.解三角形应注意的问题(1)在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解或无解,所以要进行分类讨论.(2)在判断三角形形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解. 6.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.7.在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.用正弦定理有解的可分为以下情况,在△ABC 中,已知a ,b 和角A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 a =bsin A bsin A <a <ba ≥b a >b a ≤b 解的个数一解两解 一解一解无解8.利用余弦定理,可以解决以下两类有关三角形的问题:(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角; 利用余弦定理判定三角形的形状?(以角A 为例)∵cos A 与b 2+c 2-a 2同号,∴当b 2+c 2-a 2>0时,角A 为锐角,若可判定其他两角也为锐角,则三角形为锐角三角形; 当b 2+c 2-a 2=0时,角A 为直角,三角形为直角三角形; 当b 2+c 2-a 2<0时,角A 为钝角,三角形为钝角三角形.9.在解有关三角形的题目时,(1)要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(2)解题中注意三角形内角和定理的应用及角的范围限制. 10.判定三角形形状的两种常用途径①通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断; ②利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出三条边之间的关系进行判断. 探究点一 正弦定理的应用例1 (1)在△ABC 中,a =3,b =2,B =45°,求角A 、C 和边c ; (2)在△ABC 中,a =8,B =60°,C =75°,求边b 和c.解 (1)由正弦定理a sin A =b sin B 得,sin A =32.∵a>b ,∴A>B ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°,c =bsin Csin B =6+22; 当A =120°时,C =180°-45°-120°=15°,c =bsin Csin B =6-22.综上,A =60°,C =75°,c =6+22,或A =120°,C =15°,c =6-22. (2)∵B =60°,C =75°,∴A =45°.由正弦定理a sin A =b sin B =csin C,得b =a·sin B sin A =46,c =a·sin C sin A=43+4.∴b =46,c =43+4.1.在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c.若b =2asin B ,则角A 的大小为________.2. (1)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c.已知8b =5c ,C =2B ,则cos C 等于 ( )A.725B.-725C.±725D.2425(2) (2010·广东)已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则角A 的大小为________.3.已知在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且tanC =aba 2+b 2-c 2,则角C 为( )A.π6B.π4C.π3D.3π44.已知△ABC 的三边长为a ,b ,c ,且面积S △ABC =14(b 2+c 2-a 2),则A =( )A.π4B.π6C.2π3D.π125.(1)在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________;(2)在△ABC 中,若a =50,b =256,A =45°,则B =________. 6.(2012·广东高考)在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =( ) A.4 3 B.23 C. 3 D.327.(2013·辽宁)在△ABC 中,内角A,B,C 的对边分别为a,b,c.若asin Bcos C +csin Bcos A =12b,且a >b,则∠B 等于 ( )A.π6B.π3C.2π3D.5π61.解析:由正弦定理得sin B =2sin Asin B ,∵sin B ≠0,∴sin A =12,∴A =30°或A =150°.2.解析 (1)由正弦定理b sin B =c sin C ,将8b =5c 及C =2B 代入得b sin B =85b sin 2B ,化简得1sin B =852sin Bcos B,则cos B =45,所以cos C =cos 2B =2cos 2B -1=2×(45)2-1=725,故选A.(2)∵A +C =2B 且A +B +C =π,∴B =π3.由正弦定理知:sin A =asin B b =12,又a<b ,∴A<B ,∴A =π6.3.解析:由已知及余弦定理,得sinC cosC =ab 2abcosC ,所以sinC =12.因为C 为锐角,所以C =π6.4.解析:因为S △ABC =12bcsinA =14(b 2+c 2-a 2),所以sinA =b 2+c 2-a 22bc =cosA ,故A =π4.5.解析 (1)∵在△ABC 中,tan A =13,C =150°,∴A 为锐角,∴sin A =110.又∵BC =1.∴根据正弦定理得AB =BC·sin C sin A =102.(2)由b>a ,得B>A ,由a sin A =b sin B ,得sin B =bsin A a =25650×22=32,∵0°<B<180° ∴B =60°或B =120°.6.解析:选B 由正弦定理得:BC sin A =AC sin B ,即32sin 60°=AC sin 45°,所以AC =3232×22=2 3.7.解析 由条件得a b sin Bcos C +c b sin Bcos A =12,依正弦定理,得sin Acos C +sin Ccos A =12,∴sin(A +C)=12,从而sin B =12,又a >b ,且B ∈(0,π),因此B =π6.【例2】不解三角形,判断下列三角形解的个数(1)5a =,4b =,120A =; (2)5a =,10b =,150A = ;(3)9a =,10b =,60A =; (4)18a =,24b =,44A =.解:(1)a b >,且A 为钝角,∴ ABC ∆有唯一解;(2)b a >,且A 为钝角,∴ ABC ∆有无解;(3)3sin 10532b A =⨯=,∴ sin b A a b <<,∴ ABC ∆有两解; (4)sin 24sin 4424sin 45122b A =<=,又1221824<<,故有两解.方法总结:已知三角形的两边和其中一边的对角,由正弦定理可以求出另一边的对角的正弦值,从而解出三角形,但这个三角形不一定有解.这类问题可以通过计算来判断,也可以通过画图用几何方法来判断.讨论时应注意两点: 一是其正弦值与“1”的大小关系,从而决定符合正弦值的角是否存在; 二是由此确定的角()0180有几个,它与已知角的和是否小于180.1.△ABC 中,a =5,b =3,sin B =22,则符合条件的三角形有( ) A.1个 B.2个 C.3个 D.0个2.在△ABC ,已知∠A =45°,AB =2,BC =2,则∠C 等于 ( ) A.30° B.60° C.120° D.30°或150°3.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A.有一解 B.有两解C.无解D.有解但解的个数不确定4.ABC ∆的内角A B C 、、的对边分别是a b c 、、,若2B A =,1a =,3b =,则c =( ) A. 23 B. 2 C.25.在锐角ABC ∆中,角,A B 所对的边长分别为,a b .若2sin 3,a B b A =则角等于( ) A.12π B.6π C.4π D.3π6.若==,则△ABC 是( )A.等边三角形B.直角三角形,且有一个角是30°C.等腰直角三角形D.等腰三角形,且有一个角是30°7.在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若a =2,b =22,且三角形有两解,则角A 的取值范围是( ) A.⎝⎛⎭⎫0,π4 B.⎝⎛⎭⎫π4,π2 C.⎝⎛⎭⎫π4,3π4 D.⎝⎛⎭⎫π4,π3 8.在△ABC 中, 内角A, B, C 所对的边分别是a, b, c. 已知sin 3sin b A c B =, a = 3, 2cos 3B =. (1) 求b 的值; (2) 求sin 23B π⎛⎫- ⎪⎝⎭的值.1.解析:选B ∵asin B =102,∴asin B<b =3<a =5,∴符合条件的三角形有2个.2.解析 在△ABC 中,AB sin C =BC sin A ,∴2sin C =2sin 45°,∴sin C =12,又AB<BC ,∴∠C<∠A ,故∠C =30°.3.解析:选C 由正弦定理得b sin B =c sin C ,∴sin B =bsin Cc=40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.4.【解析】选B.由A B 2=,则A B 2sin sin =,由正弦定理知Bb Aasin sin =,即A A A B A cos sin 232sin 3sin 3sin 1===, 所以cosA=23,所以A=6π,32π==A B ,所以2ππ=--=A B C ,所以431222=+=+=b a c ,c=2.5.【解题指南】本题先利用正弦定理BbA a sin sin =化简条件等式,注意条件“锐角三角形” . 【解析】选D.由2asinB=3b 得2sinAsinB=3sinB,得sinA=23,所以锐角A=3π. 6.解析:在△ABC 中,将a=2Rsin A,b=2Rsin B,c=2Rsin C,代入==得==,所以==1.所以tan B=tan C=1,所以B=C=45°.所以△ABC 是等腰直角三角形.故选C.7.[解析] 由条件知bsinA<a ,即22sinA<2,∴sinA<22,∵a<b ,∴A<B ,∴A 为锐角,∴0<A<π4.8.【解题指南】(1)根据正弦定理及sin 3sin b A c B =, a = 3求出a,c 的值,再由余弦定理求b 的值; (2)根据同角三角函数的基本关系式及二倍角公式求出cos 2B ,sin 2B ,再由两角差的正弦公式求值.【解析】(1) 在△ABC 中,由正弦定理得sin sin a b AB=,即sin sin b A a B =,又由sin 3sin b A c B =,可得,3a c =,又 a =3,故c=1,由2222cos ,b a c ac B =+-且2cos ,3B =可得 6.b =(2)由2cos 3B =,得5sin 3B =,进而得到21cos 22cos 1,9B B =-=-45sin 22sin cos .9B B B ==所以453sin 2sin 2cos cos 2sin .33318B B B +⎛⎫-=-= ⎪⎝⎭πππ 探究点二 余弦定理的应用例1.已知a 、b 、c 分别是△ABC 中角A 、B 、C 的对边,且a 2+c 2-b 2=ac.(1)求角B 的大小;(2)若c =3a,求tan A 的值.解(1)∵a 2+c 2-b 2=ac ,∴cos B =a 2+c 2-b 22ac =12.∵0<B<π,∴B =π3. (2)方法一 将c =3a 代入a 2+c 2-b 2=ac ,得b =7a. 由余弦定理,得cos A =b 2+c 2-a 22bc =5714.∵0<A<π,∴sin A =1-cos 2A =2114,∴tan A =sin A cos A =35. 方法二 将c =3a 代入a 2+c 2-b 2=ac ,得b =7a.由正弦定理,得sin B =7sin A.由(1)知,B =π3,∴sin A =2114.又b =7a>a ,∴B>A ,∴cos A =1-sin 2A =5714.∴tan A =sin A cos A =35.方法三 ∵c =3a ,由正弦定理,得sin C =3sin A.∵B =π3,∴C =π-(A +B)=2π3-A ,∴sin(2π3-A)=3sin A ,∴sin 2π3cos A -cos 2π3sin A =3sin A ,∴32cos A +12sin A =3sin A ,∴5sin A =3cos A ,∴tan A =sin A cos A =35.1.(2013年高考北京卷)在△ABC 中,若a=2,b+c=7,cos B=-,则b= .2.已知∆ABC 的内角A 、B 、C 所对的边分别是a 、b 、c.若a 2+ab+b 2-c 2=0,则角C 的大小是 .3.设△ABC 的内角A,B,C 所对边的长分别为a,b,c.若b+c=2a,则3sinA=5sinB,则角C= ( ) A.π3B.2π3C.3π4D.5π64.在△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,B =2π3,b =13,a +c =4,求a. 5.若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足(a +b)2-c 2=4,且C =60°,则ab 的值为( ) A.43 B.8-43 C.1 D.236.若△ABC 的内角A ,B ,C 满足6sin A =4sin B =3sin C ,则cos B =( ) A.154 B.34C.31516D.11167.在△ABC 中,a 、b 、c 分别是三内角A 、B 、C 的对边,且sin 2A -sin 2C =(sinA -sinB)sinB ,则角C 等于( ) A.π6 B.π3 C.5π6 D.2π38. (2013·浙江)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.若sin 2B +sin 2C -sin 2A +sinBsinC =0,则tanA 的值是( ) A.33 B .-33C. 3 D .- 3 9.(2013·安徽高考)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c.若b +c =2a ,3sin A =5sin B ,则角C =________. 10.已知△ABC 中,AB =3,BC =1,sinC =3cosC ,则△ABC 的面积为( ) A.32 B.52 C. 75 D.1141.解析:在△ABC 中,由b 2=a 2+c 2-2accos B 及b+c=7知,b 2=4+(7-b)2-2×2×(7-b)×.整理得15b-60=0,∴b=4.2.解π32212- cos 0- 222222=⇒-=+=⇒=++C ab c b a C c b ab a3.解由题设条件可得5233573⎧=⎪+=⎧⎪⇒⎨⎨=⎩⎪=⎪⎩a b b c a a b c b ,由余弦定理得222222257()()133cos 52223+-+-∠===-⨯b b b a b c C ab b,所以2π∠C =3。
公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。
正弦和余弦【学习目标】1.了解正弦、余弦的概念的意义(用直角三角形中直角边与斜边的比表示),知道当锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.2.熟记30°、45°、60°角的正弦、余弦值,并会根据这些数值说出对应的特殊角的度数. 3.了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系. 4.会查“正弦和余弦表”,即由已知锐角求对应的正弦、余弦值,已知正弦、余弦值求对应的锐角(或运用计算器).5.会用上述知识解决一些求三角形中未知元素的简单问题. 【主体知识归纳】1.如图6—1,在Rt △ABC 中,如果∠C =90°,∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,那么∠A 的正弦sin =ca,∠A 的余弦cos =c b .2.特殊角的正弦、余弦值.3.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值.即sinA =cos (90°-A ),cosA =sin (90°-A ).4.三角函数表三角函数值的变化规律是使用三角函数表的依据.当角度在0°~90°变化时,正弦值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大).【基础知识讲解】1.正弦、余弦的概念是本章的起点,同时又是重点、关键.这是本章知识的基础.在直角三角形ABC 中,当一个锐角(∠A )取固定值时,它的直角边与斜边的比值也是一个固定值.AB BC A A =∠=斜边的对边sin ,cos =ABACA =∠斜边的邻边. 实际上它们是一个函数关系,它的自变量的取值范围是大于0°且小于90°的所有角度. 在直角三角形中,由于斜边最长,所以函数值的范围是大于0且小于1的所有实数. 2.在查“正弦和余弦表”时,需要明确以下四点:(1)这份表的作用是:求锐角的正弦、余弦值,或由锐角的正弦、余弦值,求这个锐角; (2)这份表中,角精确到1′,正弦、余弦值具有四个有效数字; (3)凡查表所得的值,在教科书中习惯用等号“=”,而不用约等号“≈”;根据查表所得的值进行近似计算,结果经四舍五入后,一般用约等号“≈”来表示;(4)通过查表要知道:sin0°=0,sin90°=1,cos0°=1,cos90°=0. 在使用余弦表中的修正值时,如果角度增加(1′~3′),相应的余弦值要减小一些;如果角度减小(1′~3′),相应的余弦值要增加.【例题精讲】例1:如图6—2,已知在△ABC 中,∠ACB =90°,CD ⊥AB ,且AC =4,CD =3,求∠B 的正弦值和余弦值.剖析:任意一个锐角的三角函数值,一般是利用一个直角三角形中相应的边的比值表示,因此要求∠B 的正弦、余弦值,首先要观察∠B 是否在一个直角三角形中,边的比值可否求出.解:∵AC ⊥BC ,C D⊥AB ,∴△ACD ∽△ABC .∴∠ACD =∠B .又∵AC =4,C D=3,由勾股定理,得AD =7. ∴sinB =sin ∠ACD =47, cosB =cos ∠ACD =43. 例2:如图6—3,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,写出等于∠A 的正弦的线段比.剖析:根据三角函数定义知,在直角三角形中,角的正弦值等于对边比斜边,余弦值等于邻边比斜边.这里的前提条件一定要注意,是在直角三角形中.错解:sin =ABBCAB CD =. 正解:sin =BCBDAB BC AC CD ==. 说明:错解之一是所答线段比ABCD,因为它们不在同一个直角三角形中,错解之二是所答线段比不全,不全的原因是在三种情况下形成的:一是∠A 是Rt △ABC 和Rt △ACD 的公共角,应有两个比,二是∠A =∠BCD ,则sin =sin ,三是∠A +∠ACD =90°,∠A +∠B =90°,cosACD =sinA =ACCD,cosB =sin ∠BCD =BCBD.只不过第三种情况的比包含在前两种情况之中了. 例3:如图6—4,在△ABC 中,AB =AC =5,BC =6,求cos ∠A .剖析:我们所求的任意一个锐角的三角函数值,都是根据三角函数定义,利用一个直角三角形中相应边的比值来表示.求锐角A 的三角函数值时,要观察∠A 是否存在于一个直角三角形中,如果题中没有给出这样的条件,我们要通过添加辅助线,构造出∠A 所在的直角三角形.解:作△ABC 的高AD 、BE .∵AB =AC =5,BC =6,∴BD =21BC =21×6=3. 在Rt △ABD 中,由勾股定理,得 AD =222235-=-BD AB =4. ∵S △ABC =21BC ·AD =21AC ·BE , ∴BC ·AD =AC ·BE ,即6×4=5×BE . ∴BE =524. 在Rt △ABE 中,由勾股定理,得 AE =57)524(52222=-=-BE AB . ∴cos =257=AB AE . 说明:任意锐角的正弦、余弦值都是存在的,因此在求某一个锐角的正弦值、余弦值时,可把该锐角放到某一直角三角形中(如本例通过添加辅助线,构造出直角三角形),也可以利用某直角三角形中的一个和它相等的角替代(如例1中,求∠B 的三角函数值可转化为求∠ACD 的三角函数值).例4:计算:cos 245°–︒+︒60sin 2360cos 3+cos 230°+sin 245°–sin 230°.剖析:本题主要考查特殊角的三角函数值及数的运算,所以做题时,一是要牢记特殊角的三角函数值,二是运算要准确.解:原式=(22)2–211+2323⨯+(23)2+(22)2–(21)2=21–2+1+43+21–41=21. 说明:牢记特殊角的三角函数值是做题的前提,运算正确是关键.例5:在△ABC 中,若|sin –22|+(23–cos)2=0,∠A 、∠B 都是锐角,则∠C 的度数是( ) A .75° B .90° C .105° D .120° 剖析:本题主要考查非负数的性质及正、余弦函数的有关知识,在△ABC 中,要求∠C 的度数,首先要确定∠B 、∠C 的度数.解:∵|sin –22|+(23–cos)2=0, ∴|sin –22|=0,(23–cos)2=0,∴sin –22=0, 23–cos =0.即sin =22,cos =23.∴∠A =45°,∠B =30°. ∵∠A +∠B +∠C =180°, ∴∠C =105°. 故应选C .例6:在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,则BBA sin cos cos •的值是( )A .ca B .acC .baD .ab 剖析一:四个选择支均为边的比值,因此想到将sinB 、cosB 、cosA 转化边的比,根据锐角三角函数的定义,cosA =c b ,sinB =c b ,cosB =c a ,化简得ca,所以选A . 剖析二:利用互余两角三角函数间的关系,得cosA =sinB ,即B sin B cos A cos ⋅=cosB =ca.因此选A .说明:(1)在解题中,常常利用锐角三角函数的定义,将锐角三角函数转化为边的比,或将边的比转化成锐角三角函数;(2)求三角函数式的值、化简三角函数式、或证明三角函数恒等式,常常利用互为余角的三角函数间的关系.将不同角的三角函数变为同角的三角函数.例7:若α是锐角,且sin α=322,求cos α的值. 解:如图6—5,设∠A =α,∠C =90°,不妨设BC =22,AB =3,∴AC =2222)22(3-=-BC AB =1. ∴cos α=31=AB AC . 说明:(1)因α是锐角,可构造一个直角三角形,使α是其中的一个锐角,从而转化为利用锐角三角函数定义来解决问题.(2)已知sin α=322,运用特例的思想,可设BC =22,AB =3,从而转化为在直角三角形内的问题.这种解法在做选择题、填空题时应用更为广泛.(3)此题还可应用同角之间的三角函数关系求解,这将在以后的学习中学到. 【知识拓展】培养学习数学好习惯学习习惯是长时期逐渐养成的、一时不容易改变的学习行为方式和行为倾向,一个人养成什么样的学习习惯,会对其学习成绩直接产生有利或有害的影响.同学们养成怎样的学习习惯才对学习有利呢? (1)独立思考的习惯 爱因斯坦说过:“学习知识要善于思考、思考、再思考,我就是靠这个学习方法成为科学家的.” 课堂上对于老师的讲解,不要只是听或认真听,而要经过思考:老师为什么要这样讲?此题为什么要这样解?辅助线为什么要这样添?还有没有其他解法?长期坚持下去,既培养了自己独立思考的习惯,又真正掌握了知识,提高了能力,只有这样才有助于学习成绩的提高.(2)善于求异和质疑的习惯具体内容是:①独立思考问题,自己从书中、演算中或从分析自己的错例中寻找问题的答案,不畏困难,积极思考.②敢于提出自己的疑问并寻根问底,敢于提出自己不同意见.③在解题、讨论或研究问题时能突破条条框框的约束,不墨守成规,能从不同角度多方面的思考问题,寻求出创造性的解题方法.纠正懒于思考,事事依赖老师、家长、同学或单纯靠记忆模仿、照搬等不良的思维习惯.养成求异和质疑的好习惯对发展创造性思维,及将来的进一步学习都有重要的作用.要养成这种好习惯,首先要认真阅读课本,对书上的结论、注解要多问几个为什么;其次在听懂老师讲解后,要独立思考,看看所讲例题有没有别的解法;再次,就是在研究一题多解的基础上,勤积累,多思考.【同步达纲练习】 1.选择题(1)下列各式中,正确的是( )A .sin60°=21B .cos (90°-30°)=sin60°C .cos60°=21 D .sin 2x =sinx 2(2) 21cos30°+22cos45°+sin60°·cos60°等于( )A . 22B .23C .221+D .231+(3)在Rt △ABC 中,∠C =90°,a :b =3:4,则cosB 等于( )A .54B .53C .43D .34(4)已知在Rt △ABC 中,∠C =90°,AC =12,AB =13,那么sinA 的值是( ) A .1312 B .1213 C .131D .135 (5)在Rt △ABC 中,∠C =90°,若c =2,sinA =41,则b 的值是( ) A .21B .1C .215D .以上都不对(6)在Rt △ABC 中,各边的长都扩大两倍,那么锐角A 的正弦值( ) A .扩大两倍 B .缩小到一半 C .没有变化 D .不能确定(7)在Rt △ABC 中,sinB =23,则cos 2B 等于( ) A .21B .23C .±23 D .以上答案都不对(8)若0°<α<45°,那么cos α–sin α的值( ) A .大于零 B .小于零 C .等于零 D .不能确定(9)α是锐角,且cos α=43,则α( ) A .0°<α<30° B .30°<α<45° C .45°<α<60° D .60°<α<90°(10)在Rt △ABC 中,∠C =90°,CD ⊥AB ,垂足为D ,AB :AC =3:2,则∠BC D的正弦值为( )A .35 B .32C .23D .53(11)在△ABC 中,∠C =90°,则下列叙述中正确的是( )A .∠A 的邻边与斜边之比是∠A 的正弦B .∠A 的对边与邻边之比是∠A 的正弦C .∠A 的对边与斜边之比是∠B 的余弦D .∠A 的邻边与斜边之比是∠B 的余弦 (12)在Rt △ABC 中,∠C =90°,∠A =30°,则sinA +cosA 等于( ) A .1B .231+ C .221+ D .41 (13)下列等式中正确的是( )A .sin20°+sin40°=sin60°B .cos20°+cos40°=cos60°C .sin (90°-40°)=cos40°D .cos (90°-30°)=sin60° (14)下列不等式中正确的是( )A .cos42°>cos40°B .cos20°<cos70°C .sin70°>sin20°D .sin42°<sin40°(15)在Rt △ABC 中,∠C =90°,下列等式一定成立的是( )A .sinA =sinB B .sinA =cosAC .sin (A +B )=cosD .sinA =cosB(16)化简22)80sin 20(sin 20sin 80sin )80cos 1(︒-︒︒-︒-︒-的结果是( )A .1–cos80°B .–cos80°C .cos80°D .cos80°–1(17)若α是锐角,sin40°=cos α,则α等于( ) A .40° B .50° C .60° D .不能确定(18)已知α、β是两个锐角,sin α=0.412,sin β=0.413,则有( )A .α>βB .α<βC .α=βD .不能确定α、β的大小(19)已知α、β是两个锐角,cos α=0.43,cos β=0.44,则有( )A .α>βB .α<βC .α=βD .不能确定α、β的大小(20)如果α是锐角,且cos α=54,则sin (90°-α)的值等于( ) A .259B .54C .53D .2516 (21)在△ABC 中,如果sinA =cosB =21,则△ABC 是( )A .直角三角形B .钝角三角形C .锐角三角形D .以上答案都不对2.填空题(1)计算:4sin60°+23cos30°-6cos 245°=__________;(2)一个直角三角形的两直角边分别为5和12,则较小锐角的正弦值是__________;(3)化简:︒+︒•︒-︒90sin 60cos 70sin 470sin 22+cos20°的结果为__________;(4)若锐角α满足2sin α-1=0,则α=__________;(5)不查表,比较大小:sin25°_____sin24°30′,cos82°25′_______cos82°26′;(6)△ABC 的面积为24cm 2,∠B =90°,一直角边AB 为6 cm ,则sinA =__________; (7)若三角形的三边长之比为1:3:2,则此三角形的最小内角的正弦值为__________; (8)在Rt △ABC 中,∠C =90°,a =8,b =15,则sinA +sinB =__________;(9)若锐角α满足等式2sin(α+15°)–1=0,则∠α=__________,cos2α=__________. (10)如果2+3是方程x 2–8xcos α+1=0的一个根,且α是锐角,则α=__________. (11)若ααααcos sin cos sin -+没有意义,则锐角α__________.3.用符号表示: (1)∠A 的正弦; (2)∠B 的余弦; (3)40°角的正弦; (4)47°5′角的余弦. 4.求下列各式的值:(1)sin30°+2cos60°;(2)sin 230°+cos 230°;(3)2sin45°·cos45°; (4)︒︒45cos sin45-1;(5)sin30°·cos45°+cos30°·sin45°.5.把下列各角的正弦(余弦)改写成它的余角的余弦(正弦):(1)sin17°; (2)cos39°; (3)sin41°12′; (4)cos62°27′.6.在△ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ;先根据下列条件求出∠A 的正弦值和余弦值,然后直接写出∠B 的正弦值和余弦值.(1)a =5,c =29;(2)b =9,c =85;(3)a =7,b =4.7.已知△ABC 为等腰直角三角形,∠ACB =90°,过BC 的中点D 作DE⊥AB ,垂足为E ,连结CE ,求cosAEC 的值.8.已知2+3是方程 x 2-5x ·sin θ+1=0的一个根,θ是锐角,试求sin θ、cos θ的值.参考答案【同步达纲练习】1.(1)C (2)D (3)B (4)D (5)C (6)C (7)B (8)A (9)B (10)A (11)C (12)A (13)C (14)C (15)D (16)B (17)B (18)B (19)A (20)B (21)A 2.(1)23 (2)135 (3)1 (4)45° (5)> > (6)54 (7)21 (8)1723 (9)15° 23(10)60° (11)=45°3.(1)sinA (2)cosB (3)sin40° (4)cos47°5′ 4.(1)23 (2)1 (3)1 (4)0 (5)4625.(1)cos73° (2)sin51° (3)cos48°48′ (4)sin27°33′6.(1)sinA =cosB =29295,cosA =sinB =29292; (2)sinA =cosB =85852,cosA =sinB =85859;(3)sinA=cosB =65657,cosA =sinB =656547.cosAEC =558.sin θ=54,cos θ=53。
正弦与余弦【知识要点】1.正弦:在直角三角形中,一个锐角所对的直角边与斜边的比,叫做这个角的正弦.即:c a A A =∠=斜边的对边sin ; cb B B =∠=斜边的对边sin . 2.余弦:在直角三角形中,一个锐角的邻边与斜边的比,叫做这个角的余弦.即:c b A A =∠=斜边的邻边cos ; ca B B =∠=斜边的邻边cos 3.特殊角的三角函数值=︒0sin ;=︒30sin ;=︒45sin ;=︒60sin ;=︒90sin ; =︒0cos ;=︒30cos ;=︒45cos ;=︒60cos ;=︒90cos .4. 增减性正弦值随锐角的增大而增大,余弦值随锐角的增大而减小。
正切值随锐角的增大而增大,余切值随锐角的增大而减小。
5.互余关系:任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值.()ααcos 90sin =-︒; ()ααsin 90cos =-︒.6.同角的正弦,余弦间的关系: ①平方和的关系:1cos sin 22=+A A .②大小比较:当︒<<︒450A 时,A A sin cos >.当︒<<︒9045A 时,A A sin cos <.【典型例题】例1. 根据下列图中给出的ABC Rt ∆的数据,求A sin ,A cos ,B sin , B cos 的值.例2.已知等腰梯形ABCD 中,上底CD=2cm,下底AB=5cm,腰AD=3cm ,试求A sin ,A cos 的值.例3.求下列各式的值.(1)︒+︒-︒60cos 45cos 30sin (2)︒⋅︒-︒30cos 30sin 260sinBA2 C B3 A B(3)︒+︒+︒50cos 50sin 45cos 222 (4)︒-︒︒60cos 245cos 45sin 例4.用不等号“>”“<”或“=”连接。
⑴ ︒35sin 635sin '︒; ⑵0372cos '︒ 2872cos ︒;⑵ ︒50.15sin 0315sin '︒; ⑷︒6cos ︒84sin⑸︒-︒27cos 63sin 0; ⑹︒-︒48sin 32cos 0。